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Control for a Class of Hybrid Systems

Jan H. van Schuppen

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

J.H.van.Schuppen@cwi.nl

ABSTRACT

A hybrid control system is a control theoretic model for a computer controlled engineering system.

A de�nition of a hybrid control system is formulated that consists of a product of a �nite state

automaton and of a family of continuous control systems. An example of a transportation system

consisting of a line of conveyor belts is used as a running example. The realization problem for this

class of systems is discussed. Control synthesis of hybrid systems is in a �rst approach based on

supervisory control of discrete event systems.

1991 Mathematics Subject Classi�cation: 93B50, 93C30.

Keywords and Phrases: Hybrid control system, realization, control of hybrid systems, control of

conveyor belts.

Note: Research is carried out at CWI as part of Project CONTROL which belongs to subtheme

PNA2.2 Tra�c Networks. Report has been submitted for publication elsewhere.

1 Introduction

The purpose of this paper is to present problems, concepts, and theory for control of hybrid

systems.

The motivation of the author for the study of hybrid systems is the use of computers for

control of engineering systems. In the past control synthesis focused exclusively on control

systems with a continuous state space. More recently, control of discrete event systems has

been the subject of investigation. For control design it is in general no longer possible to

separate the design at the discrete and at the continuous level. Hence the interest in hybrid

systems in which these levels are combined. The motivation directs attention to a class of

hybrid systems in which a computer science model is combined with a model for continuous

control systems. The motivation is not the treatment of a continuous control system in

which the switches between di�erent modes are generated only by the continuous-time

system.

The contribution of this paper is control synthesis for a class of hybrid systems. A

de�nition of a hybrid control system is formulated that consists of a product of a �nite-state

automaton and of a family of continuous control systems. As example a model is treated

of a transportation line that consists of a line of conveyor belts. For control synthesis of

hybrid systems attention is restricted to a class of systems. A su�cient condition for the

existence of a hybrid controller is presented that is based on supervisory control theory. The
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Figure 1: Two conveyors belts with belts of the transportation system.

su�cient conditions involve the checking of reachabilitiy and of controllability conditions. A

controller for the hybrid control system of the conveyor belts is presented. The reachability

problem for subclasses of hybrid control systems is discussed.

The novelty of this paper is in the approach to control synthesis, in the remarks on

modeling and realization of hybrid systems, and in the example of the conveyor belts.

An overview of the contents follows. In Section 2 the example of a transportation system

is described. A de�nition of a hybrid control system is presented in Section 3 together with

the realization problem. In Section 4 an approach to control synthesis is formulated and

illustrated for the example. Concluding remarks are stated in Section 5.

2 Example of conveyor belts

Example 2.1 Conveyor system. Consider a transportation system that consists of a line

of conveyor belts. The purpose of the transportation system is to transport trays with

products. The model was developed in the research group of J.E. Rooda at the Department

of Mechanical Engineering of the Eindhoven University of Technology for a transportation

system in a bike factory. A description may be found in [8].

Figure 1 shows a model of two conveyor belts. Each belt is driven by an electromotor

of which the torque can be controlled. It is assumed that there is no friction in the belt

system. The inertia of the mass of the conveyors and motors will be neglected. A conveyor

has length l. A tray is assumed to have length a which is approximately l=4. This is a

modeling assumption that may be relaxed. The trays carry batches of various products or

parts. It is assumed that the belt which carries the major part of a tray determines the

speed of the tray. The power supply to the motor determines the torque and hence the

velocity of the belt and the tray. As a simpli�cation, it is assumed that the controller sets

the torque of the motor directly. It is assumed that the torque can be varied continuously

from the value �Tmax to the value Tmax. The resulting acceleration or deceleration depends

on the torque applied and on the mass of the trays present on the belt.

A description of the model in the form of a hybrid control system follows. The concept

of a hybrid system is formally de�ned in the next section. Partition every belt midway in

a front end and a back end, thus both ends are of equal length. A model with di�erent

lengths for the front and back end is left for a future extension. Consider a discrete state
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Q i j k

q1 0 0 1 No tray present, down stream environment ready to accept a tray

q2 1 0 1 Tray at front end, down stream is ready to accept

q3 0 1 1 Tray at back end, down stream is ready to accept

q4 1 1 1 Tray at front and at back end, down stream is ready to accept

q5 0 0 0 No tray present, down stream not ready to accept a tray

q6 1 0 0 Tray at front end, down stream is not ready to accept

q7 0 1 0 Tray at back end, down stream is not ready to accept

q8 1 1 0 Tray at front and back end, down stream not ready to accept

Table 1: Description of discrete states.

�ar Arrival of tray at front end of the belt

�mid Arrival of tray at mid point of the belt

�dep Arrival of tray at end of belt

�d1 Message arrives that down stream environment can accept a tray

�d0 Message arrives that down stream environment cannot accept a tray

�up0 Message is sent to up stream environment that belt cannot accept a tray

�up1 Message is sent to up stream environment that belt is ready to accept a tray

Table 2: List of events.

set

Q = fq1; q2; : : : ; q8g :

Here each discrete state is represented by three variables, q = (i; j; k) 2 f0; 1g3, where

i = 1 represents that a tray is present at the front end of the belt and i = 0 that it is not,

where j represents in a similar way whether or not a tray is present at the back end of

the belt, and k = 1 represents that, according to the latest information, the down stream

environment can accept a tray and k = 0 that it cannot. The meaning of the discrete states

is summarized in the Table 1.

