
Supervisor Synthesis based on Abstractions of Nondeterministic Automata

Rong Su, Jan H. van Schuppen and Jacobus E. Rooda

Abstract— Blockingness is one of the major obstacles that
need to be overcome in the Ramadge-Wonham supervisory
synthesis paradigm, especially for systems of industrial size.
Owing to the high computational complexity, synthesizing
a nonblocking supervisor for a large scale system is never
easy, if still possible. In this paper we attempt to solve this
synthesis problem by using abstractions. We first introduce a
new abstraction operation, which preserves the nonblocking
property. Then we describe how to synthesize supervisors by
using abstractions of relevant automata so that the high com-
putational complexity associated with the synchronous product
described in the Ramadge-Wonham supervisory control theory
(SCT) may be avoided.

Index Terms— discrete-event systems, nondeterministic finite-
state automata, automaton abstraction, supervisor synthesis

I. INTRODUCTION

The automaton-based Ramadge-Wonham (RW)
supervisory control paradigm first appeared in the control
literature in 1982, which was subsequently summarized in
the well known journal papers [1], [2]. Since then there
has been a large volume of literature under the same
paradigm but with different architectural setups, e.g. [3],
[4] on modular control, [5], [6] on decentralized control,
[7], [8] on hierarchical control, and [12] on timed discrete
event systems. In the RW paradigm the main difficulty
of supervisor synthesis for a system of industrial size is
to achieve nonblockingness. The reason is that the size
of a plant model increases quickly when the number
of local components increases, due to the synchronous
product which incurs cartesian product over automata.
To overcome this difficulty, some authors attempt to
introduce sufficient conditions, which allow local supervisor
synthesis. For example, in [3] the authors propose the
concept of modularity. When local supervisors are modular,
a globally nonblocking supervisory control is achieved.
Nevertheless, testing modularity itself usually imposes
prohibitive computational complexity. Another notable
work is presented in [9], where, by imposing interface
consistency and level-wise controllability among subsystems
and local supervisors in a hierarchical setup, a very large
nonblocking control problem may be solved, e.g. the system
size reaches 1021 in the AIP example [9]. But those imposed
consistency properties seem to us rather peculiar and strong,
and the approach does not tell how to deliberately and

Rong Su and Jacobus E. Rooda are affiliated with the Systems Engineer-
ing Group in Department of Mechanical Engineering, Eindhoven University
of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. Emails:
R.Su@tue.nl, J.E.Rooda@tue.nl

Jan H. van Schuppen is affiliated with Centrum voor Wiskunde en
Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.
E-mail: J.H.van.Schuppen@cwi.nl

systematically design interfaces that allow synthesis of local
supervisors that satisfy those properties, as mentioned in
[10]. In [11] the authors present an interesting approach,
which is aimed to synthesize a state-based supervisor. By
introducing the concept of state tree structures, the authors
propose to represent states in an efficient way, upon which
the power of symbolic computation (as manifested by the
manipulation of binary decision diagrams (BDDs)) is fully
utilized. It has been shown in [11] that a system with 1024

states can be well handled. Nevertheless, this approach is
essentially a centralized approach and only full observation
is under consideration.

In this paper we will discuss how to synthesize a
supervisor by using an appropriate abstraction of a
target system. The idea of abstraction has been known
in the literature, e.g. in [13] abstraction is used in the
modular and hierarchical supervisor synthesis, and in
[14] for decentralized control. Nevertheless, to make their
approaches work, natural projections have to possess the
observer property [8], which may not always hold by a
natural projection. Although a natural projection can always
be converted to an observer (with respect to a specific
language) [15], such a modification may force many other
originally unobservable events to be observable in order
to achieve the observer property, resulting in a projected
image not small enough to allow supervisor synthesis for
a large-scale system. In our approach abstraction is made
by applying a newly-defined operation, which preserves
the nonblocking property in the sense that the product of
a plant model G with another model S (e.g. a supervisor)
is nonblocking if and only if the product of the abstraction
κ(G) of G and S is nonblocking. In [16] the authors
propose a reduction based on weak bisimilarity, which
serves a similar purpose - to preserve the nonblocking
property. But it turns out that weak bisimilarity is too strong
to allow us to generate a sufficiently small projected image,
which is crucial for the success of supervisor synthesis for
a system of industrial size. Our newly-defined abstraction
in this paper is tailored for supervisory control, thus can
yield a much smaller result than what the reduction based
on weak bisimilarity can achieve. Based on this abstraction
we will show that supervisor synthesis can be achieved in a
local fashion in the sense that a nonblocking supervisor for
an abstraction κ(G) is also a nonblocking supervisor for G.

This paper is organized as follows. In Section II we in-
troduce automaton composition and abstraction over nonde-
terministic automata. Then we present a supervisor synthesis

Proceedings of the 9th International
Workshop on Discrete Event Systems
Göteborg, Sweden, May 28-30, 2008

FrM2.3

978-1-4244-2593-8/08/$25.00 ©2008 IEEE 412

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301643391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

problem based on nondeterministic automata in Section III.
After an illustration example in Section IV, conclusions are
stated in Section V.

