
Coordination Control of Discrete-Event Systems

Jan Komenda Jan H. van Schuppen
Institute of Mathematics, Czech Academy of Sciences,

Brno Branch, Zizkova 22, 616 62 Brno, Czech Republic
komenda@ipm.cz

CWI, P.O. Box 94079,
1090 GB Amsterdam, The Netherlands

J.H.van.Schuppen@cwi.nl

Abstract— The concept of a coordinator is proposed for
control of modular discrete-event systems. The coordinator
makes all subsystems conditionally independent generators as
defined in the paper. The coordinator receives part of the partial
observations of the subsystems and its task is to satisfy the
global part of the specification and of the nonblockingness.
The complete supervisor then consists of the coordinator,
its supervisor, and the local supervisors for the subsystems.
An example of control of a distributed discrete-event system
shows that a coordinator is necessary for achieving safety and
nonblockingness.

I. INTRODUCTION

The purpose of this paper is to present the coordination
control approach for control of decentralized and modular
discrete-event systems. Because of the complexity of control
problems and because of the way large engineering systems
are constructed, there is an increasing interest in control of
decentralized and modular systems.

Our previous results in modular control of DES rely
on necessary and sufficient conditions for local control
synthesis to equal global control synthesis for both local
and global specifications and for both complete and partial
observations. Interestingly, we have shown recently in [7]
that the structural conditions used for global specifications
are equivalent to those used for local specification. However
if these conditions are not satisfied, either the system must
be modified to meet them or a hierarchical approach (as
the one that was proposed in [11]) should be adopted such
that the abstracted system meets these structural conditions.
Moreover blocking issues have not been considered in our
earlier approach.

Therefore we have developed an approach based on co-
ordination to handle the blocking issues. Coordination of
discrete-event systems was discussed earlier by Kai C. Wong
and W. Murray Wonham in [14]. A similar approach to ours
has also been proposed in [4], where the authors have shown
that if all projections from local alphabets that abstract away
events which are not included in the coordinator sets are
observers of the local systems then there always exists a
coordinator which makes the composed system nonblocking.
The main difference is that our method provides both suf-
ficient and necessary conditions on the coordinator to make
the composed system nonblocking.

The research was supported by Grant Agency of Acad. of Sci. of Czech
Republic and Acad. of Sci. of Czech Republic, Inst. Research Plan No.
AV0Z10190503.

Coordination control is based on the concept of conditional
independence of σ -algebras which is used in probability
theory. The coordinator generator makes two or more gener-
ators conditionally independent if the joint action of two or
more generators is always accompanied by a transition of the
coordinator. Conditional independence can also be defined
for automata languages. A coordinator always exists so the
search is for the smallest possible coordinator. The novelty
of the paper is in the concept of a coordinator for safety
and for nonblockingness based on the concept of conditional
independence. The approach is inspired by the work of K.C.
Wong, W.M. Wonham, and coworkers on modular control, by
research of the authors of this paper on modular control, and
by publications of K. Schmidt and T. Moor on a hierarchical
approach to control, see [12].

A description of the contents follows. The next sec-
tion presents a problem formulation and motivation of the
problem. In Section III the basic concepts of the paper:
conditional independence of languages and of generators is
introduced. In Section IV these concepts are studied and
related to each other. Section V shows how nonblocking can
be achieved by composing the modular plant with a suitable
coordinator. In Section VI safety is studied. The control
synthesis of the coordinator with supervisors is discussed
in Section VI. The proofs are included in the appendix.

II. PROBLEM FORMULATION

The motivation for coordination control is decentralized
and modular control of discrete-event systems (DES). Con-
sider a modular DES. It is well known, see the lecture
notes of W.M. Wonham, [15], that a supervisor for the
modular system for which a controller has been synthesized
using modular control, may be blocking. Example 5.5 in
Section V establishes that there does not exist a set of local
supervisors which is nonblocking unless the observations of
both models are sent to a global coordinator who can then
prevent blocking by disabling particular events. Thus the
nonblocking property of modular control cannot always be
achieved modularly and nonblockingness requires a coordi-
nator at the global level. See for modular control of DES [8]
and [2].

The main problem for both decentralized control and
modular control is the construction of a coordinator. A
coordinator always exists, a supervisor for the global plant
will be a coordinator. The difficult part of the problem is to

Proceedings of the 9th International
Workshop on Discrete Event Systems
Göteborg, Sweden, May 28-30, 2008

WeM1.2

978-1-4244-2593-8/08/$25.00 ©2008 IEEE 9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301643395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

construct a minimal coordinator which is least restrictive in
regard to the local subsystems.

