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Abstract

Attention is focused in this paper on the approximation problem of system identifi-
cation with information theoretic criteria. For a class of problems it is shown that
the criterion of mutual information rate is identical to the criterion of exponential-
of-quadratic cost and to H., entropy. In addition the relation between the likelihood
function and divergence is explored. As a consequence of these relations a parameter
estimator is derived by four methods for the approximation of a stationary Gaussian
process by the output of a Gaussian system. The unified framework for approximation
problems of system identification formulated in this paper seems extremely useful.

AMS Subject Classification (1991): 93B30, 93B36, 93E12, 93E20, 94A17.

Keywords and Phrases: System Identification, Information Theory, Parameter Estima-
tion, Maximum Likelihood Method, Linear-Exponential-Quadratic-Gaussian Control,
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Note: The text of this report will appear in the proceedings of the NATO Advanced
Study Institute ‘From Identification to Learning’ that was held in Como, Italy in
August 1994.

1 Introduction

The purpose of this paper is to clarify and to explore the relationship between several
approximation criteria in system identification.

The original motivation for the research reported on in this paper was to clarify the re-
lation between LEQG optimal stochastic control and H, optimal control with an entropy
criterion, and to explore the use of this relation in system identification. The investigation
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Academy of Sciences and Arts. His cooperation with the second author is supported in part by CWI.



lead to a study of information theoretic criteria. The unified framework that appeared
seems quite useful for the theory of system identification.

A motivating problem of this paper is the choice of an approximation criterion for
system identification. Up to recently the approximation criteria used mainly in system
identification of stochastic processes were:

(i) The likelihood function (maximum likelihood method).
(it) A quadratic cost function (least squares method).

For stationary Gaussian processes these criteria are identical. The resulting algorithms
for parameter estimation with these criteria are well known.
The approximation criteria considered in this paper are:

(i) Mutual information rate.

(it) A weighted likelihood function and divergence rate between the measure associated
with a simple model and that associated with an element in the model class.

In the following sections these criteria are discussed in detail.

It will be shown that the criterion of mutual information rate is related to that of the
LEQG optimal stochastic control problem and to that of an H., optimal control problem
with an entropy criterion. Mutual information is related to the information theoretic
concept of divergence. The divergence concept is the same as the Kullback-Leibler pseudo-
distance, which in turn is related to the likelihood function.

The discussion of the approximation criteria is rather general. Thus the discussion is
formulated in terms of stationary Gaussian processes but can easily be extended to other
classes of processes.

In summary, in this paper several approximation criteria for system identification of
stationary Gaussian processes will be introduced and their relationship will be discussed.
Subsequently several parameter estimation problems are posed and solved.

The character of this paper is expository. The paper is primarily addressed to doctoral
students in engineering, mathematics, and econometrics. The reader is assumed to be
familiar with system and control theory, and with probability at a first year graduate level.
The paper contains many definitions and elementary results that are known although not
available in a concise and compact publication. The body of the paper contains the main
results while the appendices contain details on concepts and theorems. A brief conference
version of this paper appeared as [68].

A description of the contents by section follows. Section 2 contains a brief problem for-
mulation. Parameter estimation by the approximation criterion of mutual information is
the subject of Section 3 and by the approximation criterion of the likelihood function and
divergence is the subject of Section 4 Section 5 presents concluding remarks. Appendix
A introduces concepts from probability theory and stochastic processes and Appendix B
concepts from system theory. Appendix C contains definitions from information theory,
Appendix D formulas of information measures for Gaussian random variables, and Ap-
pendix E formulas of information measures for stationary Gaussian processes. Appendix
F summarizes results for the LEQG optimal stochastic control problem and Appendix G
the H., optimal control problem with an entropy criterion.



2 Problem formulation

System identification is a topic of the research area of systems and control. The problem
of system identification is to obtain from data a mathematical model in the form of a
dynamic system for a phenomenon. Examples of applications are system identification
of a wind turbine, of a gas boiler, and of the flow of benzo-a-pyreen through the human
body.

System identification of a phenomenon often proceeds by the following procedure:
(i) Physical modeling and selection of a model class of dynamic systems.
(it) Experiment design, data collection, and preprocessing of the data.

(i17) Check on the identifiability of the parametrization of the model class.

(iv) Selection of an element in the model class that is an approximation of the data.

)
)
)
(v) Evaluation of the model determined and, possibly, redoing one or more of the pre-
vious steps.

In this paper attention is restricted to step (iv) of the above procedure, the selection of
an element in the model class that is an approximation of the data.

In this paper attention is restricted to phenomena that, after preliminary physical or
domain modeling, can be modeled by a stationary Gaussian process. See the appendices for
concepts and terminology used in the body of the paper. It is well known from stochastic
realization theory for stationary Gaussian processes that such a process can under certain
conditions be represented as the output of a Gaussian system in state space form

z(t4 1) = Az(t) + Ko(t),
y(t) = Ca(t) +0(1),

where v : Q@ x T'— RP is a Gaussian white noise process. Such a process can also be
represented by an ARMA (Auto-Regressive-Moving-Average) representation of the form

S ay(t— i)=Y (i - j).

1=0 7=0

Below attention is sometimes restricted to an AR (Auto-Regressive) representation of the
form

y(t) + Z ay(t — 1) = v(t). (2.1)

With the notation

6= (—ar,...,—a,)", &(t)=(y(t—1),...,y(t—n))",

this representation may be rewritten as

y(t) = B(1)7 + v(0). (2.2)



Problem 2.1 Parameter estimation problem for time-invariant Gaussian systems. Con-
sider observations of a stationary Gaussian process with values in RP. Consider the model
class of time-invariant Gaussian systems

z(t+ 1) = Az(t) + Ko(t),

(2.3)
y(t) = Ca(t) + o),
or, properly restricted, in AR representation,
y(t) = o(1)"0 + v(1). (2.4)

Select an element in the model class that approzimates the observations by one or more of
the approximation criteria mentioned in the following sections.

3 Approximation with mutual information

Successively this section presents the topics of mutual information, a parameter estimation
problem, the relation between mutual information, LEQG, and H,, entropy, parameter
estimation by LEQG optimal stochastic control, and parameter estimation by the H.,
method.

3.1 Mutual information

There follows an introduction to the concept of mutual information. For a detailed treat-
ment and references see the Appendices C, D, and E.

The mutual information of two discrete-valued random variables
z:Q—X={ar,...,a,}and y: Q =Y ={by,...,b,}, is defined by the formula

J(@,y) =Y puylai,bj)in (%) ; (3.1)

i=1 j=1

where

pry(aisb;) = P({z = a;,y = b}), po(a;) = P({z = a;}), py(b;) = P({y = b;}).

The mutual information of two random variables describes the dependence between the
associated probability measures. In general 0 < J(z,y) < 400 and J(z,y) = 0 if and only
if x and y are independent.

For random variables with continuous values the mutual information is defined as the
limit of the mutual information of discrete valued random variables, in which the discrete
random variables are required to approximate the continuous valued random variables.
In case the random variables z,y are jointly Gaussian random variables with a strictly
positive definite variance, or (z,y) € G(0,Q) with @ = QT > 0 where

Ql‘ sz
Q= ;
( ey @y>



then

1 det Q ) | (3.2

= ——1 I
J(@,y)= -5 (detQm det @,

For stationary processes the corresponding concept is the mutual information rate. Let
z:QxT —=R"™ y:QxT — RP, be stationary stochastic processes on T' = Z. The
mutual information rate of x and y is defined by the formula

J(z,y) = limsup

J (xl[—n,n]vyl[—n,n]) 5 (33)

where $|[_n7n] denotes the random variable defined by the restriction of the process = to
the interval {-n,...,—1,0,1,... ,n}.