II. AUTOMATON COMPOSITION AND
NONBLOCKING-PRESERVING ABSTRACTION

In the following sections we follow the notations used
in [17]. The main goal of this section is to introduce
several operations that will be extensively used in supervisor
synthesis, and provide a few properties associated with those
operations. Given an alphabet Σ, let φ(Σ) be the collection
of all nondeterministic finite-state automata. Given an au-
tomaton G = (X, Σ, ξ, x0, Xm), X stands for the state set,
Σ for the alphabet, ξ : X×Σ → 2X for the nondeterministic
transition function, x0 for the initial state and Xm for the
marker state set. We define a map B : φ(Σ) → 2Σ∗ with

(∀G ∈ φ(Σ))B(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅
∧ (∃x ∈ ξ(x0, s))(∀s′ ∈ Σ∗) ξ(x, s′) ∩Xm = ∅}

We can see that any string s ∈ B(G) can lead to a state
x, from which no marker state is reachable. Therefore, we
call B(G) the blocking set of G. Similarly, we can define
another map N : φ(Σ) → 2Σ∗ , where for any G ∈ φ(Σ),

N(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅ ∧ ξ(x0, s) ∩Xm 6= ∅}
We call N(G) the nonblocking set of G. It is possible
that B(G) ∩ N(G) 6= ∅, due to nondeterminism. We now
introduce the parallel composition of automata. Given two
automata Gi = (Xi,Σi, ξi, x0,i, Xm,i) ∈ φ(Σi) (i = 1, 2),
the product of G1 and G2, written as G1 × G2, is an
automaton in φ(Σ1 ∪ Σ2) such that

G1×G2 = (X1×X2, Σ1∪Σ2, ξ1×ξ2, (x0,1, x0,2), Xm,1×Xm,2)

where ξ1× ξ2 : X1×X2× (Σ1 ∪Σ2) → 2X1×X2 is defined
as follows,

(ξ1 × ξ2)((x1, x2), σ) :=

ξ1(x1, σ)× {x2} if σ ∈ Σ1 − Σ2

{x1} × ξ2(x2, σ) if σ ∈ Σ2 − Σ1

ξ1(x1, σ)× ξ2(x2, σ) if σ ∈ Σ1 ∩ Σ2

Clearly, × is commutative and associative. For a slight abuse
of notations, from now on we use G1 × G2 to denote the
reachability part of the product of G1 and G2. The transition
map ξ1×ξ2 is extended to X1×X2×(Σ1∪Σ2)∗ → 2X1×X2 .

Given an automaton G ∈ φ(Σ) which serves as a
plant model, we usually want to synthesize a supervisor
S ∈ φ(Σ′) with Σ′ ⊆ Σ such that the overall closed-loop
system G × S satisfies a given specification H ∈ φ(Σ′′)
with Σ′′ ⊆ Σ. When the plant model G is too big to be
handled directly, we usually hope to create a simplified
model G′ ∈ φ(Σ′′′) of G with Σ′ ∪ Σ′′ ⊆ Σ′′′ ⊆ Σ, which
is called an abstraction of G, such that a nonblocking
supervisor S computed based on such an abstraction will
also be a nonblocking supervisor of G itself. To achieve this
purpose, we want to make sure that, G × S is nonblocking
if and only if G′ × S is nonblocking. We now propose the

following procedure to create such an abstraction G′.

Suppose G = (X, Σ, ξ, x0, Xm). We bring in a new event
symbol τ , which is uncontrollable and unobservable. An
automaton G = (X, Σ ∪ {τ}, ξ, x0, Xm) is standardized if

x0 /∈ Xm ∧ [(∀x ∈ X) ξ(x, τ) 6= ∅⇒ x = x0]
∧ [(∀x ∈ X − {x0})(∀σ ∈ Σ) x0 /∈ ξ(x, σ)]

For an ordinary automaton G = (X, Σ, ξ, x0, Xm) we can
convert it into a standardized automaton by simply: (1)
extend the alphabet to Σ ∪ {τ}; (2) add a new state x′0; (3)
define a new transition map ξ′ such that ξ′(x′0, τ) = {x0}
and for any (x, σ) ∈ X×Σ we have ξ′(x, σ) = ξ(x, σ). The
resulting automaton G′ = (X ∪ {x′0},Σ ∪ {τ}, ξ′, x′0, Xm)
is a standardized automaton. From now on we assume that
every alphabet Σ contains τ , and φ(Σ) is the collection
of all standardized finite state nondeterministic automata,
whose alphabet is Σ. The role of τ will be explained shortly.