Terminology and Notation

The terminology of DES is more or less according to the
lecture notes of W.M. Wonham [15] and the book [1] but
the notation of this paper differs slightly. A (deterministic)
generator

G = (Q,E, f ,q0,Qm), (1)

is a mathematical structure with state set Q, an event set E,
a partial transition function f : Q×E → Q, an initial state
q0 ∈ Q, and a subset of marked states Qm ⊆ Q. A transition
is also denoted as q e7→ q+ = f (q,e). If a transition is defined
then this is denoted by f (q,e)! Extend the transition function
f to f : Q×E∗ → Q by induction. Define respectively the
language and the marked language of the generator as,

L(G) = {s ∈ E∗| f (q0,s)!}, (2)
Lm(G) = {s ∈ L(G)| f (q0,s) ∈ Qm}. (3)

A controlled generator is a structure (G,Ec,Γc), where G
is a generator, Ec ⊆ E is the subset of controllable events,
Euc = E\Ec is the subset of uncontrollable events, and Γc =
{γ ⊆ E|Euc ⊆ γ}, is called the set of control patterns. A
supervisor for the controlled generator is map g : L(G) →
Γc. The closed-loop system associated with a controlled
generator and a supervisor as denoted above is defined as
the smallest language L(S/G)⊆ E∗ and the marked language
Lm(S/G)⊆ L(S/G) which satisfy respectively,

(1) ε ∈ L(S/G),
(2) if s ∈ L(S/G), se ∈ L(G) and if e ∈ g(s)

then se ∈ L(S/G).
Lm(S/G) = L(S/G)∩Lm(G).

Recall that the natural projection P : E∗→ E∗o is a morphism
of monoids such that P(ε) = ε and P erases the events that
are not in Eo ⊆ E. A supervisor with partial observations is
a map g : P(L(G))→ Γc.

It is important to distinguish for a generator between an
event set and its associated reachable event set. Note that
there may exist events of the event set which do not appear
in any transition. Moreover, even if an event is used for a
transition then that transition may not be reachable. This
applies in particular to the case of the synchronous product
of two generators.

Definition 2.1: Consider a generator G denoted as above.
Define the subset of reachable events, denoted by Er(G)⊆E,
if for any event e ∈ Er(G) there exists a string s ∈ E∗

containing the event e for which the function f (q0,s) is
defined. Similarly, define for any language L⊆ E∗ the subset
of reachable events Er(L)⊆ E of the language as the subset
of events which occur in the strings of the language.
Note the abuse of notation in Er(G) and Er(L). The com-
plexity of computing the event set Er(G) is O(n(G)×mE(G))
where n(G) denotes the number of states and mE(G) denotes
the number of events of the generator G.

Definition 2.2: Consider two event sets E1 and E2 and two
languages L1 ⊆ E∗1 and L2 ⊆ E∗2 . The synchronous product
of the languages L1 and L2 is defined as

L1‖L2 = P−1
1 (L1)∩P−1

2 (L2).

where Pi : (E1 ∪E2)∗ → E∗i for i = 1,2. Their synchronous
product is called the shuffle product if

/0 = Er,sh = Er(L1‖L2)∩E1∩E2, (4)
and then one writes

shuffle(L1,L2) = L1‖L2 = P−1
1 (L1)∩P−1

2 (L2). (5)
The subset of reachable shared events Er,sh can be empty
while E1 ∩ E2 is not as a simple example shows. The
corresponding synchronous product of generators [15] is
known to satisfy

L(G1‖G2) = L(G1)||L(G2), (6)
Lm(G1‖G2) = Lm(G1)||Lm(G2). (7)

A distributed discrete-event system is a modular or a
concurrent system with the global plant formed by the
synchronous product of local subsystems.

Definition 2.3: A modular discrete-event system with two
modules is a structure (G1,G2,E1,c,Γ1,c,E2,c,Γ2,c) consisting
of two modules in the form of controlled generators. The as-
sociated global system is their synchronous product G1‖G2.
Denote the natural projections by

P1 : (E1∪E2)∗→ E∗1 , P2 : (E1∪E2)∗→ E∗2 .
Throughout the paper the special case of two modules is
considered in order to simplify the exposition. A coordinator
of a modular system will be illustrated in Example 5.5.

III. CONCEPTS

In this section the concept of conditionally independent
generators and related notions are defined.

Conditional independence of σ -algebras is a concept of
probability theory which has been used to put the concept of
state of a stochastic system on a fundamental basis, see [9]
and the references quoted there. A corresponding notion is
useful in automata theory as well. This section presents the
concepts, coordination control theory with these concepts is
presented in the following sections.

Denote E = E1 ∪E2 and Ek ⊆ E a coordinator alphabet.
The following natural projections are needed: P1∪k : E∗ →
(E1 ∪Ek)∗, P1∪k

1 : (E1 ∪Ek)∗ → E∗1 , and the corresponding
inverse projection (P1∪k

1)−1 : Pwr(E∗1)→ Pwr(E1∪Ec)∗. Sim-
ilarly, P2∪k : E∗ → (E2 ∪Ek)∗, P2∪k

2 : (E2 ∪Ek)∗ → E∗2 , and
(P2∪k

2)−1 : Pwr(E∗2)→ Pwr(E2∪Ek)∗ are defined. Symmetri-
cally, let Pi∪k

k : (Ei∪Ek)∗→ E∗k , i = 1,2. Also, let Pi\k : E∗→
(Ei\Ek)∗, i = 1,2. The notation Pi

i∩k : E∗i → (Ei∩Ek)∗, i = 1,2
is now self-explanatory.

Definition 3.1: Consider three generators,

Gk = (Qk,Ek, fk,qk,0,Qk,m), (8)
G1 = (Q1,E1, f1,q1,0,Q1,m), (9)
G2 = (Q2,E2, f2,q2,0,Q2,m). (10)

10

Call G1,G2 conditionally independent generators given Gk
if for any reachable state in the synchronous product
(qk,q1,q2) ∈ Gk‖G1‖G2, there does not exist a transition of
the form,

(qk,q1,q2) 7→ (qk,q+
1 ,q+

2), (11)

and a 6∈ Ek
Note that conditional independence means that there is no
simultaneous move in both G1 and G2 without the coordina-
tor being also involved. The concept is easily extended to the
case of three or more generators. The corresponding concept
in terms of languages follows.