Letfor T =Z,2:QxT — R™and y: Q xT — RP be two jointly stationary Gaussian
processes that admit a spectral density. Denote their joint spectral density function by

W e — gttt gy = [ Weo Wy
W,, W,

It follows from [24] that the mutual information of the processes z,y is invariant under
scaling by nonsingular linear systems. Let S, : C — C™*™ and 5, : C — C?*? be minimal
and square spectral factors of respectively W, and Wy, hence

Wo(2) = Su(2)Su(=")T, (=) = 8,(2)8, (=)
Define
§(2) = Su(2)7 Wy (2)8,(=7) .

The mutual information rate of these processes is given by the formula

4rq

J(z,y) = — /D éln det[I — S(=)"S(2)]dz. (3.4)

Assume that the function S admits a realization as a finite-dimensional linear system of
the form

S(z)=C(2I — A)"'B+ D, sp(A)C C, (3.5)

and that the following set of relations admits a unique solution @ € R™*"

Q=Q" >0, (3.6)
Q=ATQA+C"C + (A" QB+ C"D)N"Y(BTQA + D"C), (3.7)
N=I-D"D-B"@QB >0, (3.8)
sp(A+ BN"Y(BTQA+ D*C))cC . (3.9)
Then the mutual information rate of the processes z,y is given by the formula
1
J(z,y) = —5111 det(I — B"QB — D" D). (3.10)



3.2 A parameter estimation problem
Consider the model class of Gaussian systems in AR representation as stated in Section
2,
6(t+1)= 6(t) + v(t), 6(0) = by,
y(1) = o(1)76(1) + Nuw(1),

with 8y € G(mo,Qo), v(t) € G(0,1), w(t) € G(0,1). The problem is to determine a linear
recursive parameter estimator, say,

(3.11)

Bt +1) = 0(t) + K(O)[y(t) — ¢(1)"8(t)], 8(0) = m, (3.12)

such that the estimation error

e:QxT —=R" e(t)=06(t)—6(1),

is small according to a criterion specified below. The recursion for the estimation error is
then

e(t+1) = [T — K(O)(t) ]e(t) + v(t) — K(H)Nw(t), e(0) =8 — o.

Assume that e is such that there exists a Gaussian random process r, which is independent
of e, such that z := e 4+ r is a standard white noise process, i.e. z € G(0,7).

Our objective is to determine a parameter estimator such that the mutual information
rate J(e,z) between e and z is minimized. This implies that the error signal e should
be as small as possible. Clearly this measure is not very intuitive but it turns out to be
closely related to LEQG and H., parameter estimators.

In particular, assume e is asymptotically stationary with asymptotic density function
R. The assumption regarding the existence of r» and z implies

0< R(z)< I

It is then easy to show that the mutual information rate of the processes z and e is given

by

-1 1 -1 1 1\t
J(z,e) = 471_2,/ Zln det[l — R(z)|dz = P /D Zln det[] — S(z7)"'S(2)ldz  (3.13)
where § is a spectral factor of R. Expressing the mutual information in terms of the
spectral factor S will be useful later on.

Problem 3.1 Consider the parameter estimation setting defined above, with the obser-
vation equation and the parameter model as given in (3.11). Determine a parameter
estimator of the form (3.12) that minimizes the mutual information rate (3.13) between
the processes z and e.

Problem 3.1 will not be solved directly but via LEQG optimal stochastic control and
via H., optimal control theory.



3.3 Relation of mutual information, H,, entropy, and LEQG cost

An investigation of the authors has established that the criterion of mutual information of
two stationary Gaussian processes is identical to the H., entropy criterion and to the limit
of the cost of a stochastic control problem with an exponential-of-quadratic cost function.
This result is first stated as a theorem and then explained.

Theorem 3.2 Consider a finite-dimensional linear system

x(t+ 1) = Az(t) + Bu(t),

(3.14)
y(t) = Ca(t) + Du(t),

that is a minimal realization of its impulse response function and such that sp(A) C C~.
Denote the transfer function of this system by S,
S(z)=C(zI — A)"'B+ D, (3.15)

Assume that the set of relations (3.6)-(3.9) admits a unique solution @ € R"*". Consider
the expression

1
—5111(det(1 - B'"QB - D"D). (3.16)

a. If e : QxT — R™ and z : @ x T — RP are stationary Gaussian processes with
spectral density

1 S(2)
(L ) s

then the mutual information of (e, z) is given by the expression (3.16).
b. The H., entropy of the system (3.14), defined by:

J = 1 / lln det [T — S(z71)"S(2)] dz, (3.18)
D

dme Jp 2
is equal to the expression (3.16).

c. Letu:QxT — R™ be a stationary Gaussian process in (3.14) with u(t) € G(0,1).
Then

1
Iim —In ¥
t—00 t e

exp (% 3 y(s)Ty(s))]

is equal to the expression (3.16).

Proof a. See Theorem E.3. b. See Theorem G.1. c. See Proposition F.3. a

The discovery of the relation between the criterion of LEQG and the H, entropy has been
published by K. Glover and J.C. Doyle [26]. That the H., entropy criterion is identical
to mutual information is new as far as the authors know. The H,, entropy criterion for
continuous-time systems was introduced by K. Glover and D. Mustafa in [27] and has



been used extensively since then in H., optimal control theory. In that paper the concept
of H., entropy is referred to the paper [8] by D.Z. Arov and M.G. Krein. In the latter
paper the formula (3.18) is presented with the explanation that this formula ‘has a definite
entropy sense’ under reference to a publication by Kolmogorov, Gelfand, and Yaglom. In
fact, the formula (3.18) is the mutual information of two stationary Gaussian processes
that was apparently first analyzed in [24]. The expression of mutual information provided
in [24] is in a geometric formulation from which (3.18) may be derived. The formula for the
mutual information in the case of scalar processes is stated in [57]. The authors therefore
conclude that H., entropy is actually mutual information.

3.4 Parameter estimation with an exponential-of-quadratic cost

A short introduction to the LEQG optimal stochastic control problem follows. A detailed
treatment may be found in Appendix F. Consider the Gaussian stochastic control system

z(t+1)= Az(t)+ Bu(t)+ Mo(t),
y(t) = Cyz(t) + Dyu(t) + No(t), (3.19)
z(t) = Cqx(t) + Dau(t),

where v is Gaussian white noise with »(¢) € G(0,V1). A control law is a collection of maps
g=1{g9i,t €T}, g : Y x U' — U such that the input u(t) is given by

u(t) = g+(y(0),...,y(t —1),u(0),...,u(t—1)).

Let GG be the set of control laws. Consider the cost function on a finite horizon J;, : G — R

cexp (%cZz(t)Tz(t))] , (3.20)

t=0

Jt1(g) =k

for ¢ € R, ¢ # 0. The LEQG optimal stochastic control problem is then to determine a
control law ¢* € GG such that

Julg”) = inf Ji(9). (3.21)

Assume that we apply a controller g to the stochastic system (3.19) such that the closed
loop system is linear and time-invariant. We can then determine the limit of the cost
function

1
-F
t

cexp (%CZZ(S)Tz(s))] . (3.22)

s=0

as t — oo. In Appendix F it is proven that

cexp (%c Z Z(S)TZ(S)> ]

s=0

lim l In E

t—00 t

1 1
=3 Indet(V;' — eMT™QM — ¢NTN) + 2 In det V1. (3.23)

In (3.23) @ is the solution of a set of relations similar to (3.6)-(3.9).
Next the parameter estimation problem is posed in terms of the LEQG problem.