Let the initial state be q1. The possible events are listed in the Table 2. Let

�in = ;; �env = f�ar; �d0; �d1g; �cd = f�mid; �depg;

�int = f�up0; �up1g; �out = � = �env [�cd [ �int:

The discrete transitions are described in Table 3. The �rst entry in Table 3 should be

read as: If at time t the system is at discrete state q1 and at continuous state xq1 , if at

that time event �ar occurs, then the system moves to discrete state q2 and continuous

state xq2 where the �rst component of xq2 , denoted by xq2;1, is set to the value 0 and the

second component is set to the value xq1;2. In Table 3 the transitions from the discrete

states q5; q6; q7; q8 have been omitted because they correspond in an obvious way to those

displayed above. The environmental events from the set �env can occur at all states. Thus

the event �ar, that signals the arrival of a new tray at the belt, is allowed at all states.

Control of the belt will prevent these events from happening at the discrete states q2 and

q4. Therefore these transitions have been omitted from Table 3. The discrete event system

associated with the hybrid control system is partly displayed in Figure 2.
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q2 = �(q1; �ar); xq2 = r(q1; q2; xq1 ; �ar) = (0; xq1;2);

q5 = �(q1; �d0); xq5 = xq1 ;

q1 = �(q1; �d1); �xq1 = xq1 ;

q3 = �(q2; �mid); xq3 = (l=2; xq2;2);

q6 = �(q2; �d0); xq6 = xq2 ;

q2 = �(q2; �d1); �xq2 = xq2 ;

q4 = �(q3; �ar); xq4 = (xq3;1; xq3;2; 0);

q1 = �(q3; �dep); xq1 = (0; xq3;2);

q7 = �(q3; �d0); xq7 = xq3 ;

q3 = �(q3; �d1); �xq3 = xq3 ;

q2 = �(q4; �dep); xq2 = (xq4;3; xq4;2);

q8 = �(q4; �d0); xq8 = xq4 ;

q4 = �(q4; �d1); �xq4 = xq4 :

Table 3: Discrete transitions and resets.

A model of a line consisting of two conveyor belts is described next. Each conveyor belt

is described by a hybrid control system as speci�ed above. It will be assumed that

�ar(i) = �up0(i) = �d0(i� 1); �mid(i) = �up1(i) = �d1(i� 1):

Thus when a tray has arrived at the front end of belt i, event �ar(i) occurs, then that belt

informs the upstream environment that it temporarily cannot accept new trays and the

events �up0(i) = �d0(i� 1) occur simultaneously. When a tray moves from the front end to

the back end of the belt then the event �mid(i) occurs and at the same the upstream belt

is noti�ed that the belt can again accept trays, so the events �up1(i) = �d1(i � 1) occur

simultaneously.

The control systems at the continuous level are rather elementary. Let in discrete state

q2 2 Q, in which only one tray is present, the �rst component of xq2 denote the position

of the front end of the tray with respect to the starting point of the belt and the second

component denote the speed of the tray which equals the speed of the belt. Let u, the

input signal, represent the torque of the motor and y, the output signal, represent the

measurement of the velocity of the tray which is assumed to equal the velocity of the belt.
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Figure 2: Discrete event system associated with hybrid control system of conveyor.

Then the movement of the tray is described by the control system

_xq2(t) =

�
0 1

0 0

�
xq2(t) +

�
0

b2

�
u(t); xq2(t0) = x+q2 ;

y(t) =
�
0 1

�
xq2(t);

_xq4(t) =

0
@ 0 1 0

0 0 0

0 1 0

1
Axq4(t) +

0
@ 0

b2
0

1
Au(t); xq4(t0) = x+q4 ;

y(t) =
�
0 1 0

�
xq4(t);

with, Xq2 = R2, TXq2 = R2 represents the tangent space, U = R, Y = R, Xq4 = R3,

and TXq4 = R3. The continuous dynamics in the discrete states q1; q2; q3; q5; q6; q7 are

identical and in the discrete states q4; q8 are identical. If at the discrete state q 2 Q the

trajectory xq hits the subset Gq(�) � Xq, say xq(t�) 2 Gq(�), then the event � 2 �cd

occurs immediately. This di�ers from the computer science convention where an event can

occur at any time after the state trajectory has entered a guard. The guards at the discrete

states are

Gq2(�mid) = [l=2;1) �R; Gq3(�dep) = [l;1)�R; Gq4(�dep) = [l;1) �R2;

Gq6(�mid) = Gq2(�mid); Gq7(�dep) = [l;1) �R; Gq8(�dep) = Gq4(�dep):

At t = t0 the initial condition at the discrete state q0 is taken to be xq0;0. Let Uc = fu :

T ! Ug be the class of admissable input functions.

In Section 4 a control problem for this belt will be described and solved.

The model of the conveyor belts de�ned so far is su�cient for several control problems.

However, optimal control of the conveyor belt system requires a model with additional

features. This extension of the model is left for future work.
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3 Modeling of hybrid systems

3.1 De�nitions

In this subsection a de�nition of a hybrid control system is formulated and discussed.