Definition 3.2: Consider event sets E1, E2, Ek and lan-
guages L1 ⊆ E∗1 , L2 ⊆ E∗2 , and Lk ⊆ E∗k . The languages
L1, L2 are said to be conditionally independent given Lk
if Er(L1‖L2)∩E1∩E2 ⊆ Ek.
Notation. (L1,L2|Lk)∈CIL denotes that the languages L1,L2
are conditionally independent given Lk.
Other related concepts are defined below.

Definition 3.3: Consider the events sets E1, E2 and Ek
and the languages L1 ⊆ E∗1 , L2 ⊆ E∗2 , Lk ⊆ E∗k , and K ⊆ E∗.
Assume that Er(L1‖L2)∩E1∩E2 ⊆ Ek ⊆ E1∪E2 = E. Define
the conditions:
(a) The triple of languages (L1,L2,Lk) is called condition-

ally shuffle closed if

t ∈ L1‖L2‖Lk, with decomposition,
t = s1tc1 . . .sktcksk+1,

s1, . . .sk+1 ∈ [(E1\Ek)∪ (E2\Ek)]∗,
tc,1, . . . , tc,k ∈ E∗k

PS(si) ∈ shuffle(P1\k(si),P2\k(si)), ∀i = 1, . . . ,k +1,

t̄ ∈ PS(s1)tc1 . . .PS(sk)tc,kPS(sk+1)
⇒ t̄ ∈ L1‖L2‖Lk.

(b) The triple of languages (L1,L2,Lk) is called condition-
ally projection-closed if for all t, t ∈ E∗, t ∈ L1‖L2‖Lk,
Pk(t) = Pk(t), P1∪k(t) = P1∪k(t), and P2∪k(t) = P2∪k(t)
imply that t ∈ L1‖L2‖Lk.

(c) The language K is called conditionally decomposable
with respect to the event sets (E1,E2,Ek) if

K = P1∪k(K)‖P2∪k(K)‖Pk(K).
The term conditionally decomposable is used, because

the projections Pi∪k : E∗ → E∗i∪k are involved. It should
be clear that conditional decomposability is weaker than
decomposability with respect to P1 : E∗→ E∗1 , P2 : E∗→ E∗2 ,
and Pk : E∗→ E∗k as defined in the literature on decentralized
control. This is because Ei ⊆ Ei∪Ek implies that P−1

i Pi(K)⊆
P−1

i∪kPi∪k(K). Also note that in case Ek = E = E1∪E2 condi-
tional decomposability is trivially satisfied.

IV. EQUIVALENT CONDITIONS FOR CONDITIONAL
INDEPENDENCE

The concepts of conditional indepence and conditional
decomposability are closely related. First of all we notice
from the very definitions that the following Proposition
holds.

Proposition 4.1: Consider the generators of Definition
3.1. The following statements are equivalent:
(a) G1 and G2 are conditionally independent given Gk.
(b) The languages (L(G1),L(G2)|L(Gk)) ∈ CIL are condi-

tionally independent.
(c) Er(G1‖G2)∩E1∩E2 ⊆ Ek.

Theorem 4.2: Consider the events sets E1, E2 and Ek and
the languages L1 ⊆ E∗1 , L2 ⊆ E∗2 , and Lk ⊆ E∗k .
(a) If the languages L1,L2 are conditionally independent

given Lk then the triple (L1,L2,Lk) is conditionally
shuffle closed.

(b) Assume that the languages L1,L2 are conditionally
independent given Lk. Then the following statements
are equivalent:

(b.1) The triple (L1,L2,Lk) is conditionally shuffle
closed.

(b.2) The triple (L1,L2,Lk) is conditionally projection
closed.

(b.3) The language L1‖L2‖Lk is conditionally decompos-
able.

The technical results below will be needed in the remaining
sections.

Lemma 4.3: [3, Proposition 4.3] Let E1 ∩ E2 ⊆ Ek and
Li ⊆ E∗i , i = 1,2. Then Pk(L1‖L2) = P1

1∩k(L1)‖P2
2∩k(L2).

Let us note that the condition E1 ∩ E2 ⊆ Ek in the above
lemma can be weakened to our condition Er(G1‖G2)∩E1∩
E2 ⊆ Ek: some of the events from E1∩E2 might actually not
be reachable in G1‖G2 and these need not be included in Ek
for the lemma to hold true.

Lemma 4.4: Let Li ⊆ E∗i , i = 1,2,k and Er(G1‖G2)∩E1∩
E2 ⊆ Er(Gk). Then
(1) Pk(L1‖L2‖Lk)⊆ Lk
(2) P1∪k(L1‖L2‖Lk)⊆ L1‖Lk
(3) P2∪k(L1‖L2‖Lk)⊆ L2‖Lk

V. COORDINATOR FOR NONBLOCKINGNESS

In this section the nonblockingness of the complete system
is studied. The complete system consists of the coordinator in
parallel composition with the two modules. In the following
definition the equivalent condition of nonblockingness is
stated. Consider again two generators and their coordinator,

G1 = (Q1,E1, f1,q1,0,Q1,m), (12)
G2 = (Q2,E2, f2,q2,0,Q2,m), (13)
Gk = (Qk,Ek, fk,qk,0,Qk,m). (14)

Definition 5.1: We say that G = G1‖G2 is conditional
nonblocking given the coordinator automaton Gk if
(1) ∀s ∈ L̄m(G1)‖L̄m(G2)‖L̄m(Gk) ∃tk ∈ E∗k :Pk(s)tk ∈

Lm(Gk) and
(2) (i) conditional nonblockingness of G1‖Gk holds, i.e.

