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ABSTRACT
Biochemical reaction networks are in realistic cases best modeled as rational positive systems.
Rational positive systems for biochemical cell reaction networks are defined as dynamic
systems which are rational in the state but linear in the inputs. An academic example is
provided. The positive orthant is positively or forward invariant for the differential equation of the
system. Results are presented for the realizability of an input-output relation as a rational
positive systems and for the form of state-space isomorphisms.
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1 Introduction

The purpose of this paper is to present concepts, results, and problems of control and
system theory for a subclass of the rational positive systems of which examples have
been published as models of biochemical cell reaction networks.

The recent advances in knowledge for the genome of plants, animals, and hu-
mans now lead to increased interest in cell biology. Knowledge is needed on how
a cell as a functional unit operates biochemically and how the reaction network is
influenced by the genome via the enzymes. Metabolic networks, signal transduction
networks, and genetic networks have been analyzed by biologists and mathemati-
cians. In principle it is possible to model the complete biochemical reaction network
of a cell though this program has so far been carried out only for small compartments
of such networks.

Mathematical analysis for such reaction networks then leads to a system of or-
dinary differential equations or of partial differential equations. Often the ordinary
differential equations are of polynomial or of rational form. The number of reactions
in a cell can be as high as 15.000 (half the number of estimated genomes) and the
number of chemical compounds as high as 20.000. A detailed mathematical analysis
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of a mathematical model of the complete cell reaction network may therefore not
be possible in the short run. Hence there is an interest to develop procedures to ob-
tain from high-order mathematical models approximations in the form of low-order
mathematical models. The formulation of approximate models requires understand-
ing of the dynamics of the system, in particular of its algebraic and graph-theoretic
structure and of its rate functions. It is the aim of the author to contribute to this
research effort.

In this paper attention is restricted to mathematical models for biochemical cell
reaction networks in the form of rational positive systems. These systems are called
positive because the state vector represents masses or concentrations of chemical
compounds and the external input vectors represent inputs into the network of exter-
nally available chemical compounds and of enzymes produced by the nucleus of the
cell. The dynamics of the system is often modelled as a polynomial map but in this
paper attention it is restricted to rational maps (each component equals a quotient of
two polynomials). Such a dynamics arises in the model of Michealis-Menten kinetics
due to a singular perturbation of a bilinear system. The mathematical model of gly-
colysis in the unicellular organism Trypanosoma brucei is phrazed almost entirely in
terms of a rational positive system and this model is regarded as realistic, see [1, 12].

The subclass of rational positive systems considered in this paper is specific due
to the conditions imposed by the modeling of biochemical cell reaction networks.
It is precisely because of these physically determined conditions that the subclass
merits further study. The properties of such systems differ to a minor extent from
those of polynomial systems considered in, for example, [24]. The graph-theoretic
and the algebraic structure of rational positive systems make the analysis interesting.

A summary of the main results follows. A brief formulation of the algebraic
properties of positive real numbers and of rational positive functions is provided
because of their major differences with respect to rational real functions (Section
2). A subclass of rational positive systems is defined (Section 3). An example is
formulated and further references to models of biochemical cell reaction networks
are mentioned (Section 4). The realization problem for rational positive systems is
formulated and theorems on realization and on characterization of isomorphisms are
stated (Section 5). The main contributions of the paper are:

� The mathematical framework of rational positive systems for biochemical reac-
tion networks.

� The results on the realization problem for rational positive systems.

2 Rational positive functions

In this section notation for polynomials and rational functions is introduced and dis-
cussed.

Denote the set of the integers by �, the positive integers by �� , and the natural
numbers by � � ��� �� � � � � �. For � � �� denote the subsets �� � ��� �� � � � � �� �
� and � � � ��� �� �� � � � � �� � � .
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Denote the set of the real numbers by � . The set of the positive real numbers is
defined as �� � ����� and that of the strictly positive real numbers by �����. This
terminology is used in the literature and is preferred above the term of ‘non-negative
real numbers’. As an algebraic structure the set of the positive real numbers is a semi-
ring, it has the operations of addition and multiplication with neutral elements � and
� for respectively addition and multiplication but it does not have an inverse with
respect to addition though it has one with respect to multiplication when attention is
restricted to the subset �����. Note that �� is an integral domain, defined by the
condition that for all �� � � �� , �� � � implies that either � � � or � � �.

Consider for � � �� the set of �-tuples of positive real numbers as the positive
vector space ��� � ��

�� with the understanding that the first object of this tuple is
only a semi-ring as defined above and that vector addition does not have an inverse.