De�nition 3.1 A continuous-time hybrid control system is a tuple

�
T ;Q;�in;�env;�int;�cd;�out; U ; Y ;Uc;Uex;

�; r; fXq ; TXq; Gq; fq; hq;8q 2 Qg; (q0; xq0;0)

�
; (1)

where

T = R+, said to be the time index set,

Q is a �nite set, the discrete state set,

�in is a �nite set, the set of input events,

�env is a �nite set, the set of environmental events,

�int is a �nite set, the set of internal events,

�cd is a �nite set, the set of events generated by the continuous dynamics,

� = �in [ �int [ �env [ �cd,

�out � � the set of output events,

U � Rm, the continuous input space,

Y � Rp the continuous output space,

Uc � fu : T ! Ug, set of continuous input functions,

Uex � (T � �)� [ (T � �)! the set of external timed-event sequences,

� : T �Q�X � �! Q, the discrete transition function,

a, possibly partial, function,

r : T �Q�Q�X � �! X, the reset map, a, possibly partial, function,

for all q 2 Q,

Xq � Rnq , the continuous state space at discrete state q 2 Q, X = [q2QXq,

TXq(x) � Rnq the tangent space at x 2 Xq,

Gq : �cd ! Pclosed(Xq), the guard at q 2 Q, a, possibly partial, function,

Pclosed(Xq) denotes the closed subsets of Xq,

fq : T �Xq � U ! TXq, hq : T �Xq � U ! Y ,

are functions that determine a di�erential equation and a read-out map,

(q0; xq0;0) 2 Q�Xq0 the initial state.

The dynamics of the hybrid control system is described by the discrete transition function,

the reset map, the di�erential equation, and the output map, according to

q+ = �(t; q�; x�
q�
; �); q0; (2)

x+
q+

= r(t; q�; q+; x�
q�
; �); (3)

_xq(t) = fq(t; xq(t); u(t)); xq(0) = x+q;0; (4)

y(t) = hq(t; xq(t); u(t)): (5)

The operation of the hybrid control system is described below. At t = 0 the initial state is

(q0; xq0;0) 2 Q �Xq0 . Assume no immediate transition takes place at t = 0; see below on
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what to do if an event does occur at this time. At the discrete state q = q0 the continuous

dynamics proceeds according to the di�erential equation (4). It is assumed that for all

u 2 Uc this di�erential equation has an unique solution on R+. The solution will be

followed till the next event. The time interval till the next event will be denoted by [t0; t1)

for t1 2 R+ and for subsequent intervals by [tn; tn+1) for n 2 Z+.

At any time t 2 T an event may occur that results in a change of the discrete state. The

possible events at state q 2 Q and at time t 2 T are:

� an input event � 2 �in occurs if such an event is supplied on the input channel;

� an environmental event � 2 �env occurs if such an event is supplied by the environ-

ment;

� an event generated by the continuous dynamics � 2 �cd occurs immediately when

xq(t�) 2 Gq(�), thus if the state of the system hits a guard. (Here the notation

xq(t�) = lims"t xq(s) is used.)

If the timed-event (t; �1) occurs then the transition is described by the discrete transition

function and the reset map (2,3). The transition should be read as that the timed-event

(t; �1) transfers the system from the state (q�; x�
q�
) to the state (q+; x+

q+
). It may be the

case that the new state (q+; x+
q+
) 2 Q �Xq+ is such that x+

q+
2 Gq+(�2). In this case the

event �2 2 �cd takes place at the same time. It will be assumed that only a �nite number

of events can occur at any time. After the last event of the sequence of events occuring

at moment t, the new state is (qf ; x
+

qf
) where x+qf is the initial condition of the di�erential

equation in the discrete state qf . A further extension is to make the guards time-varying.

The internal behavior of the hybrid control system consists of a sequence of states and

transitions and of a sequence of trajectories as in

bin;d = ((q0; x
+

q0;0
); (t1; �1); (q1; x

+

q1
); (t2; �2); : : : )

2 ((Q�X) [ (T � �))� [ ((Q�X) [ (T � �)!; (6)

bin;c = ((q0; xq0(t); u(t); y(t); t 2 [t0; t1)); (q1; xq1(t); u(t); y(t); t 2 [t1; t2)); : : : ) ;

(Q�XI
q � U I � Y I)� [ (Q�XI

q � U I � Y I)!; (7)

where I � R+ is a left closed and right open interval

that varies over the sequence.

For a projection operator p : � ! �out [ f�g, de�ne the behavior of the hybrid control

system as

bd = ((t1; ��1); (t2; ��2); : : : ) 2 (T � �out)
� [ (T � �out)

!; (8)

bc = ((u(t); y(t); t 2 [t0; t1)); (u(t); y(t); t 2 [t1; t2)); : : : ) ;

2 (U I � Y I)� [ (U I � Y I)!; (9)

bHCS = (bd; bc) 2 B(T;�; U; Y ): (10)

where ��i = p(�j) only if p(�j) 6= �.

Comments on the de�nition follow. The concept of a hybrid control system is a product

of an input-output automaton and of a family of control systems with continuous state
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spaces. The coupling between the discrete level, the input-output automaton, and the

continuous level, the family of control systems, is in the dependence of the control system

on the discrete state and in the events generated by the continuous dynamics. As in

system theory, a hybrid control system exists in relation to its environment with which it

is connected by both discrete and continuous inputs and outputs.

The de�nition of a hybrid control system involves a choice for the input/output automa-

ton at the discrete level. An option not taken is to have a model with as class of input

functions both continuous and discrete input trajectories. Then questions of existence and

uniqueness of a solution to the di�erential equation and of properties of the solution can

easily be studied. The choice for a computer science model at the discrete level is motivated

by the use of the de�nition for modeling of computer controlled engineering systems.

The de�nition of a hybrid control system involves the forcing of events by an input event

or by an environmental event. This di�ers from the model introduced byW.M. Wonham and

P.J. Ramadge, see [19], for control of discrete event systems in which the events just happen.

That is so because in that model the continuous systems are not explicitly modelled.

In the de�nition an input event and an environmental event can arrive at any time. This

allows a rich behavior. In practice not every input event can be executed immediately, its

arrival often leads to a short procedure consisting of several events and time trajectories.

For example, in case an operator pushes the button to shut down a chemical plant this is

followed by an elaborate procedure that stretches out over time.