∃v ∈ (E1 ∪Ek)∗ such that P1(s)P1∪k
1 (v) ∈ Lm(G1) and

P1∪k
k (v) = tk and

(ii) conditional nonblockingness of G2‖Gk holds, i.e.
∃w ∈ (E2 ∪Ek)∗ such that P2(s)P2∪k

2 (w) ∈ Lm(G2) and
P2∪k

k (w) = tk.

11

The conditional nonblockingness represents a good com-
promise between existence of local prolongations to local
marked states (i.e. local nonblocking) and the existence of
global prolongations to marked states (i.e. global nonblock-
ing). It is well known that local nonblocking is not enough to
ensure the global nonblocking. Therefore a coordinator layer
is added to the modular system such that the coordinator
together with the first subsystem as well as coordinator
with the second subsystem are nonblocking in the sense of
the definition 5.1. The following theorem then states that
the conditional nonblockingness defined above is not only
sufficient, but also necessary for the nonblockingness of the
composed system Gk‖G1‖G2.

Theorem 5.2: Consider the setting of Definition 5.1. As-
sume that the coordinator Gk makes G1 and G2 condition-
ally independent, i.e. G1,G2 are conditionally independent
generators given Gk in the sense of Definition 3.1. The
composed system G1‖G2‖Gk is nonblocking if and only if
G is conditional nonblocking given Gk.

In the last theorem the nonblocking coordinator, which
makes the resulting system nonblocking, is characterized
using the conditions (2) (i) and (ii) of Def. 5.1. The first
question is whether this characterization (in terms of strings)
can be verified. Next a procedure will be given (with
immediate automata interpretation), which checks whether
conditions (1) and (2): (i) and (ii) above are satisfied. The key
steps will be computations of coreachable sets and projected
generators (automata) which can be computed using a stan-
dard subset construction. Let us recall that inverse projections
of automata are obtained for free, just by adding selfloops
of events not observable with respect to the corresponding
projection.

We show that the candidate sets for the strings tk, v, and
w obeying the properties (i) and (ii) can be found in the
following way. For any s∈ Lm(G1)‖Lm(G2)‖Lm(Gk) we have
Pi(s) ∈ Lm(Gi), i = 1,2 and Pk(s) ∈ Lm(Gk). We look for
extensions of Pi(s) i = 1,2,k within Lm(Gi), i = 1,2,k, i.e.

Si(s) := {ti ∈ E∗i : Pi(s)ti ∈ Lm(Gi))}.

These languages can be easily computed using coreachable
sets in their corresponding automata: CoReachset(Qi,m,E∗i)
and intersecting them with the quotient language of Gi by
Pi(s), i = 1,2,k represented by states in the automata Gi after
the strings Pi(s)∈ E∗i , i = 1,2,k have been generated. Hence,
Si(s), i = 1,2,k are fairly easily computable.

Now, the candidates for the strings tk, v, and w of Defini-
tion 5.1 can be found in terms of Si(s), i = 1,2 and suitable
projections and inverse projections. Hence, we consider the
intersection P−1

1∪k(S1)∩P−1
2∪k(S2), which can be implemented

by the standard automata composition. The following simple
fact is needed.

Property 5.3: For languages Li ⊆ E∗, i = 1,2 and natural
projection Pk : E∗ → E∗o with Eo ⊆ E we have s ∈ P(L1)∩
L2 6= /0 ⇒ P−1(s)⊆ L1∩P−1(L2) 6= /0.

Proof: Let s ∈ P(L1)∩L2 6= /0. Then s ∈ L2 and there
exists t ∈ L1 such that s = P(t). Hence, t = P−1(s)⊆P−1(L2),
i.e. t ∈ L1∩P−1(L2) 6= /0.

We obtain a computable criterion for checking the necessary
and sufficient condition of Theorem 5.2.

Proposition 5.4: G1‖G2 is conditional nonblocking given
the coordinator automaton Gk if and only if

∀ s ∈ Lm(G1)‖Lm(G2)‖Lm(Gk),
[P1∪k

k (P1∪k
1)−1(S1(s))∩Sk(s)]∩

∩[P2∪k
k (P2∪k

2)−1(S2(s))∩Sk(s)] 6= /0. (15)

It is important that the criterion of the Proposition 5.4 is
checkable, because Si(s), i = 1,2,k can be constructed using
coreachable sets and all projections, inverse projections and
intersections can be computed as has been pointed out above.

Let us now illustrate the above decribed procedure and
action of the coordinator on the example 5.5.

Example 5.5: Let us consider the following local plant
languages.