A positive vector space can also be defined geometrically. A cone � � �
�
� is

defined to be a subset such that (1) � � � � � : ���� �� � � , �� � �� � � ; and
(2) ��� � � : �� � � and �� � �� , �� � � . If � � �

�
� is a subset then there

exists a smallest cone containing this subset, this is called the cone generated by
�, and the cone is denoted by cone���. A cone � � �

�
� is said to be polyhedral

cone if it is the intersection of a finite number of half spaces. This is equivalent with
the statement that there exists a finite set of vectors ���� � � � � ��� � �

�
� such that

� � cone����� � � � � ����. A finite set of vectors ���� � � � � ��� � �
�
� is said to be

positively dependent if there exists 	 � �� such that �� is a positive linear combina-
tion of the other vectors, �� �

�
��������

���� where for all 
 � ����	�, �� � �� . It
is called positively independent otherwise. A finite set of vectors ���� � � � � ��� � �

�
�

is said to be a frame of a cone � � �
�
� if the cone is generated by the set and if the

set is positively independent. Finally we can state the geometric interpretation. A
subset � � �

�
� is a positive vector space if and only if it is a polyhedral cone. In this

case the space admits a representation in terms of a frame. For the theory of cones
and polyhedral cones, see [9, 19].

For � � �� denote the set of positive matrices of size � 	 � as ����
� . As an

algebraic structure this set is a dioid because it has neither an inverse with respect
to matrix addition nor with respect to matrix multiplication even if attention is re-
stricted to nonsingular matrices (the inverse of a nonsingular positive matrix may
have negative elements). However, it is commutative with respect to addition. Note
that for all � � �� with � � �, ����

� is not an integral domain as the following
example shows,

� �

�
� �
� �

�
� �

���
� � �� � �� (1)

Notation and terminology for polynomial functions and rational functions in sev-
eral variables follows. Fix � � �� , the dimension of the indeterminate, and denote
the indeterminate by  � ��� �� � � � � ��. Consider the multi index

� �
�
�� �� � � � ��

��
� �

� �

Note that the vector � � � � �
� is admitted in the above definition. A polynomial

in � variables with positive coeffficients is denoted by
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��� �
�
����

�����
��

���


����
� �

�
����

�����
�� ����� � �� � �� � �

� �

� � �� ��� � � � � ��� abbreviated to �� ���

The understanding in the above definition is that there exist only a finite number of
nonzero elements in the set ������ � �� � � � � �. Abuse of notation will be made
because � � �� �� denotes both a polynomial as an algebraic object and the function
� 	 ��

� 
 �� .
Note that �� �� as an algebraic structure is a dioid, it has neither an inverse with

respect to addition nor an inverse with respect to multiplication. The neutral element
with respect to addition is the polynomial ���� � � � �� and the neutral element
with respect to multiplication is the polynomial ���� � � � �� . For a polynomial
with the above representation define the total degree of � �

�
� �����

� � �� ��
as


����� � ��
����� ����������

��
���

��	� � � �

Definition 1. Consider the subset of positive polymials,

���� �� � �� � �� �������� � ���

The set of units, the invertible elements, is ���.
An element � � �� �� is said to be irreducible if (1) � is not a unit, or, equiva-

lently, � �� �; and if (2) � � ���� with ��� �� � �� �� implies that either �� � � or
�� � �.

The subset �� �� is an integral domain if � �� � and � �� � implies that �� �� �.
�� �� is an unique factorization domain if (1) for any � � ���� �� there exists a

factorization of the form,

��� �
��
���

����� �	 � �� � �� � ���� �� irreducible;

and if (2) the factorization is unique up to a reordering of the factors.

That ���� �� is an integral domain follows directly from the definition of �� ��. But
���� �� is not an unique factorization domain as the following example establishes.

Example 1. Consider the following factorizations of the positive polynomial � �
�� ��,

��� � �� ����� �����  �� ����

� �� ����� � ��� � ��� �����

� �� ����� � �� � ���� ����� � � ������

The first factorization is a factorization over � but not a factorization over ���� be-
cause of the term �. Moreover, the quadratic polynomial is irreducible over � ��
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because the discriminant is � � ��  ���� � �. The second and the third factor-
izations are both factorizations over �� �� and, because of the first factorization,
these factors are irreducible. Thus � has two different factorizations into irreducible
factors.

Below use is made of an order on vectors in �
� . See [15] for examples of such

orders, of which one is the lexicographic order.

