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Abstract

Control theory for distributed systems is motivated by control of large-scale engineer-
ing systems such as electrical power networks, motorway networks, underwater vehicles,
and electric-mechanic machines. The control objectives of a control problem for such a
system may be such that a tight interaction between the subsystems is necessary. The
concept of a coordinated linear system is defined which contains a coordinator and two or
more linear subsystems. The controller takes care of the coordination between the subsys-
tems. A geometric condition, conditional linear independence of linear subspaces given
another subspace and an invariance condition characterize coordinated linear systems. In
case a distributed control system admits a particular representation then control synthesis
separates into control synthesis for the coordinator and for each of the local subsystems.

1 Introduction

The problem of this paper is control of linear systems with a modular or distributed structure.
The motivation of this research is the frequent occurence of control problems for large-

scale linear systems with a clear modular or distributed structure. A linear system is said
to be adistributed linear systemif it consists of an interconnection of a number of linear
subsystems and if control is based on partial observations of the subsystems.

If the control objectives of a control problem for a distributed systems require a tight inter-
action of the subsystems then a local control synthesis for each subsystem may not meet the
control objectives and a coordination control is necessary.

The concept of a coordinated linear system will be defined. The coordinator subsystem is
in its dynamics not affected by the other local subsystems. The dynamics of each subsys-
tem (different from the coordinator) is affected only by its own state and by the state of the
coordinator. An equivalent condition for a coordinated linear system is that of conditional
independent subspaces of the state space given a coordinator subspace, combined with an
invariance condition. The properties of conditionally linear independent subspaces are in-
vestigated. Finally, for control synthesis of distributed systems which admit a coordinated
linear control system representation, the control objectives may be attained by carrying out
first control synthesis of the coordinator and subsequently control synthesis of each of the
subsystems.

The equivalent conditions for the control problem are geometric in character hence are
formulated in terms of linear subspaces of the state space. The geometric approach to linear
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systems was primarily developed by Murray W. Wonham, see the books [5, 6]. The geometric
analysis of vector spaces is based on the book [2]. Control of coordination of large-scale and
hierarchical systems is treated for example in the book [1].

A description of the contents of the paper follows. The next section contains the problem
formulation. Conditional linear independence of linear subspaces is discussed in Section
3. Coordinated linear subsystems are characterized in Section 4. Control synthesis of a
coordinated linear control system is treated in Section 5.

2 Problem formulation

Problem 2.1 Consider a linear system (without outputs),

dx(t) = Ax(t)+Bu(t), x(t0) = x0. (1)

Determine a linear control law g(x) = Fx such that, possibly after a state space and an input
space transformation, the closed-loop system has the representation

dx(t)/dt = (A+BF)x(t) =

 A11 0 A1,c

0 A22 A2,c

0 0 Ac,c

x(t), (2)

x(t0) = x0, n1,n2,nc ∈ N, n1 +n2 +n3 = n,

Ai, j ∈ Rni×n j , ∀i, j ∈ 1,2,c.

The usefulness of the above representation will become clear in the Sections 4 and 5.

3 Conditionally-independent linear subspaces

The reader is assumed to be familiar with the set of the real numbers and with the alge-
braic structure of vector spaces. Below follow notation and concepts for these mathematical
structures.

The set of theintegersis denoted byZ, the set of thepositive integersis denoted byZ+ =
{1,2, . . .}, and the set of thenatural numbersby N = {0,1,2, . . .}⊂Z. For anyn∈Z+ denote
Zn = {1,2, . . . ,n}.

Denote the set of thereal numbersby R. The reader is assumed to be familiar with alinear
space, consisting of a fieldF of scalars and of a set of vectorsV also called avector space.
An example of a linear space isRn), which denotes the set ofn-tuples of real numbers for
anyn∈ Z+. Call two subspacesX1,X2 ⊆ X linear independent subspacesif X1∩X2 = {0}.

In this section the concept of conditionally-independent linear subspaces will be explored.
Consider a linear spaceX. Denote the set of linear subspaces ofX by LinearSubspaces(X).

Definition 3.1 Consider a linear space X and subspaces X1,X2,Xc ∈ LinearSubspaces(X).
Call X1,X2 conditionally linear independent givenXc if there exists orthogonal complements
Xi\c ⊆ Xi of Xi ∩Xc, equivalently,

Xi = (Xi ∩Xc)⊕Xi\c, i = 1,2, (3)

such that X1\c and X2\c are linear independent in X. The notation
(X1,X2|Xc) ∈ CILinearSubspacesdenotes that the linear subspaces X1,X2 are conditionally
independent given Xc. Call Xc thecoordinator subspacefor X1 and X2.
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Lemma 3.2 Consider a linear space X and two subspaces X1,X2 ∈ LinearSubspaces(X).
Define

Xc = X1∩X2,

Xi = (Xi ∩Xc)⊕Xi\c, i = 1,2.