Problem 3.3 Consider the Gaussian system

Bt+1)=  6(t)+v(t), 6(0)= by,
y(t) = o(1)70(t) + w(t),

where T = {0,1,...,11}, o : @ — R™, 6y € G(mg,Qo), v: Q2 — R" and w : @ — R?
are Gaussian white noise processes with v(t) € G(0,Q,), w(t) € G(0,Q,,) with Q,, > 0,
6o, v, w are independent, and ¢ : Q@ x T — R"*P is as specified in (2.2).

Determine the process 8 : ¢ x T — R” and a recursion for it such that (1) is F
measurable for all t € T, and such that the following expression is minimized

cexp (%cZz(s)%(s))] ) (3.25)

s=0

(3.24)

v

where 2(t) = C[8(t) — B(1)], c € R, ¢ # 0.

Theorem 3.4 Consider Problem 3.3. Define the functions K : T — R"™*? @Q : T — R"*"
by the recursions:

K1) = Q) (s(t) ¢7) 817! (I) (3.26)

QU+1) = Q) +Q,— Q1) (s(t) €7)S(1)™! (‘b(é)T) Q(t), (3.27)
Q(0) = Qo, (3.28)
(1) = (q“(?T) Q) (s )+ <QO“’ __?I) - (3.29)

Assume that for allt € T we have Q(t) > 0. The optimal LEQG parameter estimator is
then specified by the recursion

0t +1) = 6(1) + K(t)[y(t) — &(1)T8(1)]. (3.30)

If in addition @, = 0 then
Qt+ 1)~ =Q() ™+ o(1)Qy ¢(t)" — cC"C, (3.31)
K(t) = Q(1)d(t) (3()"Q(1)(1) + Qu) ™" - (3.32)

The details of the proof of Theorem 3.4 will not be provided in this paper because of space
limitations. The problem is related to Problem F.1. It differs from that problem in that
Problem 3.3 has output matrix, ¢(¢), that depends on the past observations. Therefore a
conditional version of Problem F'.1 is obtained. The result of Problem F.1 may be found in
[32]. The second author of this paper is preparing a publication that contains the solution
to the conditional version of Problem F.1. As pointed out in Appendix I', P. Whittle
first solved the discrete time case of Problem F.1 but for a system representation slightly
different from that used in this paper.



3.5 Parameter estimation with H_ entropy

A short introduction to the H,, optimal control problem follows. A detailed treatment
may be found in Appendix G Consider the linear control system

z(t+1)= Az(t)+ Bu(t)+ Mo(t),
y(1) = Ciz(t) + Dyu(t) + No(t), (3.33)
2(t) = Chz(t) + Dau(t),

where v is this time an unknown deterministic signal. As before, a control law is a collection
of maps g = {gs,t € T}, g+ : Y x U! — U such that the input u(¢) is given by

u(t) = gi(y(0), ..., y(t —1),u(0),...,u(t—1)).

Let G be the set of control laws. Consider the cost function .J : G — R

12115,
J(g) = su C3 3.34
) =300 ol + e oo (3.3
where
t1
[0]|3,0, 5= > (1) w(t). (3.35)
s=0

Note that R plays a role similar to the covariance of the initial condition for the LEQG
problem. The larger R, the more uncertainty we have for the initial condition. If ; = o
then we must constrain v to {3, the class of signals for which the infinite sum (3.35)
converges. The H,, optimal control problem is then to determine a control law ¢* € G
such that

Jlg") = inf J(g). (3.36)

This problem turns out to be very hard. Hence instead we will look for a control law ¢
such that:

J(g) <.
This is equivalent to minimizing the following criterion

Je(g) = sup ell2llzs, — [[vll5,, — 26 R 2o,
U,T0

As a matter of fact J(g) < oo if J.(g) < ¢™'. We will actually solve the problem to find
g* such that

J(g") = inf Je(9)- (3.37)

If t1 = 00, 2(0) = 0 (R = 0), and both the system and the controller are time-invariant,
then this problem has another interpretation. Let us define

1 lln det [T — eS™(271)S(2)] d=

Je(g) T A7 D 2

10



where $' is the closed loop transfer matrix from v to z. Then ¢* satisfies (3.37) if and only

if
Je(g™) = inf J.(9).
e(g7) = inf Je(g)
Next the parameter estimation problem is posed in terms of an H., control problem.

Problem 3.5 Consider the Gaussian system

Bt+1)=  8(t)+v(t), 6(0)= b,
y(t) = o(1)"0(t) + w(t),

where T'={0,1,...,%1} and ¢ is as specified in (2.2).

Determine the process 6:7 — R"™ and a recursion for it such that for allt € T we have
that é(t) is a function of past measurements y(0),...,y(t— 1) and such that the following
expression is minimized

(3.38)

sup (—xgczalxo £ ex(0) (1) - o(1)7Q; (1) - w(ty@;lw(t)) (3.39)

w,v,To +=0

where z(t) = Cl0(t) —0(t)], ceR, ¢ #0, Q, =Q) >0, Qun =Q,, > 0.

Proposition 3.6 Consider Problem 3.5. There exists a 8 such that the supremum (3.39)
is finite if and only if there exists a matriz () satisfying (3.27) and (3.28). Moreover, in
that case the optimal estimator is given by (3.30).

4 Approximation with likelihood and divergence

In this section the reader is presented successively with text on the approximation with
likelihood, divergence, the relation of likelihood and divergence, approximation with di-
vergence, and parameter estimation by divergence minimization.

4.1 Approximation with the likelihood function

In this subsection a particular recursive weighted maximum likelihood problem will be
formulated and solved.

The maximum likelihood method for parameter estimation has been proposed and ana-
lyzed by Sir Ronald Fisher, see [21, 22]. In most lectures and most textbooks the likelihood
function is defined by example only. In general the likelihood function may be defined as
the Radon-Nikodym derivative of the measure of the observations with respect to the
measure with respect to which the observations are independent in discrete-time or to the
measure with respect to which the observation process is an independent increment pro-
cess in continuous-time. The likelihood function for a Gaussian or ARMA representation
is presented in [33, 63].

11



Problem 4.1 Consider the parameter estimation model of the first paragraph of Section
3, with the representation

Bt+1)=  6(1), 6(0) = 0,
y(t) = ¢(1)70(t) + w(t).

Let c e R, ¢ #0, 8 € G(0,Q0), Qo = Qf > 0. Suppose that at t € T the parameter
estimates {0(s),s = 0,...,t} have been determined. Choose the next parameter estimate
6(t+ 1) € R™ as the solution of the optimization problem

(4.1)

sup exp (—czue Z )H?) FH0), .. 5(1),6), (4.2)

0ER™ s=0
where f is the joint density function of the observation process {y(s),s = 1,...,t} and
{y(s),s =1,...,t} are the numerical values of the observations. The density function f

depends on the parameter vector 6.

Theorem 4.2 Consider Problem 4.1 with @), = I. Assume that the model is such that
Q(t) is well-defined by

QU+ 1)1 =Q(M) ™ + 6(1)Qy d(1)" — el. (4.3)

with Q(0) = Qo and Q(t) > 0 for allt € T. Then the optimal estimate at t € T is given
by the recursion

(t + 1) = 0(1) + K(D[5(1) — 6(1)d(1)], 6(0) = 0, (4.4)
where

K1) = QU)s()[6()"Q(1)é(t) + 117 (4.5)
Note that the parameter estimator (4.4) is identical to that of Theorem 3.4.