Definition 2. Consider a finite set of positive polynomails ��� � �� ��� 
 � ���.
Define the common multiple of this set as the positive polynomial � � �� �� such
that for all 
 � �� there exists a positive polynomial �� � �� �� such that � � ���� .
Define the least common multiple of the finite set as the common multiple � � �� ��
such that for any other common multiple �� � �� ��, ��
����� � ��
������. Denote
then,

� � ������ � �� ��� 
 � ���� �� ��� ��
��� � ������ � �� ��� 
 � �����

if the context is understood.

Notation

���� �� � �� � �� ��� ����� � ���

���� � �� � �� ��� ����� � ���

In this paper attention is restricted to a particular class of rational positive func-
tions for which singularities cannot occur. For this purpose, define

���� �
�

��	�

�	� � ���� ��� � �� ��

�
� ���� � ����� � � � � ��� (2)

������ �

	
��	�

�	� � ���� � ��� �

�
��� �����

�� ����� � ��

��� �
�

��� �
���
�� �
��� � �



� (3)

If ��� � ������ then for all  � �
�
� , ��� � � � � hence the quotient is well

defined. Because �� is an integral domain, addition and multiplication of elements
of ���� is well defined and produces elements in ���� ,

����

����
�

����

����
�

�������� � ��������

��������
�

�������� �
�
���

�
�
����
�� �
�
���� � �
�����
���� � ��

�������� � �������� �
�
���

���
����
����
��

���
����
���� � �������
���� � �������
���� � ��

In the remainder of the paper rational functions ��� �	����� �	� are considered
for two sets of indeterminates ��� � � � � �� �	��� � � � � �	�����. In this case decom-
pose the � � �

����� vector as � � ��	� �	��� with �	 � �
� and �	�� � �

��� . The
following notation will be used,
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��� �	� �
�
����

�����
��

���


�����
�

����
���


���� ���
�	�� �


��	��	��� � ��
����� ����������

�
��

���

�	�	� �

����
���

�	���
�� � � �

Rational functions on a variety are treated in [6, Section 5.5] while rings of quotients
are treated in [17, Chapter 10]. Algorithms for real algebraic geometry are provided
in [3].

3 Rational positive systems

Rational positive systems arise as models in biochemical reaction networks as il-
lustrated below. One way in which they arise is as singularly perturbed models of
bilinear positive systems.

Definition 3. A rational positive systems for a cell reaction network is defined as a
dynamical system, as understood in system theory, defined by the differential equa-
tion

���� � ������������ �	������ ������� ���� � �� (4)

or, per component 	 � �� �

����� �
��
���

���
��� ��

����

�
��� ����� �	�

��� ����� �	�


��� ����� �	�

��� ����� �	�

�
����� � ������ (5)

� ������� �	� ����� ������ ����� � ����

���� � ������������ �	������� (6)

with the definitions,

�� � � �� � �� ��	� �� � � �

� � ������� the time index set,

� � �
�
� � the state set,

��	 � �
���
� � the set of external concentrations,

� � �
��
� � the set of the external input rate,

� � �
�
� � the input set of enzyme concentrations,

� � �
��� called the stoichiometric matrix�

with decomposition, � � �� ��� ��� �� � �
��� �

� 	 � 
 �� the external input rate,

� 	 � 
 �� an input function,

� 	 � 	��	 
 �
� � �
 � �� �

���� �	� �
��� �� �	�

��� �� �	�


��� �� �	�

��� �� �	�
� �������� ������� � ������ �	��
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� �


��

��

...
���

�
�� � �

���� � �	 � ��� � �� � �
���� �

�������� �	�� � ���������� �	��� � � � � ����� �	�� � �
��� �

� 	 � 
 �
�� � � � �

�����

where � represents the outflow rate of the system.

The following conditions are assumed to hold:

1. For all 
 � �� , ���� � �
�
� � are assumed to be relatively prime polynomials and,

similarly, ���� � �
�
� � are assumed to be relatively prime polynomials.

2. For all 	 � �� , 
 � �� , � � � and ��	 � ��	,

� � � ���
��� ��

��� � � � ��� �� �	� � ��

� � � ���
��� ��

��� � � � ��� �� �	� � ��

3. For all 	 � ��� and 
 � �� , � � � and ��	 � ��	,

���� � � � ��� �� �	� � ��

4. The components of �, thus ������� 
 � ���, are linear independent functions.
5. For � � ������, for any initial condition � � �

� , any external concentration
vector  � �

���
� , and any continuous input functions � 	 � 
 �

��
� and � 	

� 
 �
�
� there exists a unique solution  	 � 
 � to the ordinary differential

equation (4).

