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AN ALGEBRAIC METHOD FOR SYSTEM REDUCTION
OF STATIONARY GAUSSIAN SYSTEMS

Dorina Jibetean and Jan H. van Schuppen

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract: System identification for a particular approach reduces to system reduction,
determining for a system with a high state-space dimension a system of low state-space
dimension. For Gaussian systems the problem of system reduction is considered with the
divergence rate criterion. The divergence or Kullback-Leibler pseudo-distance corresponds
to the expected value of the negative natural logarithm of the likelihood function. System
reduction for Gaussian systems is thus a certainty equivalent way of maximum likelihood
identification. An algebraic method is proposed for system reduction. The results are a
theorem that this problem reduces to an infimization problem for a rational function for
which programs are available and a procedure for computing the best approximant w.r.t. the
divergence rate criterion. As illustration two examples of system reduction are presented.

Keywords: System identification, system reduction, Gaussian system, divergence, maximum
likelihood method, algebraic method, global optimization, local minima.
2000 Mathematics Subject Classification: 93E12, 93B30.
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1. INTRODUCTION

The aim of this paper is to introduce an algebraic
approach to system reduction for Gaussian systems by
the divergence rate criterion.

The motivation for this paper is system identification
of Gaussian systems. A finite-dimensional Gaussian
system is a linear system driven by a Gaussian white
noise process. In this paper attention is limited to
discrete-time systems. As is well known, a stationary
Gaussian system is a mathematical model for an ob-
served stationary Gaussian process. The system iden-
tification problem is to construct from observed data
and from assumptions a mathematical model, here a
Gaussian system, such that the observed processes of
the system approximate the observed data as well as
possible according to an approximation criterion.

Methods of system identification for Gaussian systems
often used include the maximization of the likelihood
function, the subspace identification algorithm, and
the least-squares method. The divergence between two
probability measures is a well known pseudo-distance.
It equals the expectation of the negative of the natural
logarithm of the likelihood function. The divergence
rate is derived from divergence and is needed because
of the consideration of a stationary process.

The approximation problem of system identification
is one of the major problems of this area. The main
questions of parameter estimation include: How to
find the global infimum? How to derive the first-order
conditions? How to compute the local minima? How
many local minima are there? Is the global minimum
unique?



The aim of the paper is: (1) To present an algebraic
approach and an algorithm for the infimization of the
divergence rate criterion of Gaussian systems. (2) To
show for several low order Gaussian systems that sys-
tem reduction leads for the divergence rate criterion
to two or more local minima. These examples and the
method have serious implications for system identi-
fication of Gaussian systems by the maximum like-
lihood method. Though it is known from theoretical
investigations and from numerical experiments with
examples of system identification problems that two or
more local minima exist, the consequences of this for
system identification practice seem not to be widely
known.

The results of the paper include a procedure to deter-
mine the best approximant w.r.t. the divergence rate
criterion by an algebraic method. Determining the best
approximant is proven to be equivalent to infimiza-
tion of a rational function for which recently an al-
gorithm was determined by the first-named author,
see (Jibetean, 2001; Jibetean, 2003). The approach is
illustrated in Example 2 with the reduction from a
third order Gaussian system to a second order one.
The set of local minima is not completely determined
in this case although an upper bound on its cardinality
is provided. Example 1 treats model reduction for a
Gaussian system of state-space dimension 2 to one
of state-space dimension 1. In this case there are two
potential minima, one is the global minimum and the
other a local one. The criterion values are quite close.

The novelty of the paper is in: (1) The combination
of the divergence rate criterion for system reduction
with algebraic methods; (2) The equivalence of the
system reduction problem w.r.t. the divergence rate
criterion to optimization of a rational function of the
system parameters; (3) The application of algorithms
for infimization of rational functions (based on LMI
relaxations) to system reduction w.r.t. the divergence
rate criterion; (4) Two examples which illustrate that
two or more local minima of the criterion exist.