Proof: The logarithm of the criterion is, up to a term that does not depend on 8, equal
to

2h(0) = —67Qg 0 — Z 15(s) = o(s)76]1* + CZ 16— 6(s)1*. (4.6)

By assumption

2d°h(0)/d6” = ct] — Q5" =D d(s)d(s)" = —Q(1)™" — el < 0.

The first order conditions then yield:

t t—1

= _u(s)d(s) — ey _b(s),
s=0 s=0
and after simple calculations one gets (4.4). ]

12



4.2 Divergence

The Kullback-Leibler pseudo-distance or divergence is a function that measures the rela-
tion between probability measures. For system identification it is an important approxi-
mation criterion. There follows a brief introduction to divergence, the full details may be
found in the Appendices C, D, and E

Consider the measurable space (£, ') and two probability measures Py, P, defined on
it. Let @ be a o-finite measure on (£, F') such that P, and P, are absolutely continuous
with respect to @), say with 7y = dP;/dQ) and ro = dP,/d@. Such a measure always exists.
The divergence of Py, P, is defined by the formula

D(P||Py) = Eq [7«1 111(:—:)1(7,2>0)] . (4.7)

It may be shown that the definition of D(P;||P;) does not depend on the measure @
chosen, that for all Py, P> we have D(P||P;) > 0, and D(Py||P;) = 0iff P, = P,. The
triangle inequality is not satisfied by D hence it is not a distance but a pseudo-distance. S.
Kullback and R.A. Leibler in [46] introduced this concept which is therefore also known as
the Kullback-Leibler pseudo-distance. The term divergence is used in information theory.

Divergence and mutual information for measures induced by two real valued random
variables are related by

J(z,y) = D(Ppy||Pr x Py).

Let G(mq, Q1) and G(mg,Q2) be two Gaussian measures on R™. Assume that @1, Q2 >
0. The divergence between these measures is given by the formula (see D.5),

2D (G(ma, Q1)||G(me, Q2)) =

i () + (107" - Q7100 + (ma = m) Q7 ma = ). (49

Consider next two jointly stationary Gaussian processes z1,29 : @ X T — R on T = Z.
Assume that they have a mean value function that is zero and that the joint processes

admit a spectral density. Under additional conditions, see Theorem E.5, the divergence
between the measures associated with these processes is given by the formula

1 1
D(Pi||P2) = =5 Indet(B"QB + D" D) + 5tr(B"RB + D™D ~ ), (4.9)

where @ € R™ " is the solution of an algebraic Riccati equation and R € R™*" is the
solution of a Lyapunov equation.

4.3 Relation of likelihood function and divergence

The likelihood function as an approximation criterion is related to the approximation
criterion of divergence discussed in the previous subsection. The relation between these
criteria will be described for Gaussian random variables.

Consider n real valued observations. The model class of the variable considered is the
class of Gaussian random variables with values in R, say G(m,q), m € R,q € R, ¢ > 0.
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The observations are assumed to be independent. The measure of these observations and
their representation are given by y: Q@ x T'— R", y € G(me, @), where

e=(1,...,1)"eR", @ =ql.

The density function of y with respect to Lebesgue measure is

I 1 o )
vime, Q) = ————=exp | —=(v — me v—me) ).
plrime,Q) = s oxp (<0 = me) Q! (0 me)
The likelihood function L : R x Ry — Ry is therefore equal to
L, g33) = (-5 mera - me)
m,q;y) = ———=cxp | —=(y — me — me) ),
%y Toarg o\ 3 y

where y € R™ is the vector with the numerical values of the observations. As is well known,
the maximum likelihood estimate of the parameters m, ¢ are given by the formulas

m= %Z@?k, q= %Z(@?k — )%
k=1

k=1

The density function of a Gaussian measure with m,§ as parameters is denoted by
Pl ).

Formula (4.8) for the divergence of two Gaussian measures on R reduces in this case to
(assuming ¢; > 0 and ¢, > 0)

(m1 — m2)2‘

2D (pl.s e, g0)l[p(es s 2)) = —In (—) S L
q2 q2 q2

Proposition 4.3 Consider the likelihood function and the divergence for the Gaussian
random variables defined above. Then

Hom.59) = e (52D (G0 DG a) + 1+ 1))

Proof: From the discussion above follows that

1
In L(m,¢; ) = —= In(27) — =n[In(q) + L],
2 2 q
q 7 . 2
2D(G(ii, §)|Gmy ) = —In(d) 14 4 4 =)
q q q
where
1,
G = E (yk — m)
k=1
Note that
q = lzn:(?k_m)Qz lzn:(@k_m+m—m)220§+(ﬁz—nz)2
Lo k=1 "= ’



hence the result. O

The conclusion from Proposition 4.3 is that maximizing the likelihood function is equiva-
lent to minimizing the divergence between a measure in the model class and the measure
associated with the maximum likelihood estimates. However, note that this fact cannot
be used to find the maximum likelihood estimates since the maximum likelihood esti-
mates m and ¢ appear in the expression. Rather, it shows that the likelihood function is
equivalent to the divergence criterion. In the example above both measures appearing in
the divergence, G(m, ¢) associated with the model class and G(7, §) associated with the
maximum, are members of the model class. Another way to consider the relation between
the likelihood function and divergence has been proposed by H. Akaike in [1].

Does the relation between the likelihood function and divergence extend to other classes
of stochastic systems? In the maximum likelihood approach one maximizes the likelihood
function with respect to the parameters of the model class. The divergence between the
measure associated with the observations and the measure associated with the model
class is a pseudo-distance. Therefore the maximum likelihood approach and the minimum
divergence approach are related. The exponential transformation between both criteria as
in Proposition 4.3 for the Gaussian case may not hold in general, although this relation
does hold for a larger class of distributions than the Gaussian one.

S.-I. Amari has investigated the geometric structure of exponential families of probability
distributions and explored the use of the likelihood function and of divergence for this
family, see [4, 6, 5].

The minimum divergence method differs from the maximum likelihood method in that
for the first method a measure must be chosen that represents the observations. In this
point the maximum likelihood approach requires less.

4.4 Approximation with divergence

For system identification an approximation problem with the divergence criterion may be
considered. The relationship between the likelihood function and divergence, see Propo-
sition 4.3, suggests such an approach.

In system identification one is given observations. According to the procedure outlined
in Section 2 one then selects a model class. In the case considered in this paper this is
the class of stationary Gaussian processes which can be represented as a Gaussian system.
With the observations one can associate a measure of a stationary Gaussian process. For
example, one can take the measure associated with the mean value function of this process
to be the zero function and the covariance function to be an estimate, say

4.10
0, else. ( )

1 t
VV(t) = { t—t e (s +)Y(s)T, 1=10,... 1,
Another choice is a measure associated with an AR representation of high order.
Problem 4.4 Approximation of a stationary Gaussian process by a time-invariant Gaus-
sian system according to the divergence criterion. Consider given a probability measure

Py on the space of Gaussian processes with values in RP and zero mean value function.
Consider the model class GSX(n) of Gaussian systems up to order n and the associated
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set of probability measures {P(#),0 € GSX(n)} on the output processes of such systems.
Solve the approzimation problem

eeégfz’(n) D(P||P(9)). (4.11)
A solution to Problem 4.4, if it exists, is a Gaussian system of which the probability
measure on the output process minimizes the divergence to the probabiblity measure
associated with the observations. Note that the probability measure associated with the
observations may not be in the model class, for example because the covariance estimate
is not a rational function. Problem 4.4 is therefore equivalent to the determination of an
element in the model class that minimizes the divergence to the measure associated with
the observations.

