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Given an affine system on a simplex, the problem of reaching a particular
facet of the simplex, using affine state feedback is studied. Necessary and sufficient
conditions for the existence of a solution are derived in terms of linear inequalities
on the input vectors at the vertices of the simplex. If these conditions are met,
a constructive procedure yields an affine feedback control law, that solves this
reachability problem.
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1 Introduction

The purpose of this paper is to present a result on reachability of a facet for an affine
dynamical system on a full-dimensional simplex. This problem is motivated by the control
of piecewise-linear hybrid systems.

Control of engineering systems is often carried out by computers. This implementation
induces an interaction between the discrete dynamics of a computer program on the one
hand, and the continuous dynamics of an engineering system on the other. Research in
hybrid systems aims at the modeling of this interaction, and the development of systems and
control theory for this class of systems. An overview of some of the current research in this
area can be found in the conference proceedings [10, 15].

In [12, 13, 14], E.D. Sontag has introduced the class of piecewise-linear hybrid systems.
A system of this class consists of an automaton and, for each discrete state, of an affine
system on a polyhedral set. A simple case of a polyhedral set is a simplex, the n-dimensional
generalization of the triangle in R2. The class of piecewise-linear hybrid systems has been
analyzed by several authors, see e.g. [2, 3]. Also the reachability of general hybrid systems
has received considerable interest, see e.g. [1, 8, 9]. A particular approach to the reachability
problem was developed by the second co-author in [16]. In case of piecewise-linear hybrid
systems, this method requires the solution of a reachability problem of an affine system, by
steering the state to a particular facet of a polyhedral set. The latter problem is treated in
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this paper, under the additional assumption that the polyhedral set under consideration is a
simplex.

Given an affine system on a full-dimensional simplex, the main problem can be formulated
as follows: determine necessary and sufficient conditions for the existence of an affine control
law such that, independent of the initial state, all state-trajectories of the closed-loop system
reach a particular facet of the simplex in finite time. In the solution of this problem, convexity
arguments play an important role. The necessary condition may be derived for affine systems
on arbitrary polytopes, using continuous (i.e. not necessarily affine) feedback, and consists
of a set of linear inequalities for the input vectors at the vertices of the polytope. The
sufficient condition for an affine system on a simplex using affine state feedback is based on
an analysis of the dynamics of the corresponding closed-loop system. The necessary and
sufficient conditions are identical in case of a simplex. For general polytopes the situation is
more complicated; this problem will be treated in a future paper.

Once the linear inequalities on the input vectors at the vertices of the simplex are obtained,
existing algorithms may be used to check the existence of a solution. For this purpose,
computer programs have been developed, for example in the research groups of Verimag
(N. Halbwachs, B. Jeannet) and of IRISA (D.K. Wilde), see [7, 18]. The final step is the
computation of the affine control law. For this problem, a simple procedure is provided.

In the literature there are several publications on the invariance of linear systems on
polyhedral sets, see [5, 17] and on invariance of piecewise-linear hybrid systems, see [4]. The
problem treated in this paper differs from that of those references in that the trajectories of
the system concerned need to reach a particular facet in finite time, hence the system is not
invariant, and in that the conditions are more explicit than those in the literature.

The paper is organized as follows. The next section contains the problem formulation
and terminology on polyhedral sets and simplices. Necessary conditions for existence of a
continuous feedback law realizing the control objective are stated in Section 3. A sufficient
condition for existence of an affine feedback meeting the control objective is stated in Sec-
tion 4. In Section 5 computational issues for the control laws are discussed. Concluding
remarks are stated in Section 6. Appendix A provides several technical results on simplices.

2 Problem formulation

Let N ∈ N, and consider the N -dimensional space RN . Let v1, . . . , vN+1 be N + 1 affinely
independent points in RN , which means that there exists no hyperplane of RN , containing
all these N + 1 points. The full-dimensional simplex SN is defined as the convex hull of
v1, . . . , vN+1. The points v1, . . . , vN+1 are called the vertices of SN .

For every i ∈ {1, . . . ,N+1}, the convex hull of the points {v1, . . . , vN+1}\{vi} is a facet of
SN , that will be denoted by Fi. Let ni be the normal vector of the corresponding hyperplane.
By convention, ni points outward of the simplex SN , and ‖ni‖ = 1. There exists an αi ∈ R
such that the hyperplane containing the points {v1, . . . , vN+1}\{vi} (and thus the facet Fi)
is described by

{x ∈ RN | nTi x = αi}.

This indicates that the simplex SN is located inside the half-space {x ∈ RN | nTi x ≤ αi}.
Since the same observation holds for every i ∈ {1, . . . ,N +1}, we obtain the following implicit
description of the simplex SN :

SN = {x ∈ RN | ∀i = 1, . . . ,N + 1 : nTi x ≤ αi}.
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Some technical results needed in this paper regarding the sets of vertices and normal
vectors of a full-dimensional simplex are collected in Appendix A.

On the full-dimensional simplex SN , we consider an affine control system

ẋ = Ax + Bu + a, x(0) = x0, (1)

with A ∈ RN×N , B ∈ RN×m, and a ∈ RN . So, on every time instant t ∈ T , the state x ∈ RN
is assumed to be contained in the simplex SN . Also the input u is assumed to take values
in a polyhedral set U ⊂ Rm only. Note that the affine differential equation (1) only remains
valid, as long as the state x is contained in the simplex SN . In a hybrid system, as soon as
the state-trajectory reaches one of the facets of SN , a discrete event occurs, together with a
resetting of the state x. In general the state x will leave the simplex SN , and proceed to a
different simplex, where it is ruled by a different type of affine dynamics. In this paper, we
consider the control problem of steering the state of system (1) in finite time to one particular
facet of the simplex SN .

Problem 2.1 For any initial state x0 ∈ SN , find a time-instant T0 ≥ 0 and an input function
u : [0, T0] −→ U , such that

(i) ∀t ∈ [0, T0] : x(t) ∈ SN ,

(ii) x(T0) ∈ F1, where F1 is the facet of the simplex SN , not containing the vertex v1,

(iii) nT1 ẋ(T0) > 0, i.e. the velocity vector ẋ(T0) at the point x(T0) ∈ F1 has a positive
component in the direction of n1. This implies that in the point x(T0), the velocity
vector ẋ(T0) points out of the simplex SN .