In comparison with the literature, algebraic approaches
for computing globally best approximants have been
applied to system reduction w.r.t. the H2 criterion, see
e.g. (Hanzon and Maciejowski, 1996), (Jibetean and
Hanzon, 2002). The main interest to system identifi-
cation of the proposed method is that it provides an
algebraic way to determine the global minimum of the
criterion and to circumvent the case of multiple local
minima.

A description of the contents of the paper follows.
The next section contains a short problem formula-
tion. This section is best read in combination with
the appendices. Section 3 presents the procedure for
system reduction via divergence rate infimization. The

algebraic method is presented in Section 4. Examples
are provided in Section 5. Conclusions are stated in
the last section. Appendix A contains notation and
terminology on linear systems, Appendix B on Gaus-
sian systems, and Appendix C the formulas for the
divergence rate of stationary Gaussian systems.

This paper is a sequel to those of (Stoorvogel and
van Schuppen, 1996; Stoorvogel and van Schuppen,
1998).

2. PROBLEM FORMULATION

The motivating engineering problem is to determine
a simple mathematical model for a time series. One
speaks of the system identification problem or of the
approximate realization problem. Examples of such
a problem are the modeling of a signal in a noisy
communication channel, of messages in a digital com-
munication network, and of the traffic flow on a mo-
torway.

Mathematical notation for the problem is summarized
below. See the appendices for further details. Let
(Ω, F ) be a measurable space and T = Z denote the
time index set and let N = {0, 1, . . .} denote the set
of natural numbers. Let P1 be a probability measure
on (Ω, F ) induced by a stationary Gaussian process
y : Ω × T → Rp with zero mean value function and
covariance function W : T → R

p×p.

A time-invariant finite-dimensional Gaussian system
on a probability space (Ω, F, P ) is a stochastic system
with representation

x(t + 1) = Ax(t) + Bv(t),

y(t) = Cx(t) + Dv(t),

(A, B, C, D) ∈ LSP (p, n, p),

x : Ω × T → R
n, y : Ω × T → R

p,

see Appendix A for the full specification of the sys-
tem. If the parameters of the system are in the set
SGSPmin(p, n, p) then the output process is a sta-
tionary Gaussian process. The probability measure
induced by this system on the output process y is
denoted by P (q) where q ∈ QD represents the pa-
rameter of a selected parametrization.

In this paper attention is restricted to the approxima-
tion problem of the system identification procedure.

Procedure 1. (1) Determine from a finite time series
a high-order Gaussian system.

(2) System reduction: Determine from a high-order
Gaussian system a low-order Gaussian system.

2



In this paper attention for the approximation prob-
lem is restricted to the divergence rate criterion. The
concept of divergence of two probability measures
is used in information theory. In probability theory
divergence corresponds to the Kullback-Leibler mea-
sure, see (Cover and Thomas, 1991). For a stationary
stochastic process the concept of divergence rate of
two probability measures has been defined. In Sec-
tion 3 an expression is provided for the divergence
rate of two measures induced by stationary Gaus-
sian processes which are outputs of two time-invariant
finite-dimensional Gaussian systems. Denote this di-
vergence rate by Dr(P1‖P2).

Let n2 ∈ N denote an upper bound on the dimension
of the Gaussian system to be determined.

Problem 1. Solve

inf
n≤n2, q∈SGSPmin(p,n,p)

Dr(P1‖P (q)). (1)

The problem involves establishing whether or not a
minimum exists, if a minimum exists to characterize
the set of minima, and to construct a procedure to
compute a minimum or to approximate an infimum.

3. PROCEDURE FOR INFIMIZATION OF
DIVERGENCE RATE

Recall the formula for the divergence rate of two mea-
sures induced by stationary Gaussian processes which
are outputs of two time-invariant finite-dimensional
Gaussian systems

System 1 n1 ∈ N,

(A1, B1, C1, D1) ∈ SGSPmin(p, n1, p),

System 2 n2 ∈ N,

(A2, B2, C2, D2) ∈ SGSPmin(p, n2, p).