An automaton abstraction with respect to Σ and Σ′ is
a map κ : φ(Σ) → φ(Σ′) such that any element G =
(X, Σ, ξ, x0, Xm) ∈ φ(Σ) is mapped to an element κ(G) =
(X2,Σ′, ξ2, x0, X2,m) ∈ φ(Σ′) as follows:
(1) Let G1 = (X1,Σ′, ξ1, x0, X1,m) ∈ φ(Σ′), where
• If there are u ∈ (Σ − Σ′)∗ and x ∈ X such that there

exists x′′ ∈ ξ(x, u) with the following property,
(∀s ∈ Σ∗) ξ(x′′, s) 6= ∅⇒

s ∈ (Σ− Σ′)∗ ∧ ξ(x′′, s) ∩Xm = ∅ (*)
then create a new state z /∈ X and set X1 := X ∪ {z}.
Otherwise set X1 := X . Let X1,m := Xm.

• Let ξ1 : X1 × Σ′ → 2X1 be the transition map where
for any x ∈ X and σ ∈ Σ′, x′ ∈ ξ1(x, σ) if there exist
u, u′ ∈ (Σ−Σ′)∗ such that one of the following holds:
(a) x′ ∈ ξ(x, uσu′) ∧ x′ ∈ Xm

(b) x′ ∈ ξ(x, uσu′) ∧ (∃σ′ ∈ Σ′) ξ(x′, σ′) 6= ∅
(c) x′ = z ∧ (∃x′′ ∈ ξ(x, uσu′)) the property (*) holds.

(2) Let κ(G) = (X2, Σ′, ξ2, x0, X2,m) ∈ φ(Σ′) with
• X2 := {x ∈ X1|(∃s ∈ Σ′∗) x ∈ ξ1(x0, s)}
• X2,m := {x ∈ X1,m|(∃s ∈ Σ′∗)x ∈ ξ1(x0, s)}
• ξ2 : X2×Σ′ → 2X2 , where for each (x, σ) ∈ X2×Σ′,

ξ2(x, σ) := {x′ ∈ X2|x′ ∈ ξ1(x, σ)}
κ(G) is actually a reachable sub-automaton of G1. ¤

Suppose the size of a set A is denoted as |A|. Then
we have |X1| ≤ |X| + 1 because we create at most one
new state z. Furthermore, |X2| ≤ |X1|. Thus, |X2| ≤ |X|+1.

As an illustration, suppose a standardized automaton
G ∈ φ(Σ) is depicted in Figure 1, where Σ = {τ, a, b, c, u}.
We take Σ′ = {τ, b}. Then based on the above procedure,
G2 = κ(G) is depicted in Figure 2, where the state numbers
correspond to those in Figure 1. Notice that there is a new
state z in G2, which is created because we can take x′′ = 6
and the property (*) holds. In this example we can see that,
whenever there is a string s in G, there is a string P (s)

413

Fig. 1. A Standardized Automaton G

Fig. 2. The Automaton G2 = κ(G)

in κ(G), where P : Σ∗ → Σ′∗ is the natural projection.
Furthermore, if s reaches a nonblocking state in G, then
P (s) can reach a nonblocking state in κ(G) as well; if s
reaches a blocking state in G, so can P (s) in κ(G). For
example, in G the string s = τabc reaches the marker state
4, and in κ(G) the string t = τb can also reach the marker
state 4; the string s = τabcbbu reaches the blocking state
6, and in κ(G) the string t = τbbb can reach a blocking
state z as well. Similarly, for any string t in κ(G), there is
a string s ∈ P−1(t) such that, if t reaches a nonblocking
(or blocking) state in κ(G) then s can reach a nonblocking
(or blocking) state in G as well.

In the definition of κ(G), if we do not introduce the
event τ (thus, the standardized automata), it will be difficult
for us to deal with the situation where there is a blocking
state x reachable from the initial state x0 via a ‘silent’ path
s ∈ (Σ− Σ′)∗, i.e. x ∈ ξ(x0, s), such that any path s′ from
x, i.e. ξ(x, s) 6= ∅, is also silent, e.g. the blocking state 6 in
Figure 1. It is also difficult for us to deal with marker states
that are reachable from x0 via silent paths, e.g. the state 5 in
Figure 1. With the newly introduced event τ , we can easily
solve the problems, as we have done in Figure 2. Besides,
since τ is uncontrollable and unobservable, introducing it
will not affect the existence of a nonblocking supervisor.

Next, we want to answer the question whether G× S for
some automaton S is nonblocking if and only if κ(G) × S
is nonblocking. To this end we need the following concepts.

Given an automaton G = (X, Σ, ξ, x0, Xm), let
h(G) = (Xh,Σh, ξh, x0, Xm) be an automaton such that
(a) Xh := {x ∈ X|(∃s ∈ Σ∗) ξ(x, s) ∩Xm 6= ∅}
(b) Σh := {σ ∈ Σ|(∃x, x′ ∈ Xh) x′ ∈ ξ(x, σ)}
(c) ξh : Xh×Σh → 2Σh : (x, σ) 7→ ξh(x, σ) := ξ(x, σ)∩Xh

The sub-automaton h(G) is simply the largest reachable
and coreachable part of G.