Furthermore, if possible this input function u should be realized by the application of an
affine feedback law

u(t) = Fx(t) + g, (2)

with F ∈ Rm×N and g ∈ Rm, that is independent of the initial state x0.

Note that in Problem 2.1 the choice of the exit facet F1 is completely arbitrary. Without
loss of generality the facet F1 may be replaced by any other facet of SN .

After application of the feedback law (2) to system (1) we obtain the closed-loop system

ẋ = (A + BF )x + (a + Bg), x(0) = x0, (3)

hence the system dynamics remain affine after application of this feedback. This type of
autonomous affine systems exhibits interesting convexity properties, for which it does not
make any difference whether the state x is restricted to the simplex SN , or the whole space
RN is considered.

Lemma 2.2 Consider the autonomous affine system in RN , given by ẋ = Ax + a, and
let p1, p2 be two points in RN , and let n ∈ RN be a nonzero vector in RN . If nT ẋ |p1=
nT (Ap1+a) < 0 and nT ẋ |p2= nT (Ap2+a) < 0, then for any λ ∈ (0, 1) also nT ẋ |λp1+(1−λ)p2

=
nT (A(λp1 + (1− λ)p2) + a) < 0.
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Proof: nT ẋ |λp1+(1−λ)p2
= nT (A(λp1+(1−λ)p2)+a) = λnT (Ap1+a)+(1−λ)nT (Ap2+a) < 0.

Of course the result of Lemma 2.2 still holds if all ‘<’ signs are replaced by ‘≤’, ‘>’, or ‘≥’
signs. The lemma indicates that if in two points p1, p2 ∈ RN the vector field of the velocity
of an autonomous affine system points into the same direction w.r.t. a normal vector n, then
in all points on the straight line, joining p1 and p2, the velocity vector field points into the
same direction. In this paper, this simple observation will play a crucial role in the solution
of Control Problem 2.1.

3 Necessary conditions for feedback control to a facet

In this section we will show how the convexity result of Lemma 2.2 may be used to obtain
necessary conditions for the solution of Problem 2.1, by restricting our attention to the
determination of a suitable control input at the vertices v1, . . . , vN+1 of the simplex SN .

First, we consider one of the facets of the simplex SN , with v1 as one of its vertices,
say the facet Fi (i = 2, . . . ,N + 1), defined as the convex hull of {v1, . . . , vN+1}\{vi}, with
normal vector ni. The state variable x is not allowed to leave the simplex SN through this
facet. This can only be the case if in every point of this facet the vector field of the velocity
of x does not point out of the simplex SN . So, in every point of p ∈ Fi there should exist a
u ∈ U , such that nTi (Ap + Bu + a) ≤ 0. However, due to convexity it suffices to check this
condition at the vertices of Fi only.

Lemma 3.1 Let i ∈ {2, . . . ,N + 1}. For any point p ∈ Fi there exists an input u ∈ U such
that

nTi (Ap + Bu + a) ≤ 0, (4)

if and only if there exist u1, . . . , ui−1, ui+1, . . . , uN+1 ∈ U , such that for all j ∈ {1, . . . ,N +
1}\{i}:

nTi (Avj + Buj + a) ≤ 0. (5)

Proof: Necessity of condition (5) is obvious because all vertices v1, . . . , vi−1, vi+1, . . . , vN+1

are points in Fi. To prove sufficiency, take λ1, . . . , λi−1, λi+1, . . . , λN+1 ∈ [0, 1] such that∑
j 6=i λj = 1 and

∑
j 6=i λjvj = p. Choose u =

∑
j 6=i λjuj ; then u ∈ U because U is a polyhe-

dral set. Furthermore, nTi (Ap + Bu + a) = nTi
∑

i6=j λj(Avj + Buj + a) =
∑

i6=j λjn
T
i (Avj +

Buj + a) ≤ 0.

Note that Lemma 3.1 still holds if in (4) and (5) the ‘≤’ signs are replaced by ‘<’ signs.
Next we consider the exit facet F1. For this facet, the direction of the vector field is not

completely determined by the description of Problem 2.1. It might be possible to solve this
problem by steering the state into the simplex SN at one part of the facet F1, and out of
the simplex SN at another part. In this paper we want to avoid this situation by a slight
modification of the problem description.

Problem 3.2 Consider the same problem as described in Problem 2.1, and add the addi-
tional constraint that

(iv) T0 ≥ 0 is the smallest time-instant in the interval [0, T0] for which the state x reaches
the exit facet F1, i.e. T0 = min{t | t ≥ 0 and x(t) ∈ F1}.
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In combination with condition (iii), condition (iv) implies that in any point of the facet
F1 the input u ∈ U should be chosen in such a way that the vector field of the velocity of
x has a positive component in the n1-direction, so is pointing out of the simplex SN . Using
the same arguments as in Lemma 3.1, it suffices to verify this condition at the vertices of F1

only.

Lemma 3.3 For any point p ∈ F1 there exists an input u ∈ U such that

nT1 (Ap + Bu + a) > 0,

if and only if there exist u2, . . . , uN+1 ∈ U , such that for all j ∈ {2, . . . ,N + 1}:

nT1 (Avj + Buj + a) > 0. (6)

In Lemmas 3.1 and 3.3 conditions were derived on the existence of a set of inputs, that
guarantee that the vector field of the velocity of x can be put in the right direction at the
boundaries of the simplex SN . Note that for every single facet Fi (i = 1, . . . ,N +1) this gives
a different set of conditions on the inputs uj (j 6= i) at the vertices v1, . . . , vi−1, vi+1, . . . , vN+1

of Fi. So, for solving Problem 3.2 it seems sufficient that for every facet Fi a different N -
tuple of inputs uj ∈ U (j 6= i) is found, satisfying the inequalities (5) and (6), respectively.
However, as soon as we apply state feedback, the input at every vertex of SN is fixed, and
inequalities (5) and (6) have to be solved simultaneously. This leads to the following set of
necessary conditions for the existence of a closed-loop solution to Problem 3.2.