The reader should clearly distinguish between the external input rate � 	 � 
 �
��
�

and the vector of external concentrations �	 � �
���
� . The external input rate rep-

resents a continuous flow of chemical compounds into the cell or part of the cell
considered. An example of an external input rate is the flow of water molecules into
the cell through the cell boundary. The external concentrations represent masses of
concentrations or chemical compounds which are available in abundance and whose
values do not change over time depending on the other state variables. Such an exter-
nal concentration is assumed to be constant over time during the interval considered.
In the example presented below, the external concentrations are present in the model
while no external input rate is present.

Distinguish also the outflow rate � and the state .
Comments on the conditions of Definition 3 follow. The first condition is to ob-

tain a mathematically economical expression for the rate functions. If the condition
is not met then it can be obtained by deleting common factors. The second condition
is necessary and sufficient for the positive orthant ��

� to be a positively invariant set
of the system, see the next section. The third condition is to enforce that the outflow
rate refers to an outflow only, there is no inflow into the systems. The fourth condi-
tion is to obtain a nonredundant set of reactions. If the condition is not met then the
corresponding enzyme inputs can be combined so that a system with one reaction
less is obtained. The last condition is needed for mathematical reasons.

For references on positive systems see [4, 8, 26].
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4 Example

There follows an example of a rational positive system. For another example see
[1]. The classical example is that of Michaelis-Menten kinetics which is obtained by
singular perturbation of a bilinear rate function, see [10, 21].

Example 2. The following small example illustrates the transformation of a math-
ematical model of the biochemical processes of a cell to a dynamic system. The
model is derived from the example described by J.M. Rohwer in [20, p. 32, 37]. See
Figure 1. The inputs and state variables are, in terms of the notation used in that

2

3

4 5 6X0

S2S1

S3 S4 S5 X7

X6

1

Fig. 1. The biochemical network of the example.

reference:

� � �� ��	 � �� �� � �� � � ��

� �  �� � � � � � �  �� �� � !�� � � � � �	 � !	� �	�� � ��� �	�� � ���

� � ���

The stoichiometric matrix and the rate functions are:
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� �


�����
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
����� �

���� �	� �
���	���

� � �	��� � ��


��
� � �	��� � ��

�
��� �� �	�

��� �� �	�


��� �� �	�

��� �� �	�
�

�� �
���

� � � � �


�
� � � � �

�

�� �
��	��

� � � � �	��


�
� � � � �	��

�

�
 �
���

� � � � 





� � � � 


�

�� �
��


� � 
 � �


�
� � 
 � �

� �	 �
���
� � �

�

� �
�
� � � � � �

�
� �

��� �

The resulting dynamic system then has the form

���� � � ����������� �	������� ���� � ��

���� � ������������ �	�������

Note that for each 	 � �	 � ��� �� �� �� �� ��, in the function �� 	 �
�
� 	 �

���
� 
 �

each of the terms in the difference is a rational function in the indeterminates
��� � � � � �� �	��� � � � � �	����� of which the numerator and the denominator de-
grees are equal. Note that for 	 � �,

� � � ���� � �� ��� �� �	� � ��

� � � ���� � ��� ��� �� ��	� � �� etc. for 	 � �� � � � � ��

Biochemical reaction networks are used to represent metabolic networks but also
signal transduction network (with as purpose to communication signals), and genetic
networks (with as purpose to control the operation of a cell from the nucleus).

Other references on dynamic systems for biochemical cell reaction networks are
[7, 11]. For models on polynomial systems see [24]. General references on nonlinear
systems as considered in control and system theory include [13, 14, 18, 23]. Rational
systems without the positivity condition have been treated in [2, 27].

5 Realization of rational positive systems

The realization problem of system theory aims at studying dynamic systems as re-
lations between input and output functions. The conditions for the existence and
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uniqueness of a realization reappear as conditions for the existence of control laws
or of observers for such systems. The results of the realization problem are also rel-
evant for identifiability and for system reduction.

Problem 1. Realization problem for positive rational systems of biochemical reac-
tion networks. Consider a relation between a positive input function and a positive
output function, both sufficiently differentiable,

� 	 � 
 �
�
� � � 	 � 
 �

��
� � " 	 � 
 �

�
� �

� � ������� �������� � � � � �������� ����� �������� � � � � ��
�����

"���� "������� � � � � "��������

or a set of such functions. Does there exist a rational positive system and a set of
initial conditions �� � � , such that, if the positive input � and the external input
rate are applied to the system, then the output of the system equals the considered
output,

���� � ����������������� ������� ���� � ��

"��� � #����

If so, classify all such systems.