3
e- 4,m 3

e- 4,m

1
a1- 2

c 1 -

1
a2- 2

c 2 -

5
f-

d1-

6,m 5
f-

d2-

6,m

E1 = {a1,c1,d1,e, f}, E2 = {a2,c2,d2,e, f},
Ek = {e, f ,c1,c2,d1,d2} ⊇ E1∩E2 = {e, f},
G1‖G2, blocking.

We assume that the subset of marked states are Q1m = {4,6}
and Q2m = {4,6}, which are denoted by small m. It is
easily seen that the synchronous product of these local plants
involve blocking.

12

35,b

21
32

c2
-

d
2

-

33
e
-

44,m

11

a
1

-

22
c2

-

c
1

-
a2

-

23
d

1-

c
1

-53,b

12

a
1

-
a2

-

25

d
2

?
52

c2-

d1
-

53,b

35,b

c1
?

55

d
2

?
f-

d1
-

66,m

It can be easily seen that not all private events have to
be included into the coordinator (high level) event set Ek.
Indeed, a1 and a2 need not be included in Ek. The choice
Ek = E \{a1,a2} is optimal for the composed system. Indeed,
the following choice of Gk is optimal such that the composed
system G1‖G2‖Gk is nonblocking.

32
c2 - 33

e- 44,m

22
c2 -

c1
-

23

c1
-

25

d2
?

52

d1
-

55

d2
? f -

d1
-

66,m
Let us also illustrate on this example the presentation
of Proposition 5.4. Consider the string s = a1a2c1.
Then P1(s) = a1c1 and Pk(s) = c1. Furthermore,
Sk(s) = {t ∈ E∗k | c1t ∈ Lm(Gk)} = {c2e}, S1(s) = {t ∈
E∗1 | a1c1t ∈ Lm(G1)} = {e}. Hence, (P1∪k

1)−1(S1(s)) =
(c∗2d∗2)∗e(c∗2d∗2)∗ and P1∪k

k (P1∪k
1)−1(S1(s)) = {c2e}.

Similarly, P2(s) = a2, i.e. S2(s) = {t ∈ E∗2 | a2t ∈
Lm(G2)} = {c2e,d2 f} and P2∪k

k (P2∪k
2)−1(S2(s)) =

(c∗1d∗1)∗c2(c∗1d∗1)∗e(c∗1d∗1)∗ ∪ (c∗1d∗1)∗d2(c∗1d∗1)∗ f (c∗1d∗1)∗.
Therefore, P2∪k

k (P2∪k
2)−1(S2(s)) ∩ Sk(s) = {c2,e}. It is

sufficient to take tk = c2e and the corresponding strings v
and w satisfying (i) and (ii) of Definition 5.1, which are

v = c2e and w = c2e. The role of the coordinator is to allow
after the string s = a1a2c1, i.e. in the corresponding state
of G2, only the string c2, which can be then extended to
the marked string a1a2c1c2e, while disable string d2, which
leads to blocking.

The conclusion is then P1∪k
k (P1∪k

1)−1(S1(s)) ∩
P2∪k

k (P2∪k
2)−1(S2(s)) ∩ Sk(s) 6= /0. This can be shown

for any other strings s ∈ Lm(G1)‖Lm(G2)‖Lm(Gk), which
means by Proposition 5.4 and Theorem 5.2 that G = G1‖G2
is conditional nonblocking given Gk.

Yet another important problem is the construction of
the coordinator, i.e. how the coordinator can actually be
synthesized in an automated manner. First of all, such a
coordinator clearly exists.

Proposition 5.6: Consider a modular DES as in Definition
2.3. There exists a generator Gk, denoted as in Definition
3.1, such that G1,G2 are conditionally independent gener-
ators given Gk. In fact, Gk = trim(G1‖G2), i.e. the part of
the global system that is both reachable and coreachable,
certainly works as a coordinator for nonblockingness.
The results of [3] are helpful. The question is whether/how
our condition is related to the observer property from [13].
In particular, whether there is a sufficient condition for
modular nonblockingness in terms of the observer properties
of suitable projections. Let us recall first the definition of an
observer.

Definition 5.7: For a language L⊆ E∗, the natural projec-
tion P : L→ P(L)⊆ E∗o is said to be an L-observer if for any
t ∈ P(L) and any s ∈ L̄ such that P(s)≤ t there exists u ∈ E∗

with the properties su ∈ L and t = P(su).
This means that for any abstracted extension within the
abstracted system’s language there must exist a compatible
extension within the language of the ”original” system,
whence the idea to adapt the observer property used in
hierarchical systems for use in modular and distributed
systems. If Pi

i∩c is a Li-observer for i = 1,2 then we know
from [3, Proposition 4.10] that there always exist a coor-
dinator. Namely, Gk := Pi

i∩c(L1)‖Pi
i∩c(L2) is a good choice

of coordinator for nonblockingness of the composed system
G1‖G2‖Gk.

Since the above condition is not necessary (unlike our
characterizations (i) and (ii)), it follows that our conditions
are weaker. On the other hand if Pi

i∩k are Li-observers for
i = 1,2 then our conditions as necessary and sufficient for
nonblocking must be satisfied.

VI. VERIFICATION FOR SAFETY

The purpose of this subsection is to present a condition for
safety of concurrent discrete-event systems. We are interested
in safety of modular systems composed with the coordinator.
It will be assumed that a closed-loop system is specified
both for the coordinator and for the remaining parts of
the subsystems after the coordinator is imposed. Control
synthesis of the coordinator and the supervisors will be
discussed in section VII.