Proposition 3.4 Consider the affine dynamical system ẋ(t) = Ax(t) + Bu(t) + a, with
x ∈ SN and u ∈ U . Assume that there exists a continuous function f : SN −→ U , such that
the state feedback control law u(t) = f(x(t)) solves Problem 3.2, i.e. irrespective of the initial
state x0 ∈ SN , the closed-loop system

ẋ = Ax + Bf(x) + a, x(0) = x0,

has a solution x, satisfying the conditions (i)—(iv) of Problems 2.1 and 3.2. Then there exist
u1, . . . , uN+1 ∈ U such that

(1) nT1 (Avj + Buj + a) > 0 for j = 2, . . . ,N + 1,

(2) nTi (Av1 + Bu1 + a) ≤ 0 for i = 2, . . . ,N + 1, and there exists an i ∈ {2, . . . ,N + 1}
such that nTi (Av1 + Bu1 + a) < 0,

(3) nTi (Avj + Buj + a) ≤ 0 for all i, j = 2, . . . ,N + 1 with i 6= j.

Proof: Suppose that the continuous function f : SN −→ U generates a feedback law u(t) =
f(x(t)), that solves Control Problem 3.2. We show that the inputs uj = f(vj) (j = 1, . . . ,N+
1) satisfy (1), (2), and (3).

(1): For every j ∈ {2, . . . ,N + 1}, vj ∈ F1. So, as soon as the vertex vj is reached, the
state trajectory should leave the simplex SN with a positive velocity in the n1-direction. This
implies that nT1 (Avj + Bf(vj) + a) > 0, so by the definition of uj: nT1 (Avj + Buj + a) > 0
for j = 2, . . . ,N + 1.

(2): Consider the closed-loop system ẋ(t) = Ax(t) + Bf(x(t)) + a, with initial value
x(0) = v1. The corresponding solution x can only leave the simplex SN through the facet F1.
So in v1, the velocity vector does not point out of the simplex SN . Therefore nTi (Av1 +Bu1 +
a) = nTi (Av1 +Bf(v1) + a) ≤ 0 for i = 2, . . . ,N +1. Furthermore, if nTi (Av1 +Bu1 + a) = 0
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for i = 2, . . . ,N + 1, then Av1 + Bu1 + a = 0 because the vectors n2, . . . , nN+1 constitute a
basis of RN (see Lemma A.2). This implies that v1 is a fixed point of the closed-loop system
ẋ = Ax + Bf(x) + a, and the corresponding solution x(t) ≡ v1 will never leave the simplex
SN through the facet F1. This contradicts the assumption that u(t) = f(x(t)) solves Control
Problem 3.2.

(3): Since for N = 1 Condition (3) is void, we assume, without loss of generality, that
N > 1. We prove (3) by contradiction. Suppose that there exist i, j ∈ {2, . . . ,N + 1}, i 6= j,
such that nTi (Avj + Buj + a) > 0. Define the function

h : SN −→ R : h(x) = nTi (Ax + Bf(x) + a).

Then h is continuous, and by assumption h(vj) > 0. So, there exists δ > 0, such that for all
x ∈ SN , with ‖x− vj‖ < δ: h(x) > 0.

Let 0 < ε < min
(

δ∑N+1
k=1 ‖vk‖

, 1
)

, and define

p := (1 − ε)vj +
ε

N − 1

N+1∑
k=1,k 6=i,j

vk.

Then p is a convex combination of v1, . . . , vi−1, vi+1, . . . , vN+1, with only strictly positive
coefficients. So p ∈ Fi, but p does not belong to any of the other facets of SN . Furthermore,

‖p− vj‖ =

∥∥∥∥∥∥(1− ε)vj +

 ε

N − 1

N+1∑
k=1,k 6=i,j

vk

− vj

∥∥∥∥∥∥
=

∥∥∥∥∥∥−εvj +
ε

N − 1

N+1∑
k=1,k 6=i,j

vk

∥∥∥∥∥∥ ≤ ε ·
N+1∑

k=1,k 6=i
‖vk‖ < δ,

so h(p) > 0. Therefore, the trajectory of the closed-loop system ẋ = Ax + Bf(x) + a, with
initial value x(0) = p ∈ Fi, will immediately leave the simplex SN through the facet Fi
because nTi ẋ(0) = h(p) > 0. This contradicts the fact that the feedback law u(t) = f(x(t))
is a solution to Problem 3.2, irrespective of the initial state x0 ∈ SN . We conclude that
nTi (Avj + Buj + a) ≤ 0 for all i, j ∈ {2, . . . ,N + 1} with i 6= j.

The necessary conditions derived in Proposition 3.4 may be generalized from full-dimen-
sional simplices SN in RN to arbitrary full-dimensional polytopes PN in RN . The main
observation is that conditions (1) to (3) characterize the direction of the vector field of ẋ, the
derivative of the state of the closed-loop system, at the vertices of SN . So, after a suitable
reformulation the same conditions remain valid for general full-dimensional polytopes.

Proposition 3.5 Let PN be a full-dimensional polytope in RN with vertices v1, . . . , vM ,
(M ≥ N + 1). Let F1, . . . , FL denote the facets of PN , with normal vectors n1, . . . , nL,
respectively, pointing out of the polytope PN . For i ∈ {1, . . . , L}, let Vi ⊂ {1, . . . ,M} be the
index set such that {vj | j ∈ Vi} is the set of vertices of the facet Fi. Conversely, for every
j ∈ {1, . . . ,M}, the set Wj ⊂ {1, . . . , L} contains the indices of all facets of which vj is a
vertex. Assume that F1 is the exit facet of PN . If Control Problem 3.2, with SN replaced by
PN , is solvable by a continuous state feedback f , then there exist inputs u1, . . . , uM ∈ U such
that

(1*) ∀j ∈ V1: nT1 (Avj + Buj + a) > 0,
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(2*) ∀i ∈ {2, . . . , L} ∀j ∈ Vi: nTi (Avj + Buj + a) ≤ 0,

(3*) ∀j ∈ {1, . . . ,M}\V1 ∃i ∈Wj: nTi (Avj + Buj + a) < 0.