The principle of approximation by the divergence criterion is used in the literature. It
has apparently first been proposed by H. Akaike in [1] who explored its use in [2, 3] and
who derived the Akaike Information Criterion (AIC) from it. Other publications on this
approach are those of 1. Csiszdr, [14, 15, 17] and, in the case of the ARMA model class,
[20, 53].

The following model reduction problem for Gaussian random variables is of interest to
system identification. In system identification a technique is used called subspace methods
that is closely related to the following problem. It is expected that solution of this problem
will be useful to subspace methods. The problem was first formulated in [69, Subsec. 3.8].

Problem 4.5 Model reduction for a pair of Gaussian random variables. Let gy, : Q@ — RP1,
Yo : Q@ — RP2 with (y1,y2) € G(0,5),

St S
S = lTl 12 , rank(S12) = ny.
S1a S22

Consider the model class, for ng € Z4, ny < nq,

G(nz) ={G(0,Q) on Rp1+p2|rank(Q12) = ng, }, (4.12)
Q1 Q2

- 7 4.13

¢ (% cm) (4.13)

in which the components of Q) are compatible with the decomposition (y1,y2). Solve for
fixed ng € Z4, ng < mq,

inf D (G(0,9)]G(0,Q)). (4.14)

An interpretation of this problem follows. In stochastic realization theory of stochastic
processes one uses the framework of past, future, and present or state. If one restricts
attention to the case of Gaussian random variables, thus not of processes, then the past
and the future are represented by Gaussian random variables, say y1,y2 as above. From
observations one can estimate the measure of the past and future observations, say G(0, 5).
The state space associated with the past and the future then has dimension ny = rank(.512).
In the model reduction problem one seeks a model or measure of the observations in which
the dimension of the state space is less than that initially fixed, thus rank(Q12) = na < n1.
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The approximation criterion of divergence seems quite appropriate, also because of its
relation with the likelihood function.

For initial results on this problem see [69, Subsec. 3.8]. The problem has a rich convex
structure that remains to be explored.

4.5 Parameter estimation by divergence minimization

Consider Problem 2.1 of parameter estimation. Consider the time moment ¢ € T'. Suppose

that the observations {y(s),s = 0,...,t} are available and that the estimates {é(s), s =
0,...,t— 1} have been chosen. The question is then how to choose 8(t).
With the observations {y(s),s =0,...,¢} we associate the probability measure G(y, /)

and with the model class the probability measure G(®8, ) where

$(0)* y(0)
o ¢(:1) . y(:l)
o(1)" y(t)

The unknown parameter # has to be estimated. In this setting ¢ : T — R!'*" is a deter-
ministic function. Associate with the past parameter estimates the probability measure
G(0,W) and with the model class the probability measure G(6,c~1I), where c € R, ¢ # 0,

t—1 t—1

(s), W =

=Y
[l
o~ | =

Il
=
w
Il
=

S

Problem 4.6 Consider Problem 2.1 and the notation introduced above. Fort € T choose
the parameter estimate 6(t) as the solution of the minimization problem

Jnf ED (G(y,1)||G(®6,1))— D (G(6,W)||G(8,¢7'1))| . (4.15)

The problem formulated above is related to but different from that of the papers [34, 35].

Theorem 4.7 Consider Problem 4.6.

a. The divergence criterion of that problem is equivalent to the criterion

. L 2 0112
jnf = [llg— 6 — cl}6 - 0]12]. (4.16)

b. The parameter estimator that solves this problem is given by the formula

O(t+1) = 0(1) + K(t)[5(t) — &(1)70(t)], 6(0) =0, (4.17)

where the formula for the gain and the Riccati recursion are as stated in Theorem

4.2.

Note that the parameter estimator (4.17) is identical to the estimators of Theorem 3.4 and
Theorem 4.2.
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Proof a. A simple calculation yields that

det I
20 (G0, 1|G(@0,1) = ~tn ({557 ) — 1+ (7 D) + [ - 00]?
~ |y — o],

det W
det(c='T)

2D (G5, D[G(®6, 1)) ~ 2D(G(B, W) |G(6,e7'T))

2D (G(6,W)||G(8,c7'T)) = —1In ( ) —t+tr(cW) + [|6 - 8],

1 ~ - -
= ?”?j — @) — || — 0])* + Indet W + ¢ — ctrW + tlne.

Note that the last four terms depend on the observations and not on the parameter 6.
Hence they can be neglected in the criterion.
b. It will be shown that the criterion of part a of the theorem is equivalent to the criterion

|15 — ®6]> — ¢l - 8]*.

This will be established by showing that infimization of the functions

t—1

- 1 - 1 . .
F6) =166 9(6) = 7116 — B = - 376~ (5))"(8 — (),
s=0
is equivalent. Both functions are quadratic forms in 8. The derivatives are

af(6) .
—= =2(0-6)"

dO ( ) 9
dg(8) 2 -1 ) = B
—_— = - 6—0(s))" =20 —2- B(s) =2(6—0)".

@ =120 0) 3 0s) =20 -0)

Hence the first order conditions are identical and therefore the optimal # is the same for
both optimization problems. This optimization problem is then given by:

. 1 — 2 N112
inf = {1l = 261" — cllo - 9]

The result then follows from Theorem 4.2. O

5 Concluding remarks

What is the contribution of this paper to the theory of system identification?

The main contribution of the paper is the relation between several information theoretic
criteria and their use in system identification. The concept of mutual information rate
for stationary (aussian processes is identical to H,, entropy and to the exponential-
of-quadratic cost in optimal stochastic control. The likelihood function is identical to
divergence for Gaussian random variables. As a consequence of this relation a parameter
estimator is presented that may be derived by four different approximation criteria. The
problem concerns the approximation of observations from a stationary (Gaussian process
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by the output of a Gaussian system of a specified order. Another product of the paper are
formulas for information theoretic criteria of stationary Gaussian processes in case these
processes are outputs of time-invariant Gaussian systems.

The relationship between the H, entropy for a finite-dimensional linear system and the
exponential-of-quadratic cost for a Gaussian stochastic control system is understood at
the level of the formulas. It is a question as to whether a deeper understanding is possible.
By rephrasing the relation as a relation between mutual information and the exponential-
of-quadratic cost, the interpretation becomes different but it is still not enlightening.

The parameter estimator derived in this paper should be tested on data. Its robustness
properties require further study.

Which problems of system identification theory require further attention?

The framework for system identification with information theoretic criteria should be
explored further. For stationary Gaussian processes also the case of ARMA representations
may be considered. Besides Gaussian processes also finite valued processes, with the
hidden Markov model as stochastic system, and counting processes should be considered.

Theoretical problems of system identification and of realization may be considered using
the framework of this paper. The relation between the likelihood function and divergence
rate may be explored for model reduction of Gaussian systems. Possibly minimization of
the divergence can be solved partly analytically. The approximation problem as such also
requires further study.

System identification theory in general may benefit from studying other classes of dy-
namic systems in relation with practical problems. Examples of such classes are positive
linear systems, particular classes of nonlinear systems, and the class of errors-in-variables
systems. Approximation techniques for nonlinear systems, such as artificial neural nets,
wavelets, and fuzzy modeling, may be explored.
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A Concepts from probability and the theory of stochastic
processes

In this appendix concepts and notation of probability and of the theory of stochastic
processes are introduced.