Then X1\c and X2\c are linearly independent subspaces.

Proof 3.3 It is to be proven that X1\c∩X2\c = {0}. Let x∈X1\c∩X2\c. Then x∈X1\c implies
that x is orthogonal to X1∩Xc = X1∩X2 = Xc. But x∈ X1\c ⊆ X1 and x∈ X2\c ⊆ X2 imply
that x∈ X1∩X2 = Xc. Now x∈ Xc and being orthogonal to Xc implies that x= 0.

Lemma 3.4 Consider a linear subspace X and X1,X2,Xc∈ LinearSubspaces. If (X1,X2|Xc)∈
CILinearSubspacesthen X1∩X2 ⊆ Xc.

Theorem 3.5 Consider a linear subspace X and X1,X2,Xc ∈ LinearSubspaces(X).

(a) (X1,X2|X1∩X2) ∈ CILinearSubspaces.

(b) If (X1,X2|Xc) ∈ CILinearSubspacesthen X1∩X2 ⊆ Xc.

(c) X1∩X2 is the minimal subspace Xc in X such that(X1,X2|Xc) ∈ CILinearSubspaces.

Proof 3.6 (a) This follows from Lemma 3.2. (b) This follows from Lemma 3.4. (c) This
follows from (a) and (b).

4 Coordination of linear systems

Definition 4.1 A time-invariant linear system is a dynamic system as understood in system
theory, see [3], with representation

dx(t)/dt = Ax(t)+Bu(t), ix(t0) = x0,

y(t) = Cx(t)+Du(t),
where X= Rn is the state space, U = Rm is the input space,

Y = Rp is the output space,

A∈ Rn×n, B∈ Rn×m, C∈ Rp×n, D ∈ Rp×m,

x : T → X, u : T →U, y : T →Y.

Definition 4.2 A linear system is said to be acoordinated linear system(without input) if it
has a representation of the form

dx(t)/dt =

 A11 0 A1,c

0 A22 A2,c

0 0 Ac,c

x(t), x(t0) = x0, (4)

n1,n2,nc ∈ N, n1 +n2 +nc = n,

Ai, j ∈ Rni×n j , ∀i, j ∈ 1,2,c.

Theorem 4.3 Consider a linear system (without input) with representation

dx(t)/dt = Ax(t), x(t0) = x0,
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with a finite-dimensional linear space X, a linear map A: X → X, time index set T=
{t0, t0 + 1, . . . ,} ⊂ Z, and state trajectory x: T → X. Consider linear subspaces X1,X2 ∈
LinearSubspaces(X) and define,

Xc = X1∩X2, (5)

X1 = Xc⊕X1\c, X2 = Xc⊕X2\c, where⊕ denotes orthogonal complement. (6)

Then it follows from Theorem 3.5 that(X1,X2|Xc) ∈ CILinearSubspaces.
There exists a basis of X such that with respect to this basis the linear system has the

coordinated linear system representation,

x(t +1) =

 A11 0 A13

0 A22 A23

0 0 A33

x(t), x(t0) = x0, (7)

if and only if the following invariance conditions hold,

AX1\c ⊆ X1\c, AX2\c ⊆ X2\c. (8)

Proof 4.4 (⇐) Because Xc = X1∩X2 there exist orthogonal decompositions

X1 = Xc⊕X1\c, X2 = Xc⊕X2\c.

Because by Theorem 3.5(X1,X2|Xc) ∈ CILinearSubspaces, X1\c ∩X2\c = {0}. Choose a
subspace X3 ∈ LinearSubspaces(X) such that

X = X1\c⊕X2\c⊕X3,

and choose a basis of X compatible with this decomposition. By assumption AX1\c ⊆ X1\c
and AX2\c ⊆ X2\c. Then the representation of Equation (4) follows because A11x1

0
0

 =

 A11 0 A13

0 A22 A23

0 0 A33

 x1

0
0

 , etc.

(⇒) The invariance of the subspaces X1\c and X2\c with respect to the linear map A follows
directly from the representation.