An equivalent condition for verification of safety is con-
ditional safety defined below as safety of the coordinator

13

and safety of each local subsystem when combined with the
coordinator.

Problem 6.1: Consider two generators G1, G2, and a co-
ordinator Gk, which makes G1 and G2 conditionally indepen-
dent. Consider a specification language K ⊆ E∗. Assume that
the language K is conditionally decomposable with respect
to the reachable event sets (Ek,E1,E2). Determine sufficient
or equivalent conditions such that
Lm(G1)‖Lm(G2)‖Lm(Gk)⊆ K.

We have first the following result.
Proposition 6.2: Let K ⊆ E∗ be conditionally decompos-

able with respect to the reachable event sets (Ek,E1,E2) and
let there exist a coordinator Gk over E∗k such that

(i) Lm(Gk)⊆ Pk(K)
(ii) Lm(G1)‖Lm(Gk)⊆ P1∪k(K)

(iii) Lm(G2)‖Lm(Gk)⊆ P2∪k(K)

Then Lm(G1)‖Lm(G2)‖Lm(Gk)⊆ K.
Now we give weaker (string based) necessary and sufficient
conditions for safety similar to conditions used for nonblock-
ingness.

Definition 6.3: Consider the setting of Problem 6.1. The
system and the specification language K ⊆ E∗ are said to be
conditionally safe with respect to the reachable event sets
(Ek,E1,E2) if

(1) Lm(Gk)⊆ Pk(K)
(2) ∀tk ∈ Lm(Gk):

v∈ Lm(G1)‖Lm(Gk), P1∪k
k (v) = tk, w∈ Lm(G2)‖Lm(Gk),

P2∪k
k (w) = tk ⇒ v ∈ P1∪k(K) and w ∈ P2∪k(K).

Note that conditional safety is weaker than (i)-(iii) of
Proposition 6.2. Indeed, while (i) and (1) are the same,
(2) of Definition 6.3 is weaker than (ii) and (iii) of
Proposition 6.2. This is because the assumptions of
the implication are stronger than in the implications
corresponding to (ii) and (iii) of Proposition 6.2, i.e.
v ∈ Lm(G1)‖Lm(Gk) ⇒ v ∈ P1∪k(K) and idem for (iii)
separately. Note that (2) is equivalent to the following
inclusions:
2(i) Lm(G1)‖Lm(Gk)∩ (P1∪k

k)−1P2∪k
k (Lm(G2)‖Lm(Gk))⊆ P1∪k(K)

2(ii) Lm(G2)‖Lm(Gk) ∩ (P2∪k
k)−1P1∪k

k (Lm(G1)‖Lm(Gk)) ⊆
P2∪k(K).
The main result of this section is now formulated below.

Theorem 6.4: Consider Problem 6.1. If the system
and the specification language be conditionally
safe with respect to the reachable event sets
(Ek,E1,E2) then Lm(G1)‖Lm(G2)‖Lm(Gk) ⊆ K.
Conversely, if Lm(G1)‖Lm(G2)‖Lm(Gk) ⊆ K and
Lm(Gk) ⊆ Pk(Lm(G1)‖Lm(G2)), then the specification
language are conditionally safe with respect to the reachable
event sets (Ek,E1,E2).
Let us remark that Lm(Gk) ⊆ Pk(Lm(G1)‖Lm(G2)) is often
satisfied in coordination control, because coordinators for
safety as well as coordinators for nonblockingness typically
do not add additional behavior to the composed systems, i.e.
Lm(Gk) is included in the projected behavior.

VII. CONTROL SYNTHESIS

In this section the overall control synthesis is presented.
Using the coordination scheme, first a supervisor for coordi-
nator is synthesized that takes care of the part Pk(K) of the
specification K. Then Si, i = 1,2 are synthesized such that
the remaining part of the specification, i.e. Pi∪k(K) are met
by the new plant languages Gi‖(Sk/Gk). Let Eu ⊆ E be the
set of uncontrollable events and Ei,u = Eu∩Ei, i = 1,2,k the
corresponding sets of local uncontrollable events.

Problem 7.1: Consider generators G1, G2, Gk and a
specification language K ⊆ (E1∪E2∪Ek)∗. Assume that the
coordinator Gk makes the two generators G1, G2 condition-
ally independent and that the language K is conditionally
decomposable.

Determine supervisors S1, S2, Sk for the respective gen-
erators such that the closed-loop system with Sk/Gk as
coordinator for S1/G1 and S2/G2 is such that

L(S1/[G1‖(Sk/Gk)])‖L(S2/[G2‖(Sk/Gk)])‖L(Sk/Gk) = K (16)
Definition 7.2: Consider the setting of Problem 7.1 Call

the specification language K ⊂ E∗ conditionally control-
lable for generators (G1,G2,Gk) and for the event subsets
(E1,u,E2,u,Ek,u) if

1) The language Pk(K)⊆ E∗k is controllable with respect
to Gk and Ek,u; equivalently,

Pk(K)Ek,u∩L(Gk)⊆ Pk(K). (17)

Then there then exists a nonblocking supervisor Sk for
Gk such that L(Sk/Gk) = Pk(K). The supervisor Sk is
used in the remaining part of the definition.