The expression is available from the literature (Stoorvogel
and van Schuppen, 1996; Stoorvogel and van Schup-
pen, 1998) in terms of a realization, (A4, B4, C4, D4),
of the series interconnection of System 3 and System
1, where System 3 is the inverse of System 2. The
relation between System 2 and System 3 is expressed
by n3 = n2 and

(A3, B3, C3, D3)

= (A2 − B2D
−1
2 C2, B2D

−1
2 ,−D−1

2 C2, D
−1
2 )

∈ SGSPmin(p, n3, p).

Procedure 2. The divergence rate associated with the
Systems 1 and 2 is computed by the following steps:

(1) Construct (A4, B4, C4, D4) according to the for-
mulas n4 = n1 + n3,

(A4, B4, C4, D4)

=
((

A1 0
B3C1 A3

)
,

(
B1

B3D1

)
,(

D3C1 C3

)
, D3D1

) ∈ SLSP (p, n4, p).

(2) Solve the discrete-time Lyapunov equation for
the matrix Q4 ∈ R

n4×n4 ,

Q4 = A4Q4A
T
4 + B4B

T
4 . (2)

(3) Calculate

fc = Dr(P1‖P2) (3)

=
1
2
tr(C4Q4C

T
4 + D4D

T
4 − I)

−1
2

ln det(D4D
T
4 ).

Algorithm 1. Infimization of the divergence rate of
stationary Gaussian processes.
Input: System 1 representing the first probability mea-
sure and n2 ∈ N, the desired order of the approximant.
Output: System 2 representing the probability measure
associated to the approximant

(1) Parametrize System 3 by a canonical parametriza-
tion map fp : QD → SGSPmin(p, n3, p),

q
fp�→ (A3(q), B3(q), C3(q), D3(q)).

Note that QD ⊆ Rr, where r is the dimension
of the manifold SGSPmin(p, n, p). Here fq is
restricted to functions which are rational in the
entries of the parameter vector q.

(2) Determine, if it exists, a parameter value q̂3 ∈
QD such that

q̂3 = argminq∈QDfc(q), (4)

fc(q) := Dr(P1‖P2(q)), (5)

where fc(q) is determined according to Proce-
dure 2.

(3) Set (Â3, B̂3, Ĉ3, D̂3) = fp(q̂3) according to the
parameterization map fp.

(4) Compute the approximant System 2 according to

(Â2, B̂2, Ĉ2, D̂2) =
(
Â3 − B̂3D̂

−1
3 Ĉ3, (6)

B̂3D̂
−1
3 ,−D̂−1

3 Ĉ3, D̂
−1
3

)
.

4. ALGEBRAIC METHOD

For the divergence infimization an algebraic method
will be used. The algebraic method refers to the use of
abstract algebra, computer algebra, and the use of the
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computer programs like MAPLE and MATHEMAT-
ICA. The difficulties to be overcome in the algebraic
methods are to organize the calculations and to find an
approach that is of low complexity.

Theorem 1. Consider the infimization problem

inf
q∈QD

fc(q),

where fc(q) is computed by Procedure 2 and the
matrices (A3, B3, C3, D3) depend on the parameter
vector q ∈ QD.

(a) The infimization of the criterion with respect to
the matrix C3 is reached at the matrix

C3 =−D3C1Q2Q
−1
3 , where, (7)

Q4 =
(

Q1 Q2

QT
2 Q3

)
∈ R

n4×n4

is the solution of (2),

Q2 ∈ R
n1×n2 , Q3 ∈ R

n2×n2 .

Hence the criterion depends on the matrices
A3, B3 and D3.

(b) The infimization with respect to D3 ∈ Rp×p is
reached for D3 satisfying

DT
3 D3 = M−1, (8)

and the criterion simplifies to,

fc(q) =−1
2

ln det(DT
1 M−1D1)

=
1
2

ln det M − ln detD1 , where

M = C1

(
Q1 − Q2Q

−1
3 QT

2

)
CT

1 + D1D
T
1 .

The simplified criterion is a natural logarithm
of a function which is a rational function with
respect to entries of the (A3, B3). Thus the in-
fimization problem is reduced to an infimization
problem for a rational function.