For a hybrid control system to be well de�ned it must be proven that (1) at any time only

a �nite number of events can occur; and (2) on any �nite interval only a �nite number of

events can occur (Non-Zeno behavior). Condition (1) can be checked from the de�nitions

by an analysis of the discrete part of the system. Condition (2) requires analysis of switched

di�erential equations. Possibly the solution concept of a di�erential equation introduced

by A.P. Filippov is useful in this regard.

The de�nition of a hybrid control system is fairly general. Experience with examples will

have to establish how useful it is for modeling of computer controlled engineering systems.

Because of space limitations, a discussion of synchronization and of interconnections of

hybrid control systems is omitted. The synchronization may take rather complex forms.

Other de�nitions of hybrid systems or hybrid control systems have been proposed. For

an overview see the thesis of M. Branicky, [6]. De�nitions similar in character to the above

are [6, Ch. 5] and [9, 17, 21, 23].

3.2 Subclasses of the class of hybrid control systems

An example of a hybrid control system is the conveyor belt model of Example 2.1.

E.D. Sontag has introduced a class of hybrid control systems in a paper that appeared

in 1981, see [21]. The de�nition requires the concept of a polyhedral set, of a PL-set, and

of a PL-map, see [22]. A closed polyhedron is the intersection of a �nite number of closed

half spaces of a vector space. A PL-set is the �nite union of relatively open polyhedra.

A PL-map is a map from a vector space to another such vector space such that its graph

is a PL-set. Below a linear hybrid control system is de�ned that is a special case of that

introduced in [21].
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De�nition 3.2 A continuous-time time-invariant linear hybrid control system, see [21],

is a hybrid control system with

U � Rm; Y � Rp;Xq � Rnq ; 8q 2 Q; are polyhedral sets,

Gq(�) � Xq;8q 2 Q; � 2 �cd; are polyhedral sets;

q+ = �(q�; x�
q�
; �); q� = q0;

x+
q+

= Ad(q
�; q+; �)x�

q�
+Bd(q

�; q+; �);

_xq(t) = Aqxq(t) +Bqu(t); xq(0) = x+q ;

y(t) = Cqxq(t) +Dqu(t):

An overview of classes of hybrid control systems follows.

1. Timed automata. This is a subclass of the class of hybrid control systems in which the

right hand side of the di�erential equation is constant. This class has been introduced

by R. Alur and D. Dill in [4]. Other references on this class are [3, 2].

2. Linear hybrid control systems.

3. Polyhedral hybrid systems in which the input, output, and state spaces are polyhedral

sets and the continuous dynamics is described by a di�erential inclusion in which the

inclusion is also speci�ed by a polyhedral set. This subclass has been explored by

T.A. Henzinger, see [10].

4. Arbitrary nonlinear hybrid control systems. This class is considered in, for example,

the thesis of J. Lygeros, [15].

The choice of a model class has to be based on a compromise between the expressive

power and the complexity of the model class. At the discrete level of a hybrid control

system complexity may relate to the number of discrete states and the discrete dynamics as

described by events or logical formulas. At the continuous level of a hybrid control system,

complexity may relate to the spaces: a �nite-dimensional state space, and to geometric

constraints on the input, output, and state spaces; and to the dynamics: linear dynamics

or dynamics described by a di�erential inclusion described by a polyhedral set.

A major problem of control and system theory is to formulate subclasses of the class of

hybrid control systems that are interesting for control and system theory and for which

problems and questions are computationally tractable. More so than in classical realization

theory, properties of decidability and of complexity should be used in the selection of the

subclass.

3.3 Realization of hybrid systems

In this subsection the realization problem for hybrid control systems is formulated and

discussed.

Problem 3.3 Consider a time set T � R+, an event set �, an input set U � Rm, and an

output set Y � Rp. Consider a set of behaviors

Bgiven = fbj 2 B(T;�; U; Y ); j 2 Jg ;

9



for some index set J . Construct a hybrid control system HCS such that for suitable initial

conditions the set of behaviors of the system equals the given set of behaviors,

Bgiven = BHCS :

Such a hybrid control system is then called a realization of the given set of behaviors.

Questions of this problem include:

1. Does a hybrid control system exists which does the job? Because a hybrid control

system by de�nition has a �nite number of discrete states and has at each discrete

state a �nite-dimensional state space, not every set of behaviors can be represented.

2. When is a realization minimal in a to be de�ned sense? Even the de�nition of the

concept of minimality requires thought.

3. Which subclasses of hybrid control systems are equivalent in the sense that they rep-

resent the same behaviors?

The problem de�ned above di�ers from the realization problem for linear �nite-dimensional

systems given the impulse response function in that here behaviors are given consisting of

input-output trajectories.

The problem formulated above is likely to be undecidable in full generality. It is of

interest to �nd subclasses of hybrid control systems for which a useful realization theory

can be developed.

Recent developments in the computer science literature on hybrid systems are based on

language equivalence of two subclasses of hybrid systems, see the result by D.L. Dill, [7],

by R. Alur etal, [1], by T. Henzinger, [10], and by K. Inan [13]. The importance of the

result is that for questions up to untimed language equivalence the hybrid control system

can be reduced to a �nite-state automaton for which the questions may be easier to solve.

For other problems other equivalence relations may have to be used. For each equivalence

relation the smallest subclass of hybrid control systems is of interest.

4 Control of hybrid systems

4.1 Problem formulation

Consider a hybrid control system. The problem is to construct a controller which in closed-

loop with the hybrid control system meets the control objectives. An interconnection of a

hybrid control system and of a hybrid controller is displayed in Figure 3. A hybrid controller

is a hybrid control system as de�ned in De�nition 3.1.