In comparison with the original formulation of Proposition 3.4, conditions (1) and (1*)
are identical, condition (3) and the first part of condition (2) are replaced by (2*), and the
second part of (2) is now condition (3*). The proofs of (1*) and (2*) may be carried out
analogously to the proof of Proposition 3.4, because these proofs do not rely on the fact that
SN is a simplex. Only the proof of (3*) requires a slight modification, based on the following
result.

Lemma 3.6 Let v ∈ RN be a vertex of a full-dimensional polytope in RN . Let F1, . . . , FK
denote all facets of PN , containing v. Then the normal vectors n1, . . . , nK of F1, . . . , FK
generate RN .

Proof: Let FK+1, . . . , FL denote the other facets of PN , with normal vectors nK+1, . . . , nL,
and assume without loss of generality that all normal vectors are pointing out of the polytope
PN . Then there exist α1, . . . , αL ∈ R such that

PN = {x ∈ RN | ∀i = 1, . . . , L : nTi x ≤ αi}

is the implicit description of PN . At the vertex v we know that nTi v = αi for i = 1, . . . ,K,
and nTi v < αi for i = K + 1, . . . , L.

Suppose that n1, . . . , nK do not generate RN . Then there exists a nonzero vector n ∈ RN
such that nTi n = 0 for i = 1, . . . ,K. Hence, there exists a δ > 0 such that for all ε ∈ (−δ, δ)
the point v + εn ∈ PN . This indicates that v is a convex combination of two other points in
PN , and thus contradicts the fact that v is a vertex of PN (see e.g. [11, p. 162]).

Using Lemma 3.6, the proof of Condition (3*) becomes obvious. If there exists a j ∈
{1, . . . ,M}\V1 such that nTi (Avj + Buj + a) = 0 for all i ∈ Wj , then Avj + Buj + a = 0
because the set {ni | i ∈ Wj} generates RN . This implies that the vertex vj 6∈ F1 is a
fixed point of the closed-loop system, which contradicts the assumption that the feedback
u(t) = f(x(t)) solves Control Problem 3.2.

4 Control to a facet by affine state feedback

In the previous section we derived some necessary conditions for the solution of Control
Problem 3.2 by continuous static state feedback. Nevertheless, the conditions that were
obtained in Propositions 3.4 and 3.5 seem to have a strong open-loop control character: they
are formulated as a set of inequalities on the inputs to the system at the vertices of the simplex
SN or the polytope PN . In this section we restrict our attention to simplices again, and show
that if an N + 1-tuple of inputs exists, satisfying inequalities (1), (2), and (3) of Proposition
3.4, then it may be realized by the application of an affine static state feedback law. Moreover,
such an affine state feedback law is also a solution to Control Problem 3.2. The proof of this
result consists of two parts. First it is shown that every trajectory of the closed-loop system
cannot leave the simplex SN through one of the facets F2, . . . , FN+1. Subsequently it is
proven that every trajectory will reach the exit facet F1 in finite time. These observations
indicate that for the solution of Problem 3.2 it is not necessary to consider the whole class
of continuous static state feedback laws. Instead it is sufficient to confine ourselves to affine
static state feedback.
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Remark 4.1 The results of this section are stated and proved for full-dimensional simplices
only. Generalization of these results to general full-dimensional polytopes seems difficult,
because the design of the static state feedback and also several of the proofs in this section
rely on the fact that the state set SN is assumed to be a full-dimensional simplex.

Assume that there exist inputs u1, . . . , uN+1 ∈ U such that conditions (1), (2), and (3) of
Proposition 3.4 are satisfied. Since input ui should be applied at the moment that the state
vector reaches vertex vi, we first search for an affine feedback control law u = Fx + g, with
F ∈ Rm×N and g ∈ Rm such that

ui = Fvi + g, (i = 1, . . . ,N + 1). (7)

Transposition of (7) yields the equalities vTi FT + gT = uTi , (i = 1, . . . ,N + 1), and by
collecting all equalities in a matrix, the following linear equation has to be solved for F and
g:  vT1 1

...
...

vTN+1 1




FT

gT

 =

 uT1
...

uTN+1

 . (8)

Note however that this equation has a unique solution. Indeed, because of Lemma A.1, the
vectors v2 − v1, v3 − v1, . . . , vN+1 − v1 are linearly independent and thus

det

 vT1 1
...

...
vTN+1 1

 = det


0 1

vT2 − vT1 0
...

...
vTN+1 − vT1 0

 = (−1)N det

 vT2 − vT1
...

vTN+1 − vT1

 6= 0,

so this square (N + 1) × (N + 1) matrix is invertible. Furthermore, since the input set U is
a polyhedral set, the input determined by the feedback control law u = Fx + g belongs to U
for all x ∈ SN :

Lemma 4.2 Let u1, . . . , uN+1 ∈ U , and let F ∈ Rm×N , g ∈ Rm, such that for all i =
1, . . . ,N + 1: ui = Fvi + g. Then

∀x ∈ SN : u = Fx + g ∈ U. (9)

Proof: Let x ∈ SN . Then there exist λ1, . . . , λN+1 ∈ [0, 1], with
∑N+1

i=1 λi = 1 such that
x =

∑N+1
i=1 λivi. Then

u = Fx + g = F
N+1∑
i=1

λivi +
N+1∑
i=1

λig =
N+1∑
i=1

λi(Fvi + g) =
N+1∑
i=1

λiui ∈ U.

Proposition 4.3 Consider the dynamical system ẋ(t) = Ax(t)+Bu(t)+a, with x ∈ SN and
u ∈ U , and assume that there exist inputs u1, . . . , uN+1 ∈ U such that

(2’) nTi (Av1 + Bu1 + a) ≤ 0 for i = 2, . . . ,N + 1,

(3) nTi (Avj + Buj + a) ≤ 0 for all i, j = 2, . . . ,N + 1 with i 6= j.
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Let F, g be the corresponding solution of (8), and apply the feedback law u(t) = Fx(t) + g.
Then u(t) ∈ U , and for any initial state x0 ∈ SN , the state x of the closed-loop system

ẋ = (A + BF )x + (a + Bg), x(0) = x0, (10)

can only leave the simplex SN through the facet F1.