Definition 1: Given Ĝ = (X̂, Σ, ξ̂, x̂0, X̂m), we say Ĝ is
f-homomorphic to G, denoted as Ĝ Ãf G, if there is a
mapping f : X̂ → X such that the following hold:

1) f(x̂0) = x0

2) f(X̂m) = Xm

3) For any x̂1, x̂2 ∈ X̂ and σ ∈ Σ,

x̂2 ∈ ξ̂(x̂1, σ) ⇒ f(x̂2) ∈ ξ(f(x̂1), σ)

If f is injective then Ĝ is called f-monomorphic to G,
denoted as Ĝ Ãm

f G. If f is bijective and G Ãf−1 Ĝ, then
G is called isomorphic to G, denoted as Ĝ ≡ G. ¤

Definition 2: A bisimulation relation on X of G =
(X, Σ, ξ, x0, Xm) is an equivalence relation R ⊆ X × X
such that for each (x, x′) ∈ R and s ∈ Σ∗, if ξ(x, s) 6= ∅
then ξ(x′, s) 6= ∅ and for any y ∈ ξ(x, s), there exists
y′ ∈ ξ(x′, s) such that

(y, y′) ∈ R ∧ [y ∈ Xm ⇐⇒ y′ ∈ Xm]

The largest bisimulation relation is called bisimilarity,
written as ∼R. ¤

Definition 3: The quotient of G with respect to ∼R is
another automaton G/ ∼R:= (Y, Σ, η, y0, Ym) where

1) Y := X/ ∼R, the quotient set of X w.r.t. ∼R

2) y0 := [x0] ∈ Y , the coset of x0 w.r.t. ∼R

3) Ym := {y ∈ Y |y ∩Xm 6= ∅}
4) η : Y × Σ → 2Y , where for any (y, σ) ∈ Y × Σ,

η(y, σ) := {y′ ∈ Y |(∃x ∈ y) ξ(x, σ) ∩ y′ 6= ∅}
¤

With Definitions 1-3 we introduce the following concept,
which will be extensively used in the reminder of this paper.

Definition 4: Given two automata G1, G2 ∈ φ(Σ),
we say G1 is nonblocking preserving with respect to
G2, denoted as G1 vh G2, if B(G1) ⊆ B(G2) and
h(G1)/ ∼R≡ h(G2)/ ∼R. G1 is nonblocking equivalent
to G2, denoted as G1

∼=h G2, if G1 vh G2 and G2 vh G1.¤

Definition 5: An automaton G = (X, Σ, ξ, x0, Xm) is
marking aware with respect to Σ′ ⊆ Σ, if for any x ∈ X ,
where ξ(x, σ) 6= ∅ for some σ ∈ Σ′, the following holds:

(∀s ∈ Σ∗) ξ(x, s) ∩Xm 6= ∅⇒ P (s) 6= ε

where P : Σ∗ → Σ′∗ is the natural projection. ¤

Proposition 1: Given G1, G2 ∈ φ(Σ), G3 ∈ φ(Σ′), if
G1 vh G2 then G1 ×G3 vh G2 ×G3. ¤

Prop. 1 says that, nonblocking preserving (or equivalence)
is invariant with respect to automaton product.

414

Proposition 2: Let G ∈ φ(Σ), Σ′ ⊆ Σ, P : Σ∗ → Σ′∗ be
the natural projection and κ : φ(Σ) → φ(Σ′) the abstraction.
Then P (B(G)) = B(κ(G)) and P (N(G)) = N(κ(G)). ¤

What Prop. 2 says is illustrated by the commutative
diagram in Figure 3, where the natural projection P is

Fig. 3. The Commutative Diagram for Proposition 2

extended to P : 2Σ∗ → 2Σ′∗ : A 7→ P (A) := {P (s)|s ∈ A}.
Recall that during automaton projection κ : φ(Σ) → φ(Σ′)
with Σ′ ⊆ Σ, a new state z may be created. Thus, given two
automata G1 ∈ φ(Σ1), G2 ∈ φ(Σ2) with Σ1 ∪ Σ2 = Σ, we
usually do not have κ(G1×G2) ≡ κ1(G1)×κ2(G2), where
κ1 : φ(Σ1) → φ(Σ1 ∩Σ′) and κ2 : φ(Σ2) → φ(Σ2 ∩Σ′) are
two automaton abstractions. But we do have the following.

Theorem 1: If Σ1 ∩ Σ2 ⊆ Σ′, then we have
κ(G1 × G2) vh κ1(G1) × κ2(G2). If additionally Gi

(i = 1, 2) is marking aware with respect to Σi ∩ Σ′, then
κ(G1 ×G2) ∼=h κ1(G1)× κ2(G2). ¤

Theorem 1 is about the distribution of automaton
abstraction over automaton product. As an illustration we

Fig. 4. Example: G1 and G2

present a simple example. Suppose we have two simple
components G1 ∈ φ(Σ1) and G2 ∈ φ(Σ2) depicted in
Figure 4, where Σ1 = {τ, a, b, c} and Σ2 = {τ, b, d}.
The automaton product G1 × G2 is depicted in Figure
5. Suppose Σ′ = {τ, a, b}. Then the result of automaton

Fig. 5. Example: G1 ×G2

abstraction κ(G1 × G2) is depicted in Figure 6, where
κ : φ(Σ) → φ(Σ′) and the state numbers correspond to
those in Figure 5. On the other hand we can compute
κ1(G1) and κ2(G2) which are depicted in Figure 7.