In the approach taken in this paper, the control objectives at the discrete level will

receive relatively more attention than those at the continuous level. An argument for this

approach is that control synthesis for the continuous part of a hybrid control systems is well

developed. Control synthesis is therefore separated into that at the discrete and that at the

continuous level. For other approaches to control synthesis see [12, 15, 16, 21]. Below the

discrete event system of a hybrid control system is considered in a �nite string framework.

The extension to an in�nite string framework is of interest and will be investigated later.
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Figure 3: Interconnection of a hybrid control system and of a hybrid controller

There are two cases to be distinguished. In Case 1 �in = ;, �env 6= ;, and �cd 6= ;.

For this case supervisory control of discrete event systems is useful. In Case 2 �env = ;,

�in 6= ;, and �cd 6= ;. In this case an input-output automaton is obtained at the discrete

level. Control synthesis for Case 2 will be described elsewhere.

4.2 Example

Example 4.1 Consider Example 2.1 in which a line of conveyor belts is modeled by a

hybrid control system. Below the control objectives and a hybrid controller are speci�ed.

Control objectives for the control of the conveyor belt follow. The �rst objective is that

trays should not collide. As two trays on the same belt both travel at the same speed they

cannot collide. Two trays can collide if a tray moves from one belt onto the next down

stream belt where a tray stays put because the belt is not moving or moving slowly. This

situation has to be prevented. This is a safety control objective.

A second control objective is that a tray which the up stream environment delivers to

the belt is eventually transported and delivered to the down stream environment when

the down stream environment is ready to accept it. This is called a control objective of

acceptable behavior.

A third control objective is performance optimization. How to control the hybrid control

system such that the throughput of trays is optimized while guaranteeing safety. The

throughput of the conveyor belt system is control dependent.

For the safety control objective the condition is imposed that the following inequality

holds

mtrays � v2max

2b2Tmax

< l=2: (11)

If the inequality does not hold then the conveyor system should have motors with a higher

maximum torque, less mass on the trays, or a lower maximum speed of the belt. The

control objective of acceptable behavior can be met if the following conditions hold on the

11



parameters of the system

b2 > 0; Tmax > 0: (12)

Control design for the conveyor belt system follows. Safety. If the down stream environ-

ment is not ready to accept a tray, which happens in the discrete states q5; q6; q7; q8, then

no tray should be transferred from the belt to the down stream environment, or the event

�dep should not occur or, if it cannot be prevented, then it should not lead to a collision.

At the discrete states mentioned, the event �dep is possible only in the states q7; q8. The

event �dep in the discrete states q7; q8 is generated by the continuous dynamics, the moving

of the belt. Thus in those states the belt has to be decelerated till it becomes to a stand

still and be kept at this zero speed. It has to be proven that in no circumstance this action

leads to a collision of the trays.

Acceptable behavior. A tray that is delivered from the up stream environment to the

belt must be passed on to the down stream environment if the latter environment is ready

to accept it. This can be achieved at the discrete states in which a tray is present and

in which the down stream environment is ready to accept a tray, q2; q3; q4, by forcing the

event �mid or the event �dep. The latter events can be forced by the continuous input, thus

by accelerating the belt to the maximal speed vmax and keeping the speed at that level. In

discrete state q6 in which a tray is present at the front end of the belt but not at the back

end, and the down stream belt cannot accept a tray, the belt may be brought to maximum

speed so as to force the event �mid.

A controller is described such that the interconnection of the hybrid control system and

of the hybrid controller achieves the control objectives. The hybrid controller consists of a

hybrid control system as de�ned in De�nition 3.1 with the same discrete states as those of

the control system but with the following details. Let

Q2 = Q1; �1;in = � = �env [ �cd [ �int; �2;env = ;; �2;int = ;; �2;cd = ;;

U2 = Y1; Y2 = U1 = R; u2 = y1; u1 = y2:

The hybrid controller is speci�ed in Table 4. The controller has no continuous dynamics.

In the table y1(t) denotes the speed of the belt which equals the speed of any tray present

and vmax denotes the maximal speed of the belt.

It will be argued that the controller designed above meets the control objectives. Consider

the safety control objective and distinguish two cases. In Case 1 a tray passes the mid point

of the belt and hence moves from the front end to the back end of the belt while the down

stream environment cannot accept a tray. Thus the transition

q7 = �(q6; �mid); xq7 = r(q6; q7; xq6 ; �mid) = (l=2; xq6;2);

occurs. Because the tray and the belt are moving, the speed of the belt y(t) is strictly

positive. According to the controller de�ned above, in discrete state q7 the input signal is

u1(t) = y2(t) = �Tmax. Thus the belt is decelerated till it stops. The distance travelled by

the tray from the mid point of the belt till the time the belt stops may be calculated to be

mtraysv
2

max

2b2Tmax

:

12



Discrete-state Output signal of controller

q1 y2(t) =

�
�Tmax; if y1(t) > 0;

0; if y1(t) = 0;

q2 y2(t) =

�
Tmax; if y1(t) < vmax;

0; if y1(t) = vmax;

q3 y2(t) =

�
Tmax; if y1(t) < vmax;

0; if y1(t) = vmax;

q4 y2(t) =

�
Tmax; if y1(t) < vmax;

0; if y1(t) = vmax;

q5 y2(t) =

�
�Tmax; if y1(t) > 0;

0; if y1(t) = 0;

q6 y2(t) =

�
Tmax; if y1(t) < vmax;

0; if y1(t) = vmax;

q7 y2(t) =

�
�Tmax; if y1(t) > 0;

0; if y1(t) = 0;

q8 y2(t) =

�
�Tmax; if y1(t) > 0;

0; if y1(t) = 0:

Table 4: Description of hybrid controller.