PROOF. See (Jibetean, 2003). �

Procedure 3. (1) Select a parameterization for the
matrices of System 3, A3, B3, C3, and D3, see
Algorithm 1. In view of Theorem 1, choose a pa-
rameterization with C3, D3 fully parametrized,
independent from A3, B3. For example, the con-
trol canonical form gives such a parameteriza-
tion.

(2) Solve by computer algebra the discrete-time
Lyapunov equation (2) for the symbolic matrix
Q4(q).

(3) Calculate the value of the criterion according to
formula (3). The criterion fc is the sum of a
rational function and of a natural logarithm of

the parameters of the system matrices A3, B3,
C3, and D3.

(4) Apply the reduction technique formulated in
Theorem 1 to solve analytically for the matrices
C3 and D3 and to derive the simplified formula
for the criterion. There remains then an infimiza-
tion problem for a rational function, detM .

(5) Determine the value of the infimum. If, more-
over, the infimum is attained, i.e. the global min-
imum exists, then determine its location as well.
For this use the approach of (Jibetean, 2001; Ji-
betean, 2003). Once M is determined, compute
D3 by (8) and C3 by (7).

(6) If this is of interest then the infimization of the
rational function also can provide information on
the local minima. Derive the first order condi-
tions of the simplified criterion with respect to
the elements of the parameter vector q ∈ QD.
Computer algebra provides programs for this.

(7) Determine all solutions in the set of the real num-
bers of the equation obtained by setting to zero
the first derivative of the criterion with respect
to the parameter vector. This is the most difficult
and demanding part of the procedure.

(8) Calculate for each solution the second derivative
of the criterion. Discard all points for which the
second derivative is not positive semi-definite.

(9) For each of the remaining points calculate the
value of the criterion fc(q). By comparing the
different values numerically determine the global
minimum or the set of global minima if there
exist two or more parameter vectors which attain
exactly the same value.

Note that steps (6)-(9) are optional. They should be
executed only if there is interest in local minima.
The problem of finding the global optimum of a ratio-
nal function at step (5), is solved in (Jibetean, 2001; Ji-
betean, 2003) by constructing an LMI relaxation of
the original problem. The LMI relaxation returns in
general a lower bound on the sought infimum but it
is sharp and the sharpness of the lower bound can
be checked under certain conditions. In case it is not
sharp one constructs a sequence of LMI relaxations
of the original problem which returns a sequence of
increasing lower bounds, converging to the infimum of
the rational function. Then the computations are more
expensive.

5. EXAMPLES

Example 1. Consider a Gaussian system of order 2
with representation in the control canonical form as
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A1 =
(−0.4 −0.32

1 0

)
, B1 =

(
1
0

)
,

C1 =
(
0 −0.28

)
, D1 =

(
1
)
.

An approximant will be determined in the form of a
Gaussian system of order 1, according to the diver-
gence rate criterion. The class of Gaussian systems in
which an approximant is to be sought is taken to be
SGSPmin(1, 1, 1). This class is parameterized by the
control canonical form, hence

(A2, B2, C2, D2) = (a2, 1, c2, d2).

If d2 > 0, |a2| < 1, |a2 − c2d
−1
2 | < 1, c2 �= 0, then

(A2, B2, C2, D2) ∈ SGSPmin(1, 1, 1).

Construct the quadruple, in control canonical form

(A3, B3, C3, D3) = (a2 − c2d
−1
2 , 1,−c2d

−2
2 , d−1

2 )

and compute the criterion to be minimized. As re-
marked, the optimum with respect to c3 and d3 can
be computed analytically. The criterion becomes

fc(q) = −1
2

ln

(
−34

(
25 + 10 a3 + 8 a3

2
)
. . .

(731 a3
2 + 1801 a3 + 19500) . . .

)

The critical points equation with respect to a3 is a
univariate polynomial in a3 whose roots are computed
by numerical approximation. It turns out that in the
stability region there exist two points of minimum of
the criterion fc((â3, b̂3, ĉ3, d̂3)) such that

fc((0.6353, 1, 0.1059, 0.9631)) = 0.0376,

fc((−0.7835, 1,−0.1269, 0.9693)) = 0.0312.