Fig. 6. Example: κ(G1 ×G2)

Fig. 7. Example: κ1(G1) and κ2(G2)

We can see that κ1(G1) × κ2(G2) ≡ κ1(G1). Since
Σ1 ∩ Σ2 = {τ, b} ⊆ Σ′ and G1, G2 are marking aware
with respect to relevant alphabets, by Theorem 1, we
should have κ(G1 × G2) ∼=h κ1(G1) × κ2(G2). If we
look at Figure 6 carefully, we can see that states 2 and
5 are bisimilar to each other. If we merge them together,
we have κ(G1 × G2)/ ∼R≡ (κ1(G1) × κ2(G2))/ ∼R.
Thus, indeed κ(G1×G2) ∼=h κ1(G1)×κ2(G2), as we expect.

Suppose we want to construct a nonblocking supervisor
S ∈ φ(Σ′) with Σ′ ⊆ Σ. Let P : Σ∗ → Σ′∗ be the natural
projection and κ : φ(Σ) → φ(Σ′) the abstraction. Then

B(G× S) = ∅ ⇐⇒ P (B(G× S)) = ∅ (1)

By Prop. 2 we get

P (B(G× S)) = ∅ ⇐⇒ B(κ(G× S)) = ∅ (2)

Because S ∈ φ(Σ′), we get κ(S) = S. By Theorem 1,

κ(G× S) vh κ(G)× κ(S) = κ(G)× S

Thus,

B(κ(G)× S) = ∅⇒ B(κ(G× S)) = ∅ (3)

From (1)-(3) we get that G× S is nonblocking (i.e. B(G×
S) = ∅) if κ(G)× S is nonblocking, i.e.

B(κ(G)× S) = ∅⇒ B(G× S) = ∅ (4)

Since S is marking aware w.r.t. Σ′, if G is also marking
aware w.r.t. Σ′, then by Theorem 1, Equation (3) becomes

B(κ(G)× S) = ∅ ⇐⇒ B(κ(G× S)) = ∅

and G × S is nonblocking if and only if κ(G) × S is
nonblocking. In any case we can construct a supervisor S
based on an abstraction κ(G) of G. Of course, it is the user’s
choice to decide how to pick Σ′. As for how to synthesize
S, it will be addressed shortly. Here we face an immediate
difficulty. If G is very large, e.g. G = G1 × · · · × Gn for
some very large number n ∈ N, how to compute κ(G)? To
overcome this difficulty, we propose the following algorithm.

415

Suppose we have a collection of alphabets {Σi|i ∈ I},
where I is a finite index set. Suppose I = {1, 2, · · · , n}
for some n ∈ N. For any J ⊆ I , let ΣJ := ∪j∈JΣj .
Let Gi ∈ φ(Σi) for each i ∈ I , and Σ′ ⊆ ∪i∈IΣi.
We want to compute κ(×i∈IGi) efficiently, where
κ : φ(∪i∈IΣi) → φ(Σ′) is the automaton abstraction.

Sequential Abstraction over Product: (SAP)
For k = 1, 2, · · · , n,

• Set Jk := {1, 2, · · · , k}, Tk := ΣJk
∩ ΣI−Jk

∪ Σ′.
• If k = 1 then W1 := κΣ1,T1(G1)
• If k > 1 then Wk := κTk−1∪Σk,Tk

(Wk−1 ×Gk)

where κA,B : φ(A) → φ(A ∩B) is the abstraction. ¤

Proposition 3: Suppose Wn is computed by SAP. Then
κ(×i∈IGi) vh Wn. ¤

SAP allows us to obtain an abstraction of the entire system
G = ×i∈IGi in a sequential way. Thus, we can avoid
computing G explicitly, which may be prohibitively large
for systems of industrial size. By Theorem 1 we have

κ(×i∈IGi × S) vh κ(×i∈IGi)× S

From Prop. 3, κ(×i∈IGi) vh Wn. Then by Prop. 1 we get

κ(×i∈IGi × S) vh Wn × S

Thus, equation (4) can be replaced as

B(Wn × S) = ∅⇒ B(×i∈IGi × S) = ∅ (5)

which means we can synthesize a supervisor S ∈ φ(Σ′)
for a large system G = ×i∈IGi by simply looking at the
sequentially attainable abstraction κ(×i∈IGi) vh Wn. Next,
we discuss how to synthesize this S such that B(G×S) = ∅.