If Condition (11) holds then the tray will come to a stand still before reaching the next

belt.

In Case 2 a tray is present on the back of the belt, it is moving at nonzero speed, and

the down stream environment can accept a tray. The discrete state is thus either q3 or q4.

Because the down stream environment can accept a new tray, there is no tray present on

the front end of the down stream belt. Suppose that the belt considered receives the event

�d0 signalling that the down stream belt from then on cannot receive a tray. The reason

for this may be a communication that the down stream belt receives from the environment

further down stream. The hybrid control system moves to state q7 or q8 depending on

whether it was in respectively q3 or q4. According to the controller de�ned above the belt

will then be decelerated at maximal torque. Because of Condition (11) the tray will come

to a stand still before having travelled distance l=2 on the belt. Depending on when the

event �d0 occured, the tray may be shifted onto the next belt. Because the front end of the

down stream belt was free of trays, no collision of trays occurs.

The optimization control objective requires additional work. The model used so far can

be used to satisfy the safety control objective but it may not be good for the optimization of

throughput. Optimal control theory requires another model. Let the belt not be partitioned

in a front end and a back end of equal lengths but in a front end of length lf . When a

tray arrives at a belt then the upstream environment is noti�ed that no new tray can be

accepted. When a tray leaves the shortened front end then the up stream environment is

noti�ed that the belt can accept trays again. How small can the length of the front end

be so as to satisfy the safety objective? This question requires a model in which the back

end can carry two or more trays. Although the total number of trays is bounded in this

13



case, the hybrid control system must keep track of a countable number of trays in general.

Hence another model is required. Such a model would also have to include the time delay

between the time of sending a message with event �up0 in belt i and the time of event �d0
in belt i� 1. Such an extended model is left for future work.

4.3 Control synthesis for a special class of systems

In this subsection a control synthesis approach is developed based on an extension of control

synthesis for discrete event systems.

It will be assumed in this subsection that the hybrid control system is time-invariant and

that there are no input events (�in = ;). The only possible events are environmental events

and events generated by the continuous dynamics.

Notation needs to be introduced. For q1; q2 2 Q and � 2 � de�ne the arrival set

A(q1; �; q2) =

�
xq2 2 Xq2 j

9t 2 T ; xq1 2 Xq1 ; such that

q2 = �(q1; xq1 ; �); xq2 = r(q1; q2; xq1 ; �)

�
; (13)

and denote by AR the set of all such arrival sets. The set A(q1; �; q2) consists of those

continuous states in Xq2 at which one arrives after a transition from the discrete state q1
with event �. For � 2 �cd, q 2 Q, and guard Gq2(�) denote the controllability set of this

guard by

Con(Gq2(�)) = Gq2(�) [

8<
:xq2 2 Xq2 j

9t0; t1 2 R+; t0 < t1;9u 2 U[t0; t1];

such that xq2(t0) = xq2 ; 8t 2 (t0; t1);

xq2(t) 2 Xq2 ; xq2(t1�) 2 Gq2(�)

9=
; :

(14)

In words, the controllability set consists of all states of the state space Xq2 that are either

in Gq2(�) or, if not, for which there exists an input trajectory that transfers the state of

the system to the set Gq2(�).

For q 2 Q and xq;0 2 Xq an initial state let the reachable set be de�ned as

Reachq(fxq;0g) = fxq;0g [

8<
:xq;1 2 Xqj

9t0; t1 2 R+; t0 < t1; 9u 2 U[t0; t1)

such that xq(t0) = xq;0;

8t 2 (t0; t1); xq(t) 2 Xq; xq(t1�) = xq;1

9=
; :

(15)

Consider then a discrete event system with as event set � = �env [ �cd. The restriction

will be imposed that the control objective can be formulated at the discrete event level

only. The extension to the control objective of unsafe sets of states at the continuous level

is under study.

Theorem 4.2 Consider a hybrid control system. Denote the discrete event system associ-

ated with the hybrid control system by G = (Q;�; �1; q0). Only �nite-string languages are

considered. Assume that control objectives of legal and acceptable behavior are given at the

discrete level, thus let L(A); L(E) � �� be languages with

L(A) � L(E) � L(G);
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where L(G) is the language generated by the discrete event G. Denote for q� 2 Q the set

of possible events generated by the continuous dynamics at this discrete state by

�cd(q
�) =

n
� 2 �cdj9 x�

q�
2 Xq� ; q

+ 2 Q; such that q+ = �1(q
�; x�

q�
; �)
o

a If there exist a non-empty language K � �� and a subset �cdc � �cd, called the set of

controllable continuous-dynamics events, such that:

1.

L(A) � K � L(E); (16)

2. K is pre�x-closed;

3.

K(�env [ �cduc) \ L(G) � K; (17)

where �cduc = �cd \ (�cdc)
c; this is a controllability condition, see [19];

4. the events of �cdc can be forced to occur in due time: for all q 2 Q, all �1 2 �cdc\

�cd(q) that occur at this discrete state, and all arrival sets AR(qi; �0; q) 2 AR

there holds

AR(qi; �0; q) � Con(Gq(�1)); (18)

in words, for all discrete states and for all controllable continuous-dynamics

events �1 2 �cdc that are possible at that state, and for all arrival sets

AR(qi; �0; q), it is possible to �nd a continuous input that steers the system from

any initial state in AR(qi; �0; q) to the guard Gq(�1) at which the timed-event

(t; �1) occurs;

5. the events of �cdc can be disabled during any time interval: for all q 2 Q,

all �1 2 �cdc \ �cd(q), all AR(qi; �0; q) 2 AR, and all t1 2 R+ there exists a

continuous input u 2 Uc such that for all initial states in AR(qi; �0; q) the state

trajectory is de�ned on [t0; t1] and for all t 2 [t0; t1], xq(t) =2 Gq(�1);

then there exists a hybrid controller such that the closed-loop system G=S at the dis-

crete level satis�es

L(A) � L(G=S) � L(E): (19)

b If there exists a non-empty hybrid controller such that the closed-loop system satis�es

(19) then the conditions 1, 2, and 3 of (a) hold. The Conditions 4 and 5 will not hold

in general at every discrete state, at every continuous state, and at every event.