In consequence, the second point is a global minimum,
while the first returns a local minimum, although their
values are close. As in Step (4) of Algorithm 1,
compute the approximants

(â2, b̂2, ĉ2, d̂2) = (0.5253, 1.0383,−0.1142, 1.0383),

respectively (−0.6525, 1.0317, 0.1351, 1.0317).

However the two approximant systems have a very
different behavior. Below, the impulse response of
the global approximant (green), respectively the local
approximant (red), together with the impulse response
of the original system (blue) are plotted.

Example 2. Consider also a model reduction from
order 3 to order 2, for the system

A1 =




−1/4 1/2 1/3

1 0 0

0 1 0


 , B1 =




1

0

0


 ,

C1 =
(
1 2 1

)
, D1 =

(
2
)
.
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The approximant is taken in the control canonical
form, parameterized by α1, α2, γ1, γ2, δ. After opti-
mizing analytically with respect to γ1, γ2, δ, an opti-
mization of a logarithm of a rational function remains

−1
2

ln

((
5640α1

3 + 85896α1
2 + 201240α1 + . . .

)
(376α2

3 − 618α2
2 + . . .)

)
,

which reduces, due to the monotonicity of the loga-
rithm function, to optimization of a rational function.
Using Gröbner bases methods for the first order con-
ditions, one can notice that the function above has at
most 100 complex critical points, including multiplici-
ties. The computer failed to compute all of them. How-
ever, the methods of (Jibetean, 2001; Jibetean, 2003)
can be employed for computing global optima of ra-
tional functions.

6. CONCLUSIONS

The main result of the paper is Procedure 3 with an
algebraic method for infimization of the divergence
rate between a Gaussian system and a class of such
systems of lower state-space dimension. Theorem 1
establishes that the infimization problem reduces to
an infimization problem for a rational function. Two
examples illustrate the approach. In general a system
reduction problem with this criterion and, by analogy,
the parameter estimation with the likelihood function,
will have many local minima. Further research is
required to make the algebraic method more efficient
and to streamline the computer algebra.

The authors advise the use of the proposed approach
but caution the reader that at the current state of com-
puter algebra, the method can handle effectively only
low order systems. The authors also recommend for
system identification of multi-output Gaussian sys-
tems the subspace identification algorithm which is
based on stochastic realization theory.
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Appendix A. LINEAR SYSTEMS

In the body of the paper concepts and results for time-
invariant finite-dimensional linear systems are needed.

A discrete-time time-invariant finite-dimensional lin-
ear system is a dynamical system with the representa-
tion

x(t + 1) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t) + Du(t),

where T = {t0, t0 + 1, . . .} is called the time axis,
n, m, p ∈ N, x0 ∈ R

n is called the initial state,
u : T → Rm is called the input function, x : T → Rn

is called the state function, y : T → Rp is called
the output function, and A ∈ Rn×n, B ∈ Rn×m,
C ∈ R

p×n, D ∈ R
p×m. The parameters of this

system will be denoted by

(A, B, C, D) ∈ LSP (p, n, m).

Denote the reachability matrix and the observability
matrix of this system respectively by

R(A, B) =
(
B AB . . . An−1B

) ∈ R
n×mn,

O(A, C) =




C
CA
...
CAn−1


 ∈ R

np×n.

It is said that (A, B) is a reachable pair if
rank(R(A, B)) = n and that (A, C) is an observable
pair if rank(O(A, C)) = n. Denote the spectrum of
the matrix A ∈ Rn×n by spec(A) and let C− = {λ ∈
C| |λ| < 1} denote the interior of the unit disc in the
complex plane. Define the subclasses of linear systems

LSPmin(p, n, m)

=




(A, B, C, D) ∈ LSP (p, n, m)|
(A, B) reachable pair,
(A, C) observable pair


 ,

SLSP (p, n, p)

=




(A, B, C, D) ∈ LSP (p, n, p)|
rank(D) = p, spec(A) ⊂ C

−,
spec(A − BD−1C) ⊂ C

−


 ,

SLSPmin

= SLSP (p, n, p) ∩ LSPmin(p, n, p).