General mathematics notation follows. The set of integers is denoted by Z and the set
of positive integers by Z,. The set of real numbers is denoted by R and the set of the
positive real numbers by R4 = [0, 00). The n-dimensional vector space over R is denoted
by R™ and the set of n X m matrices over this vector space by R™"*™. The transpose of a
matrix A € R™*" is denoted by AT. The matrix A € R™*" is said to be positive definite
if 2T Az > 0 for all z € R™ and strictly positive definite if 2" Az > 0 for all z € R™, 2 # 0.
The set of complex numbers is denoted by C and

C :={ceC]||d <1},
D :={ceC]|l=1}.

For A € R™*", sp(A) C C denotes the spectrum of the matrix; in other words the set of
eigenvalues.

A.1 Probability concepts

A measurable space, denoted by (€, F'), is defined as a set @ and a o-algebra F. A
probability space is defined as a triple (2, F, P) where (€2, F) is a measurable space and
P : F — Ris a probability measure.

Let I4 : € — R be the indicator function of the event A € F defined by I4(w) = 1, if
w € A and I4(w) = 0 otherwise. For any random variable z let I’ denote the smallest
o-algebra on which the random variable z is measurable.

Let P,@Q be two probability measures on a measurable space (£, F'). Then P is said to
be absolutely continuous with respect to @, denoted by P < @, if P(A) = 0 is implied by
Q(A) =0. If P < @ then it follows from the Radon-Nikodym theorem that there exists
a random variable r : @ — R4 such that

P(A) = Eglris] = /r(w)IA(w)dQ.

A.2 Gaussian random variables

The Gaussian probability distribution function with parameters m € R” and @ € R™*",
with @) strictly positive definite, is defined by the probability density function

1 1 oy,
p(v) = WGXP (—5(‘0 -m)'Q (v )) : (A.1)

A random variable z : @ — R™ is said to be a Gaussian random variable with parameters
m € R™ and Q € R™"*"™, ) positive definite, if for all v € R"

Elexp(iu™)] = exp (me - %UTQU> . (A.2)
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The notation z € G(m, Q) will be used in this case. Moreover, (z1,...,2,) € G(m,Q)
denotes that, with z = (z1,...,2,)", z € G(m,Q). In this case z1,..., 2, are said to be
jointly Gaussian random variables.

A random variable with Gaussian probability distribution function is a Gaussian random
variable. A Gaussian random variable does not necessarily have a (GGaussian probability
density function, only so in the case its variance is strictly positive definite.

In the following the geometric approach to Gaussian random variables is introduced. In
this approach one considers the space that the random variables generate rather than the
random variables themselves.

Proposition A.1 Letz:Q —R" z € G(m,Q), § € R™*™,
a. Then F5% C F*.
b. F5% = F” iff ker Q = ker 5Q.
The above result motivates the following definition.
Definition A.2 Let z:Q — R", 2 € GG and consider the o-algebra F'*.

a. A basis for F'" is a triple (n1, m1,Q1) € N x R™ x R™*™ sych that there exists a
z1: Q — R™ satisfying 1 € G(m1,Q1), Q1 = Qf >0, and F* = ™.

b. A minimal basis for F* is a basis (n1, m1, Q1) such that rank(Q1) = ny.
c. A basis transformation of F* is a map x — Sz, with § € R™*" such that F5* = F~.

By use of linear algebra one can, given a basis (nq1, m1,@1), always construct a minimal
basis for F*.

Proposition A.3 Letz,:Q — R™, 21 € G(0,Q1), and Q1 = Qf > 0. Then there exists
a ny € N and a basis transformation S € R™*™ guch that, if x4 : @ — R™ 29 = Szq,

then z3 € G(0,Q32), Q2 = QF > 0, and F™ = 1,

Problem A.4 Let y; : Q@ — RF and y, : Q@ — R be jointly Gaussian random variables
with (11,y2) € G(0,Q). Determine a canonical form for the spaces F¥', FY2.

Note that a basis transformation of the form S = block — diag(S1,S2) with 51,52 non-
singular, leaves the spaces FY', F¥2 invariant. Therefore this operation introduces an
equivalence relation on the spaces F¥1, F'¥2, hence one can speak of a canonical form.

Definition A.5 Lety; : @ — R and y; : Q — R*? be jointly Gaussian random variables
with (11,y2) € G(0,Q). Then (y1,y2) are said to be in canonical variable form if

= R(k1+k2)><(k1 +k2)

o O~ O

A
0
I
0

O O~
~ o O O©

where A € RF2xF2 ko € Ny, A = diag(My, ..., Ak, ), 12> M > ... > Ay, > 0. One then
says that (y11, ..., Y1k ), (Y21,- -, Y2k, ) are the canonical variables and (A1,..., Ag,,) the
canonical correlation coefficients.
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Theorem A.6 Let y; : @ — R* and y, : @ — R*2 be jointly Gaussian random variables
with (y1,y2) € G(0,Q). Then there exists a basis transformation S = block — diag(S1,52)
such that with respect to the new basis (S1y1, S2y2) € G(0,Q1) has the canonical variable
form.

The transformation to canonical variable form is not unique in general. The remaining
invariance of the canonical variable form will not be stated here because of space limitation.
For additional results on canonical variables the reader is referred to [7, 25].

A.3 Concepts from the theory of stochastic processes

A real valued stochastic process z :  x T'— R on a probability space (2, F, P) and a time
index set T"is defined to be a function such that for all ¢ € T' the map z(.,1): 2 — Ris a
random variable.

A stochastic process z : © x T — R" is said to be a Gaussian process if every finite
dimensional distribution is Gaussian. Thus, if for all m € Z4 and (t1,...,t,) € T
the collection of random variables (t1),...,2(%,,) is jointly Gaussian. Such a process
is completely specified by its mean value function m : T — R”™, m(t) = E[z(?)] and its
covariance function W : ' x T' — R"*", W(t,s) = E[(z(t) — m(t))(z(s) — m(s))T]. A
(discrete time) Gaussian white noise process with values in R* and intensity V : T — R*¥*k,
V(t) = V(t)" > 0, is a stochastic process such that (1) {v(¢),t € T} is a collection of
independent Gaussian random variables; (2) v is a Gaussian process with () € G(0, V(1)).

A stochastic process 2z : Q@ X T — R on T = Z or T = R is said to be stationary if for
all me Zy, seT,and tq,...,t, € T the joint distribution of (z(#1),...,z(t)) equals
the joint distribution of (z(t1 + s),...,2(tm + s)). If forall m € Z4 and #1,...,t, €T
the distribution function of (z(#1 + s),...,2(t, + s)) converges to a limit as s — oo
then we call the process asymptotically stationary. A Gaussian process with mean value
function m : T — R” and covariance function W is stationary iff m(t) = m(0) Vt € T
and W(t,s) = W(t+ u,s+ u), Vt,s,u € T. In this case the function Wy : " — R"*",
Wi(t) = W(t,0) is also called the covariance function.

The concept of canonical correlation process has been defined for stationary Gaussian
processes in analogy with the canonical variable form and canonical correlation coefficients
for Gaussian random variables. That this may be done follows from the fact that many
properties of a stationary Gaussian process depend only on the spaces generated by such
a process. For references on this topic see [28, 42, 43, 54].

B Concepts from system theory

This appendix contains several definitions of concepts from system theory that are needed
at several places in the paper.

Definition B.1 A discrete-time finite-dimensional linear dynamic system or, by way of
abbreviation, a linear system, is a dynamic system

o ={T,R"Y,R",R", U, ¢,r}
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in which the state transition map ¢ and the read-out map v are specified by

¢:x(t+1)= A(t)z(t) + B(t)u(t), z(0) = zo,
roy(t) = C()z(t) + D()u(t).