Proof a. The Conditions 4 and 5 state that at any discrete state and for any initial

condition outside the guards of the continuous control system, the event � 2 �cdc(q) can be

made to occur or can be prevented from occuring. Therefore, this event can be enabled or

disabled in the sense of control of discrete event systems and hence �in[�cdc(q) is the set of
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controllable events and �env [�cduc(q) the set of uncontrollable events at the discrete state

q. The Conditions 1, 2, and 3 imply by the results of P. Ramadge and W.M. Wonham, see

[19], that there exists a supervisor such that (19) holds. This supervisor, in combination

with a controller at the continuous level, guaranteed to exist by the Conditions 4 and 5,

forms the hybrid controller.

b. The existence of a hybrid controller implies, by results for control of discrete event

systems, that there exists a language K � �� such that the Conditions 1, 2, and 3 hold

with �cdc � �cd. There are simple examples in which either Condition 4 or Condition 5

does not hold. This is a consequence of the fact that, because the hybrid control system as

de�ned in this paper has a �xed initial condition, the trajectories will never pass through

all initial conditions at every discrete state. 2

The result above does not say anything about the time behavior of the controlled system.

Thus the belt can be moved at extremely low speed. Therefore optimal control requires an

extended control synthesis and another model.

It is straigthforward to formulate a control design algorithm based on the previous the-

orem such that, if a controller exists, it will be computed.

Example 4.3 Consider the conveyor belt system. Note that �env = f�ar; �d0; �d1g and

�cd = f�mid; �depg. As mentioned in Example 4.1, the safety control objective implies that

in the states q7 and q8 the event �dep should not occur. The acceptable behavior control

objective implies that in the states q3; q4 the event �dep must occur and in the states q2; q6
the event �mid must occur.

The conditions of Theorem 4.2 will be veri�ed with �cdc = �cd. Condition 4. The

controllable continuous-dynamics events can be forced to occur. Note that the events of

�cdc = �cd can occur only in the discrete states q2; q3; q4; q6; q7; q8. The inclusion relation

of Condition 4 is satis�ed as follows from

A(q1; �ar; q2) � Con(Gq2(�mid)); A(q4; �dep; q2) � Con(Gq2(�mid));

A(q6; �d1; q2) � Con(Gq2(�mid)); A(q2; �mid; q3) � Con(Gq3(�dep));

A(q3; �ar; q4) � Con(Gq4(�dep)); A(q2; �d0; q6) � Con(Gq6(�mid));

and several more such relations for arrivals at the discrete states q5; q6; q7; q8. That the

inclusion relation holds in each of these cases can be proven by explicitly evaluating the

e�ect of moving the trays by applying an input to the motor.

Condition 5. The action to be taken to prevent the event �dep is to decelerate the belt

at maximal torque and to keep the belt at the zero speed level. This event can occur only

at the discrete states q3; q4; q7; q8. As argued in Subsection 4.2, it is not always possible to

prevent the event �dep from occuring. But, if it occurs then this is in a case in which the

front end of the down stream belt does not carry a tray.

It is possible to stop or to decelerate the belt at these discrete states for initial states of

the continuous system in the arrival sets:

A(q2; �mid; q3); A(q7; �d1; q3); A(q3; �ar; q4); A(q8; �d1; q4);

A(q6; �mid; q7); A(q3; �d0; q7); A(q7; �ar; q8); A(q4; �d0; q8);
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etc. The conditions 1, 2, and 3, of Theorem 4.2 are easily checked by inspection of the state

diagram. The conclusion obtained from the theorem is that there exists a hybrid controller

which meets the discrete level control objectives.

4.4 Reachability problems

Theorem 4.2 leads to a reachability problem for the continuous part of a hybrid control

system.

Problem 4.4 Consider a hybrid control system. Let q 2 Q be a discrete state, Xq;0 � Xq

be a set of possible initial conditions at this state, and Xq;f � Xq be a set of terminal

conditions.

a Determine whether

Xq;0 � Con(Xq;f ): (20)

In words, the inclusion holds if for every initial condition xq;0 2 Xq;0 there exists a

continuous input such that the continuous state xq is transferred from state xq;0 to a

state in the set Xq;f while the state trajectory never leaves the space Xq.

b Determine whether for every t0; t1 2 R+ there exists a continouous input u 2 Uc on

[t0; t1] such that the state trajectory will not enter the set Xq;f on the interval [t0; t1],

or

8q0 2 Q; xq(t0) = xq;0 =2 Xq;f ; xq(t) =2 Xq;f ; 8t 2 [t0; t1]: (21)

Below these problems are discussed for linear hybrid control systems. The reachability

problem for a class of hybrid system without inputs was treated in [5, 18].