Note that conditions (2’) and (3) are not only sufficient for the construction of an affine
feedback law u = Fx + g, but also necessary; condition (3) literally occurs in Proposition
3.4 and (2’) is just slightly weaker than condition (2) of Proposition 3.4. Condition (1) of
Proposition 3.4 does not occur in Proposition 4.3, because no information on the component
of the velocity vector field in the direction of n1 at the exit facet F1 is required to guarantee
that a solution of the closed-loop dynamics cannot leave the simplex SN through one of the
facets F2, . . . , FN+1. Whether or not the state trajectory leaves the simplex through the
facet F1 will be discussed in Theorem 4.6.

In the proof of Proposition 4.3 we need the following version of Gronwall’s Lemma.

Lemma 4.4 ([6, p. 19]) Let ϕ ∈ C+[0, b], where C+[0, b] denotes the set of continuous
nonnegative functions on the interval [0, b]. If a function f ∈ C+[0, b] satisfies

f(t) ≤ ϕ(t) + K

∫ t

0
f(s) ds, (t ∈ [0, b]), (11)

for some fixed K > 0, then

f(t) ≤ ϕ(t) + K

∫ t

0
eK(t−s)ϕ(s) ds, (t ∈ [0, b]). (12)

In particular, if there exist K > 0 and β > 0 such that f ∈ C+[0, b] satisfies (11) with
ϕ(t) = βt, then

f(t) ≤ β

K
(eKt − 1), (t ∈ [0, b]). (13)

Proof of Proposition 4.3: Let w ∈ RN be the vector w =
∑N+1

j=2 (vj − v1), and define
n := 1

‖w‖w. Then ‖n‖ = 1, and according to Lemma A.4, nTi n < 0 for i = 2, . . . ,N + 1.
Let ε > 0, and consider the following perturbed closed-loop dynamics

ẋε = (A + BF )xε + (a + Bg) + εn. (14)

We first show that a trajectory xε(t), with xε(0) ∈ SN and satisfying (14), cannot leave the
simplex SN through one of the facets F2, . . . , FN+1. Indeed, let i ∈ {2, . . . ,N + 1}, and
p ∈ Fi. Since p is a convex combination of the vertices v1, . . . , vi−1, vi+1, . . . , vN+1, there
exist λ1, . . . , λi−1, λi+1, . . . , λN+1 ∈ [0, 1] such that

∑
j 6=i λj = 1 and p =

∑
j 6=i λjvj. Then

nTi ẋε |p = nTi ((A + BF )p + (a + Bg) + εn)

= nTi

(A + BF )
∑
j 6=i

λjvj +
∑
j 6=i

λj(Bg + a) + εn


= nTi

∑
j 6=i

λj((A + BF )vj + Bg + a) + εnTi n

=
∑
j 6=i

λjn
T
i (Avj + Buj + a) + εnTi n < 0,
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because
∑

j 6=i λjn
T
i (Avj + Buj + a) ≤ 0 by conditions (2’) and (3) and nTi n < 0. So, unless

p ∈ F1, the velocity vector field of (14) is pointing strictly into the simplex SN . This implies
that any solution xε of the perturbed closed-loop system (14) can only leave the simplex SN
through the facet F1. By contradiction we will prove that the same is true for the unperturbed
closed-loop system.

Consider the affine dynamical system

ẋ = (A + BF )x + (a + Bg), (15)

with x ∈ RN . So for a moment we assume that differential equation (15) does not only hold
on the simplex SN , but on the whole space RN . Suppose that there exists x0 ∈ SN such that
the solution x(t) of (15) with initial value x(0) = x0 leaves SN through the facet Fi with
i ∈ {2, . . . ,N + 1} before it has reached the facet F1. Then there exists t0 > 0 such that

(i) β := nTi x(t0) > αi,

(ii) ∀t ∈ [0, t0] : nT1 x(t) < α1.

Define γ := max{nT1 x(t) | t ∈ [0, t0]} and K := ‖A + BF‖ = max{‖(A + BF )x‖ | ‖x‖ = 1}.
Let 0 < ε < K

(eKt0−1)
· min

(
1
2(β − αi), 1

2(α1 − γ)
)
. We will compare the solutions xε(t) of

the perturbed system (14) and x(t) of the unperturbed system (15), both with initial value
x0 ∈ SN , on the interval [0, t0]. For all t ∈ [0, t0] we have

x(t)− xε(t) =
∫ t

0
ẋ(s)− ẋε(s) ds

=
∫ t

0
(A + BF )x(s) + (a + Bg)− ((A + BF )xε(s) + (a + Bg) + εn) ds

=
∫ t

0
(A + BF )(x(s)− xε(s)) ds−

∫ t

0
εn ds,

hence

‖x(t)− xε(t)‖ ≤
∫ t

0
‖A + BF‖‖x(s)− xε(s)‖ ds +

∫ t

0
ε · ‖n‖ ds

≤ ε · t + K

∫ t

0
‖x(s)− xε(s)‖ ds.

Next we apply Lemma 4.4 with f(t) = ‖x(t)− xε(t)‖ and ϕ(t) = εt, and find that for all
t ∈ [0, t0]:

‖x(t)− xε(t)‖ ≤
ε

K
(eKt − 1).

So, in particular

‖x(t)− xε(t)‖ ≤
ε

K
(eKt0 − 1) < min

(
1
2
(β − αi),

1
2
(α1 − γ)

)
, (t ∈ [0, t0]).

This implies that for every t ∈ [0, t0] the solution xε satisfies

nT1 xε(t) = nT1 (xε(t)− x(t)) + nT1 x(t) ≤ ‖n1‖ · ‖xε(t)− x(t)‖+ γ

< 1 · 1
2
(α1 − γ) + γ < α1,
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i.e., on the interval [0, t0], the solution xε does not reach the facet F1. Since xε can only
leave the simplex SN through this facet, this indicates that xε(t) ∈ SN for all t ∈ [0, t0]. In
combination with the observation that

nTi xε(t0) = nTi (xε(t0)− x(t0)) + nTi x(t0) = nTi (xε(t0)− x(t0)) + β

≥ β − ‖ni‖ · ‖xε(t0)− x(t0)‖ > β − 1 · 1
2
(β − αi) > αi,

we obtain a contradiction. We conclude that every solution of the closed-loop system (15),
starting in a point x0 ∈ SN can only leave the simplex SN through the exit facet F1.