Here T CZymn,p€EZy, u: T —=R™"uecU, zg e R", A: T - R"™" B:T — R"™™,
C:T—-RP" D:T - RPX" agndz :T — R"y:T — R? are determined by the
above recursions and are called respectively the state function and the output function.
Such a system is called time-invariant if for all t € T A(t) = A(0), B(t) = B(0),C(t) =
C(0), D(t) = D(0). The parameters of such a system are denoted by {n,m,p, A, B,C, D}.

(B.1)

Definition B.2 A Gaussian stochastic control system is defined by the representation

z(t+ 1) = A(t)z(t) + B(t)u(t) + M(t)v(t), 2(0)= zq, (B.2)
W) = (el + D(Dyult) + N(1)o(d), |
where T = {0,1,...,t1}, 11 € Z4, X =R", U =R™ Y =RP, 29 : Q — X, 29 €
G(mg, Qo), v : >< T — R” is a Gaussian white noise process with for allt € T, v(t) €
G(0,V(1)),V:T =R, V(t)=V(t)" >0, the o-algebras '™ and F}, are independent,
A.T—>R”X”,B.T—>Rnxm,C:T—>Rp><”,D:T—>Rpxm,M:T—>R”X7‘,
N:T—-RP 2:QxT =X, andy:QxT =Y.

Stochastic realization

The problem of obtaining a representation of a stochatic process as the output of a stochas-
tic system is called the stochastic realization problem. Below the weak stochastic realization
problem for stationary Gaussian processes is mentioned. For references on this problem
see [19] and the paper by G. Picci elsewhere in this volume.

Consider a stationary Gaussian process with mean value function equal to zero and
covariance function W : T — RP*P, The problem is whether there exists a time-invariant
Gaussian system, say of the form

z(t+ 1) = Az(t) + Mo(1), (B.3)

y(t) = Cz(t)+ No(1), '
with sp(A) C C such that the covariance function of the output process y equals the
given covariance function. If so, then this system is said to be a stochastic realization of
the given process. There is a necessary and sufficient condition for the existence of such a
realization. When a realization exists there may be many realizations. Attention is then
restricted to minimal realizations for which the dimension of the state space is as small as
possible. There is a classification of all minimal stochastic realizations. In addition, there
is an algorithm to construct a minimal realization.

C Concepts from information theory

The purpose of this appendix is to describe for the reader the main concepts of information
theory. In Appendix D formulas are presented for information measures of Gaussian
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random variables and in Appendix E formulas for information measures of stationary
(Gaussian processes.

Information theory originated with the work of C.E. Shannon [61, 62]. The Russian
mathematicians A.N. Kolmogorov, .M. Gelfand, and A.M. Yaglom partly developed the
measure theoretic formulation of information theory, see [24]. The book [57] by M.S.
Pinsker partly summarizes information theory as developed by the Russian school. The
publications of A. Pérez, [55, 56], offer another measure theoretic formulation of informa-
tion theory in which martingale theory is used as a technique to establish convergence
results. Of more recent contributions to information theory we mention the work of I.
Csiszdr [16].

A recent textbook on information theory is the one by T.M. Cover and J.A. Thomas
[13]. Information theory of continuous stochastic processes is treated in the book by S.

Thara [37]. Other books are [30, 45].

Definition C.1 Let z : Q@ — X with X = {ay,a9,...,a,} be a finite valued random
variable and let p, : X — R be its frequency function, p.(a;) = P({z = a;}). Define the
entropy of the finite valued random variable x as

- Zz:;pr(ai)hl (]ﬁ) : (C.1)

The concept of entropy of a finite valued random variable should be regarded as entropy
with respect to a counting measure. Entropy is a property of a probability measure, not
of a random variable. Nevertheless, the terminology of information theory is followed in
referring to entropy of a random variable.

Definition C.2 Let z : Q@ — R” be a random variable whose probability distribution
function is absolutely continuous with respect to Lebesgue measure with density p, : R™ —
R. Define the entropy with respect to Lebesque measure of such a random variable by

where S is the support of p,.

The entropy defined above depends on Lebesgue measure, or in general on the measure
with respect to which it is defined.

Definition C.3 [57, p. 19] Let (Q, F') be a measurable space consisting of a set Q and a
o-algebra I'. Let Py, Py be two probability measures defined on (2, I'). Define the entropy
of Py with respect to Py by the formula

H(Py, Py) = Z:Pl (PQE?;) , (C.3)

{E17 n
where the supremum is taken over all finite measurable partitions of €.

Besides entropy there is the concept of mutual information.
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Definition C.4 [2/, p. 200] Let z : Q@ — X, y : Q@ — Y be random variables taking
values in the finite sets X = {zq,...,2,}, Y = {v1,...,ym} respectively. The mutual
information of z and ¥y is defined by the formula

J('ray) = Z szy(iaj)ln (M> , (C4)

pelle P=(i)py(4)
where

Pay(i,5) = Pz = zi,y = y;}), po()) = Pz = 2i}), py(J) = Py = y;})-

Mutual information of arbitrary real valued random variables may be defined by a lim-
iting argument whereby the entropy is defined as the limit of the entropy of a discrete
approximation of the real valued random variables, see [24].

Proposition C.5 [2/, pp. 209-210]. Let z : Q@ — R", y: Q@ — RP be random variables.
Assume that the probability distribution functions associated with the probability measures
of Ppy, Py, P, are absolutely continuous with respect to Lebesque measure with densities
denoted by pey, pr, py- Then the mutual information, if it is finite, is given by the formula

pl’y(uv 'U)

J(z,y)= //px (u,v)In (7) dudv, (C.5)
! Pa(w)py(v)

where the integral is a Lebesgue integral.

Mutual information of two random variables satisfies 0 < J(z,y) < 400. Moreover,
J(z,y) < oo if the probability measure P, is absolutely continuous with respect to the
product measure P, x P,. Also, J(z,y) = 0 iff z,y are independent random variables.

The third concept from information theory introduced here is divergence.

Definition C.6 Given a measurable space (2, I'). Let
Fys = {f : R4 — R |; fstrictly conver and f(1) = 0},
P={P:F — Ry | P is probability measure }.

For f € Fy, define the pseudo-distance dy on P asdy : P x P — R

ds(Pr, P2) = Elf(“-)ra] = Ep, [f(21)], (C.6)

T2 T2
where () is a o-finite measure on (2, F') such that

P, Py

A o-finite measure () such as used above always exists, () = P; + P, will do. The definition
of dy does not depend on the choice of ¢). It can then be shown that for all P, P, we
have d¢( Py, P;) > 0 and d¢( Py, P;) = 0 if and only if P, = P,. In general ds does not
satisfy the triangle inequality hence it is not a distance.

P <Q, 9.
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Definition C.7 The divergence or the Kullback-Leibler pseudo-distance on P is defined
as a special case of the pseudo-distance defined above with

iRy —R, f(z) = { ;“”’ ‘Z'f_m >0, (C.7)
9 = 07
D(RIPE) = dy(Pa 72) = B |1 = B [ #(E0)] = g a2
2 T2 T2
(C.8)

In general D(Py||Py) # D( || Py).

Divergence is a special case of a pseudo-distance. The choice of the function f specified
by (C.7) seems arbitrary. Information and communication theory provide ample evidence
that the choice of this function and the concepts of entropy, mutual information, and
divergence derived from it are useful for engineering.