Consider a discrete-time time-invariant linear hybrid control system at discrete state

q 2 Q represented by the equations

xq(t+ 1) = Aqxq(t) +Bqu(t); xq(t0) = x+q : (22)

Denote

Xk
q (fx

+

q g) =
n
x+q +RMk(Aq; Bq)v 2 Xq � Rnq j8v 2 Uk

o
;

the set of states reachable at time k � t0;

Reachkq (fx
+

q g) = [t0�r�kX
r
q (fx

+

q g);

X�k
q (fxfq g) =

n
xfq �RMk(Aq; Bq)v 2 Xq � Rnq j8v 2 Uk

o
;

the set of states controllable at time t0 � k < t0;

Conkq(fx
f
q g) = [k�r�t0X

�r
q (fxfq g);

RMk(Aq; Bq) =
�
Bq AqBq : : : Ak�1

q Bq

�
2 Rnq�km:

If U = Rm and k � n, then

Xk
q (fx

+

q g) =
�
x+q +RMn(Aq; Bq)v 2 Xq � Rnq j8v 2 Un

	
:
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This reduction does not hold if U � Rm is an arbitrary polyhedral set.

In the discrete-time case it is possible to propagate the set of states reachable at time

t � t0, X
t
q(fx

+

q g), in time. The reachability condition

Xq;f � Reachtq(fx
+

q g); (23)

can then be checked for each time moment. From the formulas above it may be deduced

that if U is a polyhedral set then Xt
q(fx

+

q g) is at any time t a polyhedral set but that the

number of vertices that spans the set in general grows with time. The long run behavior

of this set can exhibit chaotic dynamics, see [14]. The controllability condition is checked

analogously. Note that the compliment of a polyhedral set is a �nite union of polyhedra.

In continuous time the approach of checking (23) for every t cannot be followed and one

must compute the reachable set Reachtq(fx
+

q g) for large values of t 2 T . Even if the hybrid

control system is linear then the reachable set will in general not be polyhedral. Because

a hybrid control system is used as a model for computer control of engineering systems

and computers use an internal clock, one can restrict attention to the class of piece-wise

constant inputs with regular switching times. After a reduction one is then in the discrete

time case covered above.

As proven in [21], if the reachable set contains the goal set then one can construct a control

law gq : Xq ! U such that the required input trajectory is generated by u(t) = g(xq(t)).

The use of a control law is preferred over the open-loop approach in which only the input

as a time function is supplied to the system.

What is of interest to control of hybrid systems is the determination of the types of

reachable sets that admit computations. Consider a continuous-time hybrid control system.

Let at time t0 2 T the initial discrete state be q0 and the set of continuous initial states be

Xq0;0 � Xq0 . One can then in principle compute the set of states that can be reached at

any time, to be denoted by X(t). Because of the way a hybrid control system is de�ned, the

set of states at time t may consist of several pieces, each piece at a di�erent discrete state

to be denoted by Xq(t) � Xq. The state set at time t is thus represented by the Cartesian

productY
q2Q

Xq(t) �
Y
q2Q

Xq = Prod(X): (24)

The dynamics of the state set of a hybrid control system may be described byY
q2Q

Xq(t+ 1) = F (t;
Y
q2Q

Xq(t); U(t));

F : T � Pwr(Prod(X) � U)! Pwr(Prod(X)):

Let

PL(Prod(X)) =

8<
:
Y
q2Q

Aq �
Y

Xq j Aq � Xq is PL set

9=
; :

If then follows from the de�nition of a linear hybrid control system that

F (t; :) : PL(Prod(X)) � PL(U)! PL(Prod(X)):
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This invariance property is what makes the class of linear hybrid control systems interesting.

Another class of geometrical �gures that is of interest is that of the rectangles. Denote

Rec(Prod(X)) =

8<
:
Y
q2Q

nqY
i=1

[uq;i; vq;i] � Prod(X)juq;i � vq;i

9=
; :

In [18] a class of linear hybrid control systems is considered in which the initial state set

is rectangular and the matrices Aq for all q 2 Q and the matrix Ad are diagonal. For this

particular class of hybrid systems it may be proven that

F (t; :) : Rec(Prod(X)) �Rec(U)! Rec(Prod(X)):

Conclusions for this subsection follow. A problem in control of hybrid systems is to

characterize the reachable set at any time, the set of states that can be reached on or

before the time speci�ed. In full generality this problem in intractable. If the initial state

set and the input space are polyhedral sets or PL-sets, then the set of states reachable at

any time is a PL-set. However, the complexity of the set grows with time. Does there

exist a class of discrete-time hybrid control systems for which the complexity of the set of

states reachable at any time remains �nite in some sense? So far only the class of systems

with rectangular sets has been explored, see [18]. It is not clear whether there exist other

classes with the �nite complexity property for which interesting control problems can be

solved. An alternative approach, which has been used in the conveyor belt system, is to

solve explicitly for the state function and to check the controllability or the reachability

conditions by inspection. More research is required here.

5 Concluding remarks

The study of control problems of hybrid systems is motivated by computer control of

engineering systems. As a running example has been used the control of a transportation

system consisting of several conveyor belts.

The concept of hybrid control system has been de�ned. It is based on the product of an

input-output automaton and a family of continuous control systems. The realization prob-

lem for hybrid control systems has been formulated and several questions of this problem

discussed.

A control synthesis approach for a class of hybrid systems has been described. It is based

on supervisory control of discrete event systems. A su�cient condition for the existence

of a controller has been formulated. The reachability problem for a class of hybrid control

systems has been discussed.

What is needed in regard to modeling and control of hybrid control systems? It is clear

that the control and computation requirements for control synthesis impose conditions on

the subclass of hybrid control systems for which interesting results can be derived. A

re�nement of the classes considered in this paper is necessary for the development of useful

theory. Questions of computation should receive more attention in this regard, see the

article [11] and for the theory of computation the book [20]. Control problems with time

constraints require attention, such problems arise in applications.
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