III. SUPERVISOR SYNTHESIS OVER NONDETERMINISTIC
FINITE-STATE AUTOMATA

In the RW paradigm, only deterministic automata are
encountered. Thus, given a plant model G ∈ φ(Σ) and
a specification H ∈ φ(∆) with ∆ ⊆ Σ, we can always
synthesize a supervisor S ∈ φ(Σ), which may be empty
in some cases, such that the closed loop behavior G × S
is controllable, observable (normal) and nonblocking. In
this paper the plant model G may be nondeterministic.
We would like to ask whether we can still synthesize a
supervisor S in terms of a deterministic automaton such
that controllability, observability and nonblockingness are
attainable. The motivation of requiring S to be deterministic
is that S cannot distinguish the nondeterminism in G from
external observation sequences, thus it will apply the same
control action on states in G that are reachable by the same
string. Here the specification H will remain deterministic,
and it is not necessarily standardized, namely it is possible
that τ /∈ ∆ because abstraction will never be applied to H .

To answer our question, we first redefine the concepts of
controllability and observability in the automaton framework.
Let G = (X, Σ, ξ, x0, Xm). For each x ∈ X let

EG : X → 2Σ : x 7→ EG(x) := {σ ∈ Σ|ξ(x, σ) 6= ∅}
and FG : X → 2Σ : x 7→ FG(x) := {σ ∈ Σ|ξ(x, σ) = ∅}

Definition 6: Given G = (X, Σ, ξ, x0, Xm) ∈ φ(Σ),
where Σ = Σc∪̇Σuc, suppose there is another automaton
A = (W,Σ, ς, w0,Wm) ∈ φ(Σ) such that A Ãf G. Then
A is controllable with respect to G, f and Σuc if for any
w ∈ W , FA(w) ∩ EG(f(w)) ⊆ Σc. ¤

Def. 6 is the state interpretation of the concept of
controllability in the RW paradigm, saying that at any
state w in A a transition σ that is disallowed by A (i.e.
σ ∈ FA(w)) but allowed by G (i.e. σ ∈ EG(f(w))) must be
controllable (i.e. σ ∈ Σc). In other words, no uncontrollable
event can be disallowed in A, if A is controllable. We now
introduce the concept of observability.

Definition 7: Given G = (X, Σ, ξ, x0, Xm) ∈ φ(Σ),
where Σ = Σo∪̇Σuo, suppose there is another automaton
A = (W,Σ, ς, w0,Wm) ∈ φ(Σ) such that A Ãf G. Then A
is observable with respect to G, f and the natural projection
P : Σ∗ → Σ∗o if the following condition holds: for any
w,w′ ∈ W if there exist s, s′ ∈ Σ∗ with

w ∈ ς(w0, s) ∧ w′ ∈ ς(w0, s
′) ∧ P (s) = P (s′)

then we have (FA(w) ∩EG(f(w))) ∩EA(w′) ∪ (FA(w′) ∩
EG(f(w′))) ∩ EA(w) = ∅ ¤

What Def. 7 says is that, if A is observable then for
any two states w and w′ reachable by two strings s and
s′ having the same projected image (i.e. P (s) = P (s′)),
there is no event allowed at w but disallowed at w′ (i.e.
(FA(w′) ∩ EG(f(w′))) ∩ EA(w)) and vice versa (i.e.
(FA(w) ∩ EG(f(w))) ∩ EA(w′)). Notice that, if Σo = Σ,
namely every event is observable, A may still not be
observable, owing to nondeterminism.

Definition 8: A deterministic finite-state automaton S =
(Y, Σ, η, y0, Ym) ∈ φ(Σ) is a nonblocking supervisor of G =
(X, Σ, ξ, x0, Xm) ∈ φ(Σ) with respect to a specification
H ∈ φ(∆) with ∆ ⊆ Σ and the natural projection Po :
Σ∗ → Σ∗o, where Σo ⊆ Σ, if the following hold:

1) N(G× S) ⊆ N(G×H)
2) B(G× S) = ∅
3) G× S is controllable with respect to G, f0 and Σuc

4) G× S is observable with respect to G, f0 and Po

where f0 : X × Y → X : (x, y) 7→ f0(x, y) := x. ¤

The first condition of Def. 8 says that the closed-loop
behavior (CLB) satisfies the specification H and the second
one says CLB must be nonblocking. The third and fourth
ones are self-explanatory. We have the following result.

416

Proposition 4: Given G ∈ φ(Σ) and a deterministic
automaton H ∈ φ(∆) with ∆ ⊆ Σ, Σ = Σc∪̇Σuc and
Σ = Σo∪̇Σuo, there exists a nonblocking supervisor
S ∈ φ(Σ) of G with respect to H if and only if there
exists A ∈ φ(Σ) such that A Ãf G × H for some
f -homomorphism, A is controllable with respect to G and
Σuc, A is observable with respect to G and the natural
projection P : Σ∗ → Σ∗o, and B(A) = ∅. ¤