Proposition 4.3 does not yet describe a complete solution to Problem 3.2, using affine state
feedback. Although this result guarantees that the state of the closed-loop system cannot
leave the simplex SN through one of the facets F2, . . . , FN+1, we still have to check that the
state reaches the exit facet F1 in finite time. For this purpose we need conditions (1) and (2)
of Proposition 3.4:

Lemma 4.5 Consider the system ẋ = Ax + Bu + a with x ∈ SN and u ∈ U , and assume
that there exist inputs u1, . . . , uN+1 ∈ U such that conditions (1) and (2) of Proposition 3.4
are satisfied, i.e.

(1) nT1 (Avj + Buj + a) > 0 for j = 2, . . . ,N + 1,

(2) nTi (Av1 + Bu1 + a) ≤ 0 for i = 2, . . . ,N + 1, and there exists an i ∈ {2, . . . ,N + 1}
such that nTi (Av1 + Bu1 + a) < 0.

Let F, g be the corresponding solution of (8), and apply the feedback law u = Fx + g. Then
u ∈ U and in every x0 ∈ SN , the closed-loop dynamics satisfy

nT1 ẋ |x0= nT1 ((A + BF )x0 + (a + Bg)) > 0. (16)

So in every point of the simplex SN , the state of the closed-loop system is moving with a
strictly positive speed in the direction of the exit facet F1.

Proof: Let x0 ∈ SN . Then x0 is a convex combination of the vertices of SN , and there exist
λ1, . . . , λN+1 ∈ [0, 1] such that

∑N+1
j=1 λj = 1 and

∑N+1
j=1 λjvj = x0. So

nT1 ((A + BF )x0 + (a + Bg)) = nT1

(A + BF )
N+1∑
j=1

λjvj +
N+1∑
j=1

λj(a + Bg)



= nT1

N+1∑
j=1

λj((A + BF )vj + Bg + a)

 = nT1

N+1∑
j=1

λj(Avj + Buj + a)



= λ1n
T
1 (Av1 + Bu1 + a) +

N+1∑
j=2

λjn
T
1 (Avj + Buj + a). (17)

According to condition (1), nT1 (Avj + Buj + a) > 0 for j = 2, . . . ,N + 1, so it suffices to
show that nT1 (Av1 + Bu1 + a) > 0. For this purpose we combine Lemma A.3 with condition
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(2). Since n1 is a negative linear combination of n2, . . . , nN+1, there exist µ2, . . . , µN+1 < 0
such that

n1 =
N+1∑
i=2

µini.

So, according to condition (2):

nT1 (Av1 + Bu1 + a) =
N+1∑
i=2

µin
T
i (Av1 + Bu1 + a) > 0.

Theorem 4.6 Consider the system ẋ(t) = Ax(t) + Bu(t) + a with x ∈ SN and u ∈ U , and
assume that there exist inputs u1, . . . , uN+1 ∈ U such that conditions (1), (2), and (3) of
Proposition 3.4 are satisfied. Let F, g be the corresponding solution of (8). Then, irrespective
of the initial state x0 ∈ SN , the feedback control law u(t) = Fx(t)+ g is a solution to Control
Problem 3.2.

Proof: First note that according to Lemma 4.2 the feedback u = Fx + g is admissible: for
all x ∈ SN : u = Fx + g ∈ U . Furthermore, Proposition 4.3 states that the control law
u = Fx + g guarantees that the state x can only leave the simplex SN through the facet F1.
On this exit facet F1, the velocity vector field ẋ = (A + BF )x + (a + Bg) points out of the
simplex SN , because of Lemma 4.5. So it suffices to show that the exit facet F1 is reached
within finite time.

For this purpose, we consider the affine function

h : SN −→ R : h(x) = nT1 ((A + BF )x + (a + Bg)).

Since the simplex SN is compact, h attains a maximum c2 and a minimum c1, and, according
to Lemma 4.5, c1 > 0. Let x(t) ∈ SN be a solution of the closed-loop system ẋ = (A +
BF )x + (a + Bg), and define

y(t) := nT1 x(t).

Then ẏ(t) = nT1 ẋ(t) = h(x(t)) ≥ c1. So y(t) ≥ y(0) + c1t, with y(0) = nT1 x(0) ≤ α1, because
the state is initially located in the simplex SN . However, since y is strictly increasing at a rate
of at least c1, there exists 0 ≤ T0 < ∞, such that y(T0) = α1. At that time, nT1 x(T0) = α1,
so x(T0) ∈ F1, and indeed the exit facet F1 is reached within finite time.

Combining Proposition 3.4 and Theorem 4.6, we obtain

Corollary 4.7 Consider the affine dynamical system ẋ(t) = Ax(t)+Bu(t)+a, with x ∈ SN
and u ∈ U . Then the following statements are equivalent:

(i) There exists a continuous function f : SN −→ U such that the feedback control u(t) =
f(x(t)) solves Problem 3.2 for every initial state x(0) = x0 ∈ SN .

(ii) There exist F ∈ Rm×N and g ∈ Rm such that the affine feedback control u(t) = Fx(t)+g
solves Problem 3.2 for every initial state x(0) = x0 ∈ SN .

(iii) There exist u1, . . . , uN+1 ∈ U such that

(1) nT1 (Avj + Buj + a) > 0 for j = 2, . . . ,N + 1,
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(2) nTi (Av1 +Bu1 +a) ≤ 0 for i = 2, . . . ,N +1, and there exists an i ∈ {2, . . . ,N +1}
such that nTi (Av1 + Bu1 + a) < 0,

(3) nTi (Avj + Buj + a) ≤ 0 for all i, j = 2, . . . ,N + 1 with i 6= j.

Corollary 4.7 indicates that for the solution of Problem 3.2 by static state feedback it is
not necessary to consider the whole class of continuous state feedbacks. If a solution to the
problem exists, it may always be realized by an affine static state feedback.