Consider a distributed linear system which consists of an interconnection of two subsys-
tems. Denoted the relevant state spaces of these subsystems byX1 and X2; suppose that
X = X1 + X2. DenoteXc = X1∩X2. From Theorem 3.5 follows that(X1,X2|Xc) ∈ Xc) ∈
CILinearSubspaces. If the invariance condition of Theorem 4.3 holds then one can choose a
basis ofX such that the system has a representation as a coordinated linear system. In case
the invariance condition Equation (8) does not hold it is suggested to extend the coordinator
subspaceXc ⊆ X till the invariance condition holds. The subspaceX1 + X2 is a coordinator
subspace but there may be smaller subspaces in the range

X1∩X2 ⊆ Xc ⊆ X1 +X2.

5 Control synthesis for coordination of linear systems

Definition 5.1 A linear control system with representation

x(t +1) = Ax(t)+Bu(t), x(t0) = x0, (9)
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is said to be acoordinated linear control systemif there exists a basis for the state space X
and for the input space U such that with respect to those bases it has the representation

x(t +1) =

 A11 0 A13

0 A22 A23

0 0 A33

x(t)+

 B11 0 B13

0 B22 B23

0 0 B33

u(t),

x(t0) = x0. (10)

Problem 5.2 Consider a linear control system with representation

x(t +1) = Ax(t)+Bu(t), x(t0) = x0. (11)

Determine necessary and sufficient conditions for the existence of a linear control law,

g(x) = Fx+Gus, F ∈ Rn×m, G∈ Rn×ms,

of a nonsingular state space transformation S∈ Rn×n, and of a nonsingular input space
transformation Su ∈ Rms×ms, such that after the closing of the control loop and the state
space and input space transformations the system has a representation as a coordinated
linear control system.

It is conjectured that for the above problem a simple geometric condition is necessary and
sufficient.

As argued in Section 4 a decomposition of the system matrixA as in Equation(10) exists if
an invariance condition holds. By linear row operations it has then to be determined whether
there exists a transformation of the input space which transforms the input matrixB to the
form displayed in Equation (10). It is expected that this transformation requires a condition.
Note that one or two of the block rows may be missing from theB matrix.

Proposition 5.3 Consider a coordinated linear control system with representation (10). For
any symmetric subset of the complex numbers, Sspeci f ication⊂ C there exist control laws

g1(x) = F11x1 +F13x3, g2(x) = F22x2 +F23x3, g3(x) = F33x3,

such that the inputs,

u1(t) = g1(x(t)), u2(t) = g2(x(t)), u3(t) = g3(x(t)),

yield a closed-loop linear system with eigenvalues of the system matrix in Sspeci f icationif and
only if

(A11,B11), (A22,B22), (A33,B33), (12)

are controllable pairs.

The reader can now easily formulate the result corresponding to the above proposition for
which only exponential stability of the closed-loop linear system is required in terms of sta-
bilizability.

Proof 5.4 (⇐) Note that the closed-loop linear system is equivalent to the following three
systems,

x3(t +1) = (A33+B33F33)x3(t), x3(t0) = x3,0;

x1(t +1) = (A11+B11F11)x1(t)+
+(A13+B11F13+B13F33)x3(t), x1(t0) = x1,0;

x2(t +1) = (A22+B22F22)x2(t)+
+(A23+B22F23+B23F33)x3(t), x2(t0) = x2,0.
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Because by assumption(A33,B33) is a controllable pair there exists a matrix F33 ∈ Rm3×n3

such thatspec(A33 + B33F33) ⊂ Sspeci f ication. Similarly there exist F11 ∈ Rm2×n3 and F22 ∈
Rm2×n2 such thatspec(A11+ B11F11) ⊂ Sspeci f icationThe choice of F13 and the F23 are arbi-
trary because these do not affect the spectrum of the transition matrix. The result then follows
from [4].
(⇒) This follows directly from the decomposition of the system matrix of the full system,
(A+BF), and the corresponding result for ordinary linear systems.

Note that the control synthesis of a coordinated linear control system proceeds by carrying
out first control synthesis of the coordinator and subsequently carrying out independently
control synthesis of each of the other subsystems.

6 Concluding remarks

The problem of coordination control of distributed linear systems has been discussed. The
concept of two subspaces being conditionally linear independent given another subspace has
been formulated and the minimal subspace equals the intersection of the two subspaces. The
concept of a coordinated linear system has been proposed. A linear system admits a decom-
position as a coordinated linear system if an invariance condition for two subspaces holds.
Control synthesis for such a system can be carried out by first doing control synthesis for the
coordinator and then for the two subsystems.

Further research is needed on coordination control with partial observations for distributed
systems. Another direction is the abstraction of the coordinator subsystem.
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