2) The language P1∪k(K)⊆ (E1∪Ek)∗ is controllable with
respect to L(G1‖(Sk/Gk)) and E1+k,u = Eu∩(E1∪Ek);
equivalently,

P1∪k(K)E1+k,u∩L(G1‖(Sk/Gk))⊆ P1∪k(K)

3) The language P2∪k(K)⊆ (E2∪Ek)∗ is controllable with
respect to L(G2‖(Sk/Gk)) and E2+k,u = Eu∩(E2∪Ek);
equivalently,

P2∪k(K)E2+k,u∩L(G2‖(Sk/Gk))⊆ P2∪k(K)
The conditions of Definition 7.2 can be checked by

algorithms as is directly clear from the computational com-
plexity of controllability in the case of only one subsys-
tem. The computational complexity of checking conditional
controllability is much less than that of the global system,
L(G1)‖L(G2)‖L(Gk). This is because instead of checking
the controllability with global specification and system we
check it only on the corresponding projections to Ek ∪E1
and Ek ∪E2. The projections are smaller when they satisfy
the observer property.

Theorem 7.3: Consider Problem 7.1 of control for safety.
There exists a set of supervisors (Sk, S1, S2) such that

L(S1/[G1‖(Sk/GC)])‖L(S2/[G2‖(Sk/GC)])‖L(Sk/Gk)) = K, (18)

if the specification language K is conditionally controllable
with respect to (G1,G2,Gk) and (E1,u,E2,u,Ek,u).
At the time of submission of this paper, there is no result
yet on the necessity condition of the safety.

14

The interest in Theorem 7.3 is in the computational saving
of the computation of the supervisor, the distributed way
of constructing successively the supervisors Sk, S1, and S2
is much less complex than that of the global supervisor
constructed for the system G1‖G2‖Gk.

VIII. CONCLUDING REMARKS
The concepts of conditional independence of a tuple of

generators given a third generator and that of a coordinator
for modular discrete-event system have been introduced.
It was established that using a coordinator for safety and
for nonblockingness in a modular system the composite
global supervisor satisfies the safety and the nonblockingness
conditions. A construction of the overall supervisor for safety
was proposed. More work on coordination control is needed:
construction of minimal coordinators should be investigated.

REFERENCES

[1] C. Cassandras and S. Lafortune, Introduction to discrete event systems.
Boston: Kluwer Academic Publishers, 1999.

[2] B. Gaudin and H. Marchand, “Supervisory control of concurrent
discrete event systems,” IRISA, Rennes, Report Publication interne
No. 1593, 2004.

[3] L. Feng, “Computationally efficient supervisory control design for
discrete-event systems,” Ph.D. dissertation, University of Toronto,
Toronto, 2007.

[4] L. Feng and W. Wonham, “Computationally efficient supervisor de-
sign: Abstraction and modularity,” in Proc. 8th International Workshop
on Discrete Event Systems, S. Lafortune and F. Lin, Eds., IEEE. New
York: IEEE, 2006, pp. 3–8.

[5] J. Komenda and J. H. van Schuppen, “Supremal sublanguages of
general specification languages arising in modular control of discrete-
event systems,” in Proc. 44th IEEE Conference on Decision and
Control. New York: IEEE Press, 2005, pp. 2775–2780.

[6] J. Komenda, J. H. van Schuppen, B. Gaudin, and H. Marchand, “Mod-
ular supervisory control with general indecomposable specification
languages,” in Proc. 44th IEEE Conference on Decision and Control.
New York: IEEE Press, 2005, pp. 3474–3479.

[7] J. Komenda and J. H. van Schuppen, “Conditions structurelles dans le
contrôle modulaire des systèmes à événements discrets concurrents,” in
Proceedings Modélisation des Systèmes Ractifs (MSR) 2007, E. Niel
and J.-M. Miller, Eds., Ecole Normale Superior de Lyon. Paris:
Hermès (Lavoisier), 2007, pp. 53–70.

[8] J. Komenda and J. H. van Schuppen, “Control of discrete-event
systems with modular or distributed structure,” Theoretical Computer
Science, vol. 388, pp. 199–226, 2007.

[9] C. van Putten and J. van Schuppen, “Invariance properties of the
conditional independence relation,” Ann. Probab., vol. 13, pp. 934–
945, 1985.

[10] P. Ramadge and W. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optim., vol. 25, pp. 206–
230, 1987.

[11] K.Schmidt, B. Gaudin, and H. Marchand, “Modular and decentralized
supervisory control of concurrent discrete event systems using reduced
system models,” in Proc. Int. Workshop on Discrete-Event Systems
(WODES.2006). New York: IEEE, 2006, pp. 149–154.

[12] K. Schmidt, “Hierarchical control of decentralized discrete event
systems,” Ph.D. dissertation, Universiät Erlangen-Nürnberg, Erlangen,
2005.

[13] K. Wong, “On the complexity of projections of discrete-event sys-
tems,” in Proceedings International Workshop on Discrete-Event Sys-
tems (WODES’98). London: IEE, 1998, pp. 201–206.

[14] K. C. Wong and W. M. Wonham, “Modular control and coordination
of discrete-event systems,” Discrete Event Dynamics Systems, vol. 8,
pp. 247–297, 1998.

[15] W. Wonham, Lecture notes on control of discrete-event systems.
Toronto: University of Toronto, Department ECE, 2005.