Note that the considerations in the proof of Theorem 4.6 also give rise to an upper bound
for the time T0 at which the exit facet is reached. The function y(t) = nT1 x(t) satisfies
nT1 v1 ≤ y(0) ≤ α1 and y(T0) = α1, and its minimal rate of increase c1 is given by

c1 = min{nT1 ((A + BF )x + (a + Bg)) | x ∈ SN}
= min{nT1 ((A + BF )vi + (a + Bg)) | i = 1, . . . ,N + 1}. (18)

This implies that

T0 ≤
α1 − nT1 v1

c1
, (19)

where c1 is easily computed with formula (18). Note however that the upper bound on T0 is
conservative, because T0 depends both on the initial state x0 and on the time-varying value
nT1 ((A + BF )x + (a + Bg)) of the growth of nT1 x along the solution trajectory x(t) ∈ SN .
Furthermore, if the solvability conditions (1), (2), and (3) of Proposition 3.4 admit some
freedom in the choice of the inputs u1, . . . , uN+1, this may be used to decrease the upper
bound for T0 in (19), by increasing c1. Since ui = Fvi + g, formula (18) may be written as

c1 = min{nT1 (Avi + Bui + a) | i = 1, . . . ,N + 1}.

This indicates that the upper bound in (19) may be optimized by solving a constrained
max-min problem for the inputs u1, . . . , uN+1 at the vertices of the simplex SN .

5 Computational issues

At first sight, the necessary and sufficient conditions (1)—(3) of Proposition 3.4 and Theorem
4.6 for the solvability of Control Problem 3.2 do not seem easy to check. This is mainly due
to the fact that condition (2) consists of a set of non-strict inequalities, of which at least one
inequality has to be strict. However, this condition may be rewritten as follows:

(2bis) nTi (Av1 + Bu1 + a) ≤ 0 for i = 2, . . . ,N + 1, and
N+1∑
i=2

nTi (Av1 + Bu1 + a) < 0.

With this reformulation of (2), the set of all solvability conditions becomes a set of strict and
non-strict linear inequalities. Since also the input set U is assumed to be polyhedral, this
has the advantage that the existence of a solution u1, . . . , uN+1 ∈ U may be checked, using
existing software for polyhedral sets, like e.g. [7, 18]. This verification is further facilitated by
the fact that the inequalities of conditions (1)—(3) are decoupled. Indeed, by reordering these
inequalities, we obtain the following two conditions, completely equivalent with (1)—(3):

(I) nTi (Av1 + Bu1 + a) ≤ 0 for i = 2, . . . ,N + 1, and
N+1∑
i=2

nTi (Av1 + Bu1 + a) < 0.
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(II) For j = 2, . . . ,N + 1: nT1 (Avj + Buj + a) > 0, and
nTi (Avj + Buj + a) ≤ 0 for all i ∈ {2, . . . ,N + 1}\{j}.

So the existence of an N +1-tuple of inputs u1, . . . , uN+1 ∈ U , satisfying (I) and (II) may be
checked for every of the inputs uj separately, by only considering the inequalities in which
uj occurs. In this way, the problem of verification is split up into N + 1 considerably smaller
subproblems.

If the inputs u are unconstrained, i.e. if U = Rm, and if the matrix B is right-invertible,
then the existence of a solution to (I) and (II) is automatically guaranteed. Intuitively this is
clear because in this situation we have full control, which makes it possible to prescribe the
vector field of ẋ at the vertices of SN completely. Alternatively, the same observation can be
made directly from the inequalities in (I) and (II). For this purpose we first rewrite (I) as nT2

...
nTN+1

Bu1 ≤ −

 nT2
...

nTN+1

 (Av1 + a), and

(1 · · · 1)

 nT2
...

nTN+1

Bu1 < −(1 · · · 1)

 nT2
...

nTN+1

 (Av1 + a).

According to Lemma A.2, the matrix (n2 | · · · | nN+1)T is invertible, so if Range(B) =
RN , it is obvious that both inequalities may be satisfied by a suitable choice of u1. The
argument for the other inputs u2, . . . , uN+1 is completely similar. The only differences are
some modifications of the inequality signs, and the use of a different matrix of normal vectors
(for the input uj, (j = 2, . . . ,N +1), one has to use a matrix consisting of all normal vectors
n1, . . . , nN+1, except nj; Lemma A.2 indicates that this matrix is invertible).

To illustrate the role of the inequalities in (I) and (II) we end this section with a small
example.

Example 5.1 Let N = 2, and let the simplex S2 be the triangle in R2 with vertices v1 =
(−1, 0)T , v2 = (1, 1)T , and v3 = (1,−1)T (see Figure 1). The normal vectors on the three
facets F1, F2, and F3 of S2 are n1 = (1, 0)T , n2 = 1√

5
(−1,−2)T , and n3 = 1√

5
(−1, 2)T ,

respectively. On the simplex S2 we consider the system

ẋ =
(
−1 −1
−2 1

)
x +

(
2
−2

)
u +

(
3
1

)
,

with state x ∈ S2 and scalar input −1 ≤ u ≤ 1. We want to construct an affine feedback
law u = Fx + g such that the state of the closed-loop system can only leave the simplex S2

through the facet F1, the vertical line segment between the vertices v2 and v3.
For the existence of a solution it is necessary and sufficient that there exist an input u1

at vertex v1 satisfying (I), and inputs u2, u3 at the vertices v2, v3 satisfying (II). So, for u1

the following inequalities should hold:

(1) nT2 Bu1 ≤ −nT2 (Av1 + a), so u1 ≤ 5,

(2) nT3 Bu1 ≤ −nT3 (Av1 + a), so u1 ≥ 1
3 ,
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(3) nT2 Bu1 + nT3 Bu1 < −nT2 (Av1 + a)− nT3 (Av1 + a), so u1 ≥ −2,

and, additionally, −1 ≤ u1 ≤ 1. Therefore all conditions are satisfied for u1 ∈ [1
3 , 1]. For u2

we have

(1) nT1 Bu2 > −nT1 (Av2 + a), so u2 > −1
2 ,

(2) nT3 Bu2 ≤ −nT3 (Av2 + a), so u2 ≥ −1
6 ,

with −1 ≤ u2 ≤ 1. Hence u2 ∈ [−1
6 , 1]. Finally, u3 has to satisfy

(1) nT1 Bu3 > −nT1 (Av3 + a), so u3 > −3
2 ,

(2) nT2 Bu3 ≤ −nT2 (Av3 + a), so u3 ≤ −1
2 ,

and −1 ≤ u3 ≤ 1. So every u3 ∈ [−1,−1
2 ] is a solution.