Appendix B. GAUSSIAN SYSTEMS

A time-invariant finite-dimensional Gaussian system
(without inputs) is a stochastic system with represen-
tation

x(t + 1) = Ax(t) + Bv(t), (B.1)

y(t) = Cx(t) + Dv(t), (B.2)

where r, n, p ∈ N, p ≥ 1, v : Ω × T → R
r is

a Gaussian white noise process, thus an independent
sequence of random variables with for each t ∈ T ,
v(t) ∈ G(0, V ) (v(t) has a Gaussian probability
distribution function with parameters 0 and V ), V ∈
Rr×r, V = V T > 0; A ∈ Rn×n, B ∈ Rn×r,
C ∈ Rp×n, D ∈ Rp×r; x : Ω × T → Rn, y :
Ω × T → Rp are stochastic processes satisfying the
recursions (B.1,B.2).

Below a canonical form is used for Gaussian systems
with respect to the covariance function of the output
of the Gaussian system. For this purpose the reader
is reminded of the theorem that a Gaussian system is
a minimal stochastic realization of its output process
iff it is stochastically observable and stochastically
reconstructible, see (Lindquist and Picci, 1996). Con-
sider a Gaussian system that is stable, with spec(A) ⊂
C

−. Let Q ∈ R
n×n be the solution of the discrete

Lyapunov equation Q = AQAT + BBT , and let
G = AQCT + BV DT ∈ Rn×p. Then the Gaus-
sian system is a minimal stochastic realization of its
output process iff (A, C) is an observable pair and
(A, G) is an observable pair. A time-invariant finite-
dimensional Gaussian system is said to be a Kalman
realization if in addition to being of minimal state-
space dimension it satisfies r = p, rank(D) = p,
spec(A) ⊂ C−, and spec(A − BD−1C) ⊂ C−.

Define the set of parameters of Gaussian systems with
p, n, r,∈ N by

SGSPmin(p, n, p)

=




(A, B, C, D) ∈ SLSP (p, n, p) |
V = I, (A, B) reachable pair,
(A, C), (A, G) observable pairs,


 .

Appendix C. DIVERGENCE RATE

The divergence or the Kullback-Leibler pseudo-dis-
tance on the set of probability measures of a measur-
able space (Ω, F ) is defined by the formula

D(P1‖P2) = EQ[r1 ln(
r1

r2
)I(r2>0)]

=
∫

Ω

r1(ω) ln
(

r1(ω)
r2(ω)

)
I(r2(ω)>0)Q(dω),
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where Q is a σ-finite measure on (Ω, F ) such that

P1 
 Q,
dP1

dQ
= r1, P2 
 Q,

dP2

dQ
= r2,

see (Cover and Thomas, 1991, Ch. 16) and (Stoorvogel
and van Schuppen, 1996, Def. C.7).

Let y1 : Ω×T → R
p be a stationary stochastic process

on T = Z. Denote by P1, P2 two measures for process
y1 on (Rp)T . The divergence rate between P1, P2 is
defined by the formula

Dr(P1‖P2) = lim
n→∞

1
2n + 1

D(P1|[−n,n]‖P2|[−n,n]),

(C.1)
if the limit exists, where P1|[−n,n], P2|[−n,n] denote
the restrictions of P1, P2 respectively to probabil-
ity measures of processes defined on the time in-
dex set {−n, . . . ,−1, 0, 1, . . . , n}, see (Stoorvogel
and van Schuppen, 1996, Def. E.4). It is shown in
(Stoorvogel and van Schuppen, 1998), based on a the-
orem of (Stoorvogel and van Schuppen, 1996), that
Dr(P1‖P2), the divergence rate of two probability
measures induced by the output processes of two time-
invariant finite-dimensional Gaussian systems, can be
expressed in terms of a realization of the series inter-
connection between the first system and the inverse of
the second system, as described in Procedure 2.
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