APPENDIX

In this appendix proofs of Theorem 4.2 and Lemma 4.4
are stated.

Proof: of Theorem 4.2 (a) is a property known from
concurrency theory. Let L1,L2 be conditionally independent
given Lk, i.e. Er(L1‖L2)∩E1 ∩E2 ⊆ Ek. It is easy to show
that the triple (L1,L2,Lc) is conditionally shuffle closed.
We sketch the proof for k = 1. Let t = s1tc1 ∈ L1‖L2‖Lk
with s1 ∈ [(E1\c) ∪ (E2\c]∗ and tc1 ∈ E∗k . Then P1(t) =
P1(s1)P1(tc1) = P1\c(t)P1(tc1) ∈ L1, P1(t) = P1(s1)P1(tc1) =
P1\c(t)P1(tc1) ∈ L1, and Pk(t) = tc1 ∈ Lk. For any element t̄ ∈
shuffle(P1\c(s1),P2\c(s1))tc1 = P−1

1\cP1\c(s1) ∩ P−1
2\cP2\c(s1)tc1

we get P1(t̄) = P1\c(s1)P1(tc1)∈ L1. Similarly, P2(t̄)∈ L2, and
finally Pk(t̄) = t(c1)∈ Lk, hence t̄ ∈ L1‖L2‖Lk. The argument
can be extended by induction along the string t ∈ L1‖L2‖Lk.
(b) (b1) ⇒ (b2) Let the triple (L1,L2,Lk) is condition-
ally shuffle closed and let t, t̄ ∈ E∗ be such that Pk(t̄) =
Pk(t),P1∪k(t̄) = P1∪k(t), P2∪k(t̄) = P2∪k(t), and t̄ ∈ L1‖L2‖Lk.
Let t̄ have the following decomposition:

t̄ = s1tc1s2 . . .sktc,ksk+1

with tci ∈ E∗k , i = 1, . . . ,k and si ∈ [(E1 \ Ek) ∪
(E2 \ Ek)]∗. Then Pk(t) = Pk(t̄) = tc1 . . . tc,k. Also,
P1∪k(t) = P1∪k(t̄) = P1\c(s1)tc1 . . . tc,kP1\c(sk+1) and
P2∪k(t) = P2∪k(t̄) = P2\c(s1)tc1 . . . tc,kP2\c(sk+1).
It follows from the assumptions that t ∈
shuffle(P1\c(s1),P2\c(s1))tc1 . . . tc,kshuffle(P1\c(sk+1)P2\csk+1),
i.e. t ∈ L1‖L2‖Lk using conditional independence.
(b2) ⇔ (b3) is easy: (b2) can be directly rewritten
as P1∪k(L1‖L2‖Lk)‖P2∪k(L1‖L2‖Lk)‖Pk(L1‖L2‖Lk) ⊆
L1‖L2‖Lk, which is the nontrivial inclusion of the definition
of conditional decomposability (b3).
(b3)⇒ (b1) Let t, t̄ ∈ E∗ be such that

t̄ = s1tc1s2 . . .sktc,ksk+1 ∈ L1‖L2‖Lk

with tci ∈ E∗k , i = 1, . . . ,k and si ∈ [(E1 \
Ek) ∪ (E2 \ Ek)]∗ i = 1, . . . ,k + 1, and let t ∈
shuffle(P1\c(s1),P2\c(s1))tc1 . . . tc,kshuffle(P1\c(sk+1)P2\csk+1).
Then Pk(t̄) = Pk(t) = tc1 . . . tc,k, P1∪k(t̄) =
P1∪k(t), and P2∪k(t̄) = P2∪k(t), and t̄ ∈
L1‖L2‖Lk. Then t ∈ (P1∪k)−1P1∪k(L1‖L2‖Lk) ∩
(P2∪k)−1P2∪k(L1‖L2‖Lk) ∩ (Pk)−1Pk(L1‖L2‖Lk) =
P1∪k(L1‖L2‖Lk)‖P2∪k(L1‖L2‖Lk)‖Pk(L1‖L2‖Lk) =
L1‖L2‖Lk, hence t ∈ L1‖L2‖Lk and (b1) holds.

Proof: of Lemma 4.4 (i) It follows easily
from Lemma 4.3 with E1 := Ek and E2 := E1 ∪ E2:
Pk(L1‖L2‖Lk) = Pk(L1‖L2)‖Pk(Lk) = Pk(L1‖L2) ∩ Lk ⊆ Lk,
because both Pk(Lk) = Lk and Pk(L1‖L2) are languages over
whole Ek.
(ii) Lemma 4.3 yields P1∪k(L1‖L2‖Lk) = P1∪k((L1‖Lk)‖L2) =
L1‖Lk‖P2

2∩[1∪k](L2) = L1‖Lk ∩ (P1∪k
2∩[1∪k)

−1P2
2∩[1∪k](L2) ⊆

L1‖Lk, where P2
2∩[1∪k] : E∗2 → (E2 ∩ E1∪k)∗ and

(P1∪k
2∩[1∪k])

−1 : Pwr(E2∩E1∪k)∗→ PwrE∗1∪k.
(iii) proof is similar to (ii)
Acknowledgment

Partial financial support of Grant GA AV No. B100190609
and the Academy of Sciences of the Czech Republic, In-
stitutional Research Plan No. AV0Z10190503. is gratefully
acknowledged.

15