At the time this paper is written, a few results for Problem 1 have been formulated.
The approach is to develop realization theory according to the lines of the references
[22, 25]. See also the references on realization theory for semirings, [5, 16]. In this
paper attention is restricted to two aspect of the realization problem.

First consider the existence of realizations. The existence of discrete-time and
continuous-time polynomial systems has been treated by E.D. Sontag, see the refer-
ences quoted above. It is known how to formulate realizability conditions for rational
systems in terms of polynomial maps. However, the positivity makes this transfor-
mation more delicate and the algorithms are quite different.

Theorem 1. Consider the functions,

� � �� � � 	 � 
 � � �
�
� � (7)

" 	 � 
 $ � �
�
� � " continuously differentiable�

� � ��"���� �"���� ������ �� � �� � 	 � � 	 �
� 	 �

� 
 �
�� � (8)

There exists a rational positive system for a cell reaction network as defined in Defi-
nition 3 in the form of,

���� � ��������������� ���� � ��

"��� � ����

such that the relation between the enzyme concentration � and the output function
" �  equals the function � if and only if the relation � can be transformed to
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��"���� �"���� �
��
���

�������"������
�
� �"���� ��� �"����������� �	 � �� � (9)

for � � ���� ��� �� � ���� �"�� �
�
� � �

�
� � ���� � �	 � �� � 
 � �� �

� � ������ � �� ��� 
 � �����

Problem 2. State space isomorphism problem. Consider the class of rational positive
systems,

���� � ���������������� ������� ���� � �� (10)

Which class of functions  	 ��
� 
 �

�
� , state-space transformations, leave the class

of systems invariant? Thus, if ���� �  ����� is then the differential equation of �
identical to that of ?

The usefulness of Problem 2 is that it may assist in formulating the most intrinsic
definition of rational positive systems.

Theorem 2. Consider a rational positive system with output equal to the state vector,

����� �
��
���

���
��� ��

����

�
��� �����

��� �����


��� �����

��� �����

�
������

����� � ���� �	 � �� �

Consider the function  	 ��
� 
 �

�
� . Assume that (1)  is a rational function in the

class ������; (2) that  is invertible and  �� 	 ��
� 
 �

�
� is also an element of

������. Define the new state variable ���� �  �����.

(a) Then the differential equation for � is also a rational positive system in the class
of Definition 3 with representation identical to that of ,

������ �
��
���

���
��� ��

����

�
��� ������

��� ������


��� ������

��� ������

�
������ ������ � �����

if and only if for all  � �
�
� , �	 � �� , and �
 � �� ,

 ������� � ����� � � �� (11)

 ����� � % ����%�� �	� � � �� � � � �� (12)

hence  ����� � �������

(b) If the graph matrix associated with the system has no cycles then the equation

 ���� � ��

implies that  ��� � & .
(c) If in addition to the assumptions stated above,  �� � ' for a monomial matrix

' � �
���
� then the equation (11) implies that  �� � .
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Example 3. Consider Example 2. Consider the equation

 ���� � ��

for  	 � 
 � satisfying the assumptions of Theorem 2. From the definition of the
matrix � one obtains that,

 ��� �


�����

 �����  ����� � � � �
 ����� �  ����� � � �
 �����  ����� � � �
 �
���  �
��� � � �
 �����  ����� � � �

�
����� �

There exist functions  satisfying the condition of the above theorem. Consider,

� 	 �� 
 �� � �� � � ������

� � ��� �
�

� � �
�  � ������ �

���

� � ����
�

By considering a function  	 ��
� 
 �

�
� of which each component corresponds

to the function � but for different values of the parametres, one obtains a function  
satisfying the conditions of the theorem. It is an open problem to classify all functions
 satisfying this condition.

6 Concluding remarks

The paper presents the class of rational positive systems as mathematical models of
biochemical cell reaction networks. Results are presented for: the realization problem
of rational positive systems.

Further research is required for: (1) the decomposition of the system in traps,
internal sources, and irreducible subsystems; (2) the calculation and the computation
of steady states and of steady outflow rates; (3) the realization problem for rational
positive systems including factorization of positive polynomials; and (4) control of
rational positive systems.
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