The proof of Prop. 4, which is not included in this
paper owing to the page limit, indicates that S is simply
the canonical recognizer of N(A), when A is controllable,
observable and B(A) = ∅. It is possible that, given G ∈
φ(Σ) and H ∈ φ(∆) with ∆ ⊆ Σ there exists more than one
nonblocking supervisor. If S1 ∈ φ(Σ) and S2 ∈ φ(Σ) are two
deterministic automata and controllable with respect to G and
Σuc ⊆ Σ, then we can easily show that the union of S1 and
S2, defined as the canonical recognizer of Lm(S1)∪Lm(S2)
with the closed behavior L(S1)∪L(S2), is deterministic and
controllable with respect to G and Σuc. Let

C(Σ) := {S ∈ φ(Σ)|S is controllable w.r.t. G and Σuc}
We say S1 ∈ C is more permissive than S2 ∈ C(Σ),
denoted as S2 ≤ S1, if L(S2) ⊆ L(S1). From the above
discussion we can show that the greatest element of C(Σ)
exists, which is called the supremal controllable element.
Nevertheless, the observability is not closed under union of
automata. This situation is similar to the one described in [2].

Proposition 5: Given G ∈ φ(Σ) and a deterministic
automaton H ∈ φ(∆) with ∆ ⊆ Σ′ ⊆ Σ, Σ = Σc∪̇Σuc

and Σ = Σo∪̇Σuo, if there exists a nonblocking
supervisor S ∈ φ(Σ′) of κ(G) with respect to H ,
where κ : φ(Σ) → φ(Σ′), then S is also a nonblocking
supervisor of G with respect to H . ¤

Prop. 5 confirms that we can synthesize a supervisor S
based on an abstraction κ(G) of G. Of course, κ has to be
chosen carefully so that κ(G) can capture the specification
H in the sense that ∆ ⊆ Σ′.

Supervisory control of nondeterministic finite-state au-
tomata has been explored recently in the literature, e.g. [18]
[19]. A result similar to Prop. 4 is provided in [19]. In
this paper we focus on the supervisor synthesis based on
abstraction. Thus, Prop. 5 is our main result.

IV. EXAMPLE

As an illustration we present the following example.
Suppose we have two machines, which are functionally
identical, except for individual event labels. The system is
depicted in Figure 8. Each machine Gi (i = 1, 2) has the
following standard operations: (1) fetching a work piece
(ai); (2) preprocessing (bi); (3) postprocessing (ci); (4)
polishing (ei); (5) packaging (di). To produce one piece
of product, three work pieces are needed, one for each
machine to go through those standard steps (1)-(4). At Step

Fig. 8. A Simple Processing Unit

(5) all three work pieces are packed together to form a final
product. After preprocessing bi, there are two choices: to
be postprocessed directly (ci) or to be polished first (ei)
before postprocessing. The latter gives a product with better
quality. The negative aspect is that polishing may cause
the machine G1 to fail (f1). If failure does happen, G1

will stop automatically and wait for repair. Among each
alphabet Σi, the controllable alphabet is Σi,c = {ai, ei},
and the observable alphabet Σi,o is Σi − {f1}, namely
every event is observable (for the purpose of simplicity),
except for the failure event f1. There is one specification
H ∈ φ(∆) with ∆ = {e1, e2}, depicted in Figure 9, saying

Fig. 9. The Specification H ∈ φ(∆)

that if G1 polishes a work piece (e1), then G2 must polish
a work piece afterwards (e2). We now start to synthesize a
nonblocking supervisor that enforces the specification H .

First, we create an appropriate abstraction of G1 × G2.
We pick Σ′ = {τ, a1, a2, e1, e2}. The motivation is that,
since ∆ ⊆ Σ′, the abstraction κ(G1 × G2), where κ :
φ(Σ1 ∪ Σ2) → φ(Σ′), can capture the specification H;
and since all controllable events are in Σ′, the abstraction
κ(G1 × G2) also contains all means of control available to
G1 × G2 itself. In reality, we may also want to include all
observable events in Σ′ so that the abstraction can capture
all possible observations as well. In this example, we do
not consider observations because every event is observable
(except for f1). Since Σ1 ∩ Σ2 = {τ} ⊆ Σ′, by Theorem 1,

κ(G1 ×G2) vh κ1(G1)× κ2(G2)

where κi : φ(Σi) → φ(Σi ∩ Σ′) with i = 1, 2 is the
abstraction. The results of κ1(G1) and κ2(G2) are depicted
in Figure 10. The abstraction G′ := κ1(G1) × κ2(G2) is
depicted in Figure 11, We now use G′ and H to synthesize
a supervisor. Clearly, e1 must be disabled at states 2 and 5 in
Figure 11. Otherwise G1×G2 will encounter blocking states
3 and 4. Once e1 is disabled, e2 must be disabled as well.
Otherwise H will not hold. After removing all transitions
of e1 and e2 from G′ in Figure 11, the remaining reachable
sub-automaton in Figure 11 is controllable, observable and

417

Fig. 10. The Abstractions κ1(G1) and κ2(G2)