To obtain an affine feedback, we fix the inputs at the vertices by choosing u1 = 1
2 , u2 = 0,

and u3 = −3
4 , and compute F = ( f1 f2 ) and g using formula (8): −1 0 1

1 1 1
1 −1 1

 f1

f2

g

 =

 1
2
0
−3

4

 .

This yields the following affine feedback solution for Problem 3.2:

u =
(
− 7

16
3
8

)( x1

x2

)
+

1
16

. (20)

It guarantees that for all x ∈ S2, the corresponding input u satisfies |u| ≤ 1, and that the
state of the closed-loop system leaves the simplex in finite time through the facet F1.

In Figure 1, solution (20) is depicted graphically. Without input, the vector field ẋ =
Ax + a at the vertices v1 and v3 does not point into the right direction; in v1 it is required
that ẋ points into the simplex S2, and in v3, ẋ should point into the cone generated by the
inequalities x1 ≥ 1 and x1 + 2x2 ≥ −1. This can be resolved by the choice of suitable inputs
u. At v1 the input u1 = 1

2 changes ẋ to the required direction, and in v3, u3 = −3
4 is a

suitable input. In vertex v2 the vector ẋ = Ax + a is already pointing in the right direction,
without applying any input. This justifies the choice of u2 = 0. The affine feedback (20)
realizes these inputs ui, (i = 1, 2, 3), at the vertices vi. Finally, the convexity of the problem
may be used to show that this affine feedback also solves Problem 3.2 on the whole simplex
S2. A typical state-trajectory of the closed-loop system is depicted in Figure 2.

6 Concluding remarks

In this paper, a reachability problem for affine systems on simplices and polytopes was con-
sidered. First, necessary conditions were derived for the existence of a continuous feedback
law, that realizes the control objective of steering the state to a particular facet of the poly-
tope. Next, sufficient conditions were obtained for solving the same control problem by affine
feedback, in case that the polytope is a simplex. It turned out that for affine systems on
simplices the necessary conditions on the one hand, and the sufficient conditions on the other,
are identical. Furthermore, a procedure has been described for the computation of the control
law.

Further research is in progress on the extension of the sufficient conditions to affine systems
on general polyhedral sets. The results will be used in reachability analysis of piecewise-linear
hybrid systems.
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Appendix A

In this appendix some technical results on full-dimensional simplices are collected, that are
needed throughout the paper. For this purpose we first recall some definitions regarding
simplices.

Let N ∈ N. The full-dimensional simplex SN in RN is defined as the convex hull of N +1
points v1, . . . , vN+1 ∈ RN , called the vertices of SN , with the property that there exists no
hyperplane of RN , containing v1, . . . , vN+1. For i ∈ {1, . . . ,N +1}, the normal vector of the
hyperplane in RN , generated by the points {v1, . . . , vN+1}\{vi} is denoted by ni. Without
loss of generality it is assumed that ‖ni‖ = 1, and that ni is pointing out of the simplex SN .
Let αi ∈ R be chosen in such a way that the hyperplane generated by {v1, . . . , vN+1}\{vi}
is described by the equation nTi x = αi. Then the simplex SN is characterized by

SN = {x ∈ RN | ∀i = 1, . . . ,N : nTi x ≤ αi}.

Moreover, for the vertices v1, . . . , vN+1 we know that

nTi vj = αi for i, j ∈ {1, . . . ,N + 1} and i 6= j,
nTi vi < αi for i ∈ {1, . . . ,N + 1}. (21)

Lemma A.1 The vectors v2 − v1, v3 − v1, . . . , vN+1 − v1 constitute a basis of RN .

Proof: Since we consider N vectors in N -dimensional space, it suffices to prove that these
vectors are linearly independent. Assume that

∑N+1
j=2 λj(vj − v1) = 0. Then for every

i ∈ {2, . . . ,N + 1} we have

0 = nTi

N+1∑
j=2

λj(vj − v1) =
N+1∑
j=2

λj(nTi vj − nTi v1) =
N+1∑
j=2

λj(nTi vj − αi) = λi(nTi vi − αi),

where we used (21) in the last equality. Finally, nTi vi − αi < 0, so λi = 0.

Lemma A.2 The vectors n2, . . . , nN+1 constitute a basis of RN .

Proof: Again, it suffices to prove that these vectors are linearly independent. Assume that∑N+1
j=2 λjnj = 0. Then for every i ∈ {2, . . . ,N + 1}:

0 =
N+1∑
j=2

λjn
T
j (vi − v1) =

N+1∑
j=2

λj(nTj vi − nTj v1) =
N+1∑
j=2

λj(nTj vi − αj) = λi(nTi vi − αi).

Since nTi vi − αi < 0, we have λi = 0 for i = 2, . . . ,N + 1.

Lemma A.3 The vector n1 is a negative linear combination of the vectors n2, . . . , nN+1, i.e.
there exist λ2, . . . , λN+1 < 0 such that

n1 =
N+1∑
j=2

λjnj .
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Proof: According to Lemma A.2, the vectors n2, . . . , nN+1 constitute a basis of RN , so there
exist λ2, . . . , λN+1 ∈ R, such that

n1 =
N+1∑
j=2

λjnj .

Let i ∈ {2, . . . ,N + 1}. Then

nT1 (vi − v1) = α1 − nT1 v1 > 0,

and therefore

0 < nT1 (vi − v1) =
N+1∑
j=2

λjn
T
j (vi − v1) =

N+1∑
j=2

λj(nTj vi − αj) = λi(nTi vi − αi).

Since nTi vi − αi < 0, we must have λi < 0.

Lemma A.4 Let w ∈ RN be the vector defined by w :=
N+1∑
j=2

(vj − v1). Then for all i =

2, . . . ,N + 1: nTi w < 0.

Proof: For i ∈ {2, . . . ,N + 1} we have

nTi

N+1∑
j=2

(vj − v1) =
N+1∑
j=2

(nTi vj − nTi v1) =
N+1∑
j=2

(nTi vj − αi) = (nTi vi − αi) < 0.
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Figure 1: Control of the vector field ẋ at the vertices of S2
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Figure 2: A state-trajectory of the closed-loop system
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