Fig. 11. The Product G′ = κ1(G1)× κ2(G2)

nonblocking, as depicted in Figure 12. By Prop. 4 we get

Fig. 12. Controllable, Observable, Nonblocking Sub-automaton A of G′

that, the canonical recognizer of the marked behavior N(A)
is the supervisor S, which is depicted in Figure 13. Clearly,

Fig. 13. The Supervisor S ∈ φ(Σ′)

S disables events e1 and e2 but allows all other events to
happen. We can check that S is a nonblocking supervisor of
G1 × G2 with respect to the specification H , as predicted
by Prop. 5. We can verify that the maximum number of
states of any intermediate computational result in terms
of automata is 7 states, which occurs when we compute
κ1(G1) × κ2(G2). Clearly, abstractions help to reduce the
computational complexity in this example because otherwise
we will have to face the product G1 × G2 directly, which
has 31 states.

V. CONCLUSIONS

In this paper we introduce a new technique for automaton
abstraction and supervisor synthesis based on nondetermin-

istic finite-state automata. Unlike natural projections in the
RW paradigm, the proposed automaton abstraction preserves
the nonblocking property in the sense that the product of a
target automaton G with another automaton S is nonblocking
if and only if the product of the abstraction κ(G) of G and S
is nonblocking. Thus, by synthesizing a local supervisor S to
achieve nonblocking supervisory control on κ(G), which is
usually smaller than the original plant G in terms of the
number of states, we can guarantee that the supervisory
control on the original plant G is also nonblocking. The
abstraction technique has potential applications in modular
and distributed supervisor synthesis, which will be addressed
in our future papers. The complexity issue will also be
addressed by then.

REFERENCES

[1] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of
discrete event systems. SIAM J. Control and Optimization, 25(1):206–
230, 1987.

[2] W.M. Wonham and P.J. Ramadge. On the supremal controllable
sublanguage of a given language. SIAM J. Control and Optimization,
25(3):637–659, 1987.

[3] W.M. Wonham and P.J. Ramadge. Modular supervisory control of
discrete event systems. Maths. of Control, Signals & Systems, 1(1):13–
30, 1988.

[4] J. Komenda and J.H. van Schuppen. Modular control of discrete-event
systems with coalgebra. IEEE Trans. Automatic Control, 53():447–
460, 2008.

[5] K. Rudie and W.M. Wonham. Think globally, act locally: decentralized
supervisory control. IEEE Transanctions on Automatic Control,
37(11):1692–1708, 1992.

[6] T.S. Yoo and S. Lafortune. A general architecture for decentralized
supervisory control of discrete-event systems. Discrete Event Dynamic
Systems, 12(3):335–377, 2002.

[7] H. Zhong and W.M. Wonham. On the consistency of hierarchical
supervision in discrete-eventsystems. IEEE Trans. Automatic Control,
35(10):1125–1134, 1990.

[8] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event
systems. Discrete Event Dynamic Systems: Theory and Applications,
6(3):241–273, 1996.

[9] R.J. Leduc, M. Lawford and W.M. Wonham. Hierarchical interface-
based supervisory control-part II: parallel case. IEEE Trans. Automatic
Control, 50(9):1336–1348, 2005.

[10] R.J. Leduc and P. Dai. Synthesis method for hierarchical interface-
based supervisory control. In Proc. 26th American Control Confer-
ence, pages 4260–4267, New York City, USA, July, 2007

[11] C. Ma and W.M. Wonham. Nonblocking supervisory control of state
tree structures. IEEE Trans. Automatic Control, 51(5):782–793, 2006.

[12] B. Brandin and W.M. Wonham. Supervisory control of timed discrete
event systems. IEEE Trans. Automatic Control, 39(2):329–351, 1994.

[13] L. Feng and W.M. Wonham. Computationally efficient supervisor de-
sign: abstraction and modularity. In Proc. 8th International Workshop
on Discrete Event Systems (WODES06), pages 3–8, 2006.

[14] K. Schmidt, H. Marchand and B. Gaudin. Modular and decentralized
supervisory control of concurrent discrete event systems using reduced
system models. In Proc. 8th International Workshop on Discrete Event
Systems (WODES06), pages 149–154, 2006.

[15] K.C. Wong and W.M. Wonham. On the computation of observers in
discrete-event systems. Discrete Event Dynamic Systems, 14(1):55-
107, 2004.

[16] R. Su and J.G. Thistle. A distributed supervisor synthesis approach
based on weak bisimulation. In Proc. 8th International Workshop on
Discrete Event Systems (WODES06), pages 64–69, 2006.

[17] W. M. Wonham. Supervisory Control of Discrete-Event Systems.
Systems Control Group, Dept. of ECE, University of Toronto. URL:
www.control.utoronto.ca/DES, July 1, 2007.

[18] A. Overkamp. Supervisory control using failure semantics and partial
specifications. IEEE Trans. Automatic Control, 42(4):498-510, 1997.

[19] C. Zhou and R. Kumar. A small model theorem for bisimilarity
control under partial observation. IEEE Trans. Automation Science
and Engineering, 4(1):93-97, 2007.

418