Mutual information of real-valued random variables is related to divergence of the prob-
ability measures associated with the same variables by the formula

J(2,y) = D(Puy|| Py X P,). (C.9)

Theorem C.8 [57, Th. 2.4.2., p. 20] Let (, I') be a measurable space with two proba-
bility measures Py, Py defined on it. If the entropy H( Py, Py) is finite then Py is absolutely
continuous with respect to Py and

H(Py, Py) = D(Py||Py). (C.10)

The last stated theorem and the remark above it illustrate the relationship between en-
tropy, mutual information, and divergence. Divergence of probability measures is the basic
concept, mutual information may be derived from it, and so may entropy.

D Information measures of Gaussian random variables

Proposition D.1 [13, Th. 9.4.1] Let y : @ — RF, y € G(m,Q). Assume that Q =
Q7T > 0. The entropy of the random variable y, or of the measure G(m,Q), with respect
to Lebesque measure is given by the formula

1
Hy(G(m,Q)) = 5n <(27re)kdetQ) . (D.1)
Note that the entropy does not depend on the mean of the Gaussian distribution.

Proposition D.2 /24, Th. 1.2., p.209] Let z : @ — R", y : Q@ — R* be Gaussian
random variables and S € R"*". Then J(Sz,y) < J(z,y). If in addition the matriz S is
nonsingular then J(Sz,y) = J(z,y).

Proposition D.3 [24, Th. 2.1] Letz : Q@ — R", y: Q — R*, (2,9) € G(0,Q),Q = Q" >
0, and

@z Quy
Q= .
(@ @)
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a. The mutual information of the random variables x,y is given by the formula

1 det @)
=—In|———F"—1. D.2
J@y)= =3 n(detdeeto) (D2)
b. Let Ay,..., A, € (0,1) be the nonzero canonical correlations of the random variables
x,y. Then
I 5

If in Proposition D.3

Q o I sz
- 9
zy 1
then the mutual information is given by the formula

J(z,y) = —%m det(1 — Q") Quy)- (D.4)

Because of Proposition D.2 mutual information is invariant under scaling of the individ-
ual random variables. Hence mutual information of Gaussian random variables can be
expressed in terms of canonical correlations as in Proposition D.3. Such a representation
was first derived in [24].

Proposition D.4 Let G(m1,Q1) and G(mz,Q2) be two Gaussian measures on R". As-
sume that 1 > 0 and Q3 > 0. The divergence between these measures is given by the
formula

2D (G(my, Q1)||G(m2, Q2))

- (Sigl) +tr([Q " = Q7'1Q1) + (m1 = m2)"Qy (ma —ma)  (D.5)
= Z[/\i(QhCh) —InXi(Q1,Q2) — 1+ (m1 — m2)"Q3 (my —my),  (D.6)

where {\;(Q1,Q2),i € 1,...,n} are the generalized eigenvalues of ()1 with respect to @,
or the solutions of the polynomial equation in A

det(ng\ - Ql) = 0. (D?)

The authors have not found this result in the literature although it is an elementary
calculation. Note the well known convex function f(z) =2 —Inz — 1in (D.6).

Proof of D.4 Both measures are absolutely continuous with respect to Lebesgue measure.
Thus

D(G(ma, Q1)|G(ms, Q2)) = Er [ n (_)] ’

T2
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where
1

") = Tommgerge o (5 e m)
o (17) = (555) - mrero

and hence we find

2D(G(ma, Q1)]|G(m2, Q2))
_ 2/7‘1(1))111 (28) dv

=—In (EZ: g:) —t1(Q7'Q1) + t1(Q5 Q1) + (my — m2) Q5 (my — my).

The expression in terms of generalized eigenvalues is then easy to derive. O

Proposition D.5 etz : @ — R", z: Q — RP, z € G(mq, V1), my € R", V; € R™*",
Vi=V">0,ueR" CeRPF" DeRPY" ceR,

z=Cxz+ Du. (D.8)
Assume that
Vb=V —eCC > 0. (D.9)
Then
1 det\'?  [1 !
Elc eXp(§CZTZ)] =c (d; :;) exp [50 (77;1> M n: ) (D.10)
where
vttt - vt Vi IV,C™D
M= VN . ] v . (D.11)
DTCV, V™ D™D+ e¢D"CVL,CTD
Proof: The proof is a tedious calculation. Let
r=—[V; —ccc]™ (—V;l —cCTD) (ml) : (D.12)
u

Then
1 1 1 1
E |ex —CZTZ)] = / — ex (—CZTZ— —(v—=m)" V7 (v—m )d'v.
[ P (2 @m)rdetV, T A\2 (7= V(o =)
The exponent can be computed as

—e2"z 4 (v —my) "V (v — my)

T T
[ —cC"C —cC™DY\ (v L vt -yt v
\u) \—eD"C —eD™D) \u my vttt ) mg
T
=(w—r)"(VJ' =cC"C)v—71)—c (ml) M (ml) .
u u
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Then:

E [exp (%CZTZ)]
_ 1 _l _ Try/—1 _ T P
_/ —(27r)”detV1 exp( 2(0 r) (V) cC'C)(v T))
T
X exp (10 <m1> M <m1)> dv
2 u u
7—1 Ty -1\ 2 T
_ (det(i/1 —cCTC) ) exp (lc (m1> u <m1)> . -

Suppose that in Proposition D.5 there holds m; = 0, w = 0, ¢ > 0, and V; = [.
Condition (D.9) is then equivalent to I — ¢cCTC > 0 and

1 1 1 1 1
lnE[cl/Qexp(§csz)] = —5111 det(I — cCTC) + 51110 = —5111 det(=1 - CTC).
c
(D.13)

Note the analogy of equation (D.13) with (D.4).

E Information measures of stationary Gaussian processes

Definition E.1 [13, p. 63] Let z : Q — X be a stochastic process onT' = Z. The entropy
rate of this process is defined by the formula

H(z)= lim ~H(a1,29,...,2,), (E.1)

n—oo N
if the limit exists.

Let z : 2 X Z — R be a stationary Gaussian process with spectral density 5. Then the
entropy rate of the process z is given by

h(z) = %111(271’6) + ﬁ/ In S(e”‘)dA. (E.2)

This result is due to A.N. Kolmogorov [44].
Definition E.2 [29, p. 86; p.135], [30], [37, 2.1.5]. Letz : QxT — X, y: QxT =Y,

be stochastic processes on I’ = Z. The mutual information rate of x and y is defined by
the formula

1
J(z,y) = limsup 3

J($|[—n,n]7y|[—n,n])7 (E3)

where J(z|[_p, ], Yl[—n,n]) @5 the mutual information of the processes x,y restricted to the
interval {—-n,—n+1,...,-1,0,1,... ,n}.
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Let for T =Z,2 : Q2 xT — R™and y : @ x T — RP be two jointly stationary and
Gaussian processes that admit a joint spectral density. Denote their joint spectral density
function by

W cmtoxtmtn) oy = (W Wa
W, W,

Assume that the spectral density is nonsingular. It follows from [24] that the mutual
information of two stationary Gaussian processes is invariant under scaling by nonsingular
finite-dimensional linear systems. Therefore transformation to the following canonical form
is useful. Let S, : C — C™*™ and 5, : C — C’*P be minimal square spectral factors of
respectively W, and W’l,, or

Wo(2) = 5.(2)8:(z71)", Wy(z) = 5y(2)S,(z7)".
Define
S(2) = 8u(2)7 Wiy (2)5,(z71) 77,

The spectral density of the transformed process is then

I S(z)
S"hr 1 )

From the fact that W is a spectral density follows that S(2)S(z~1)" < I.

Theorem E.3 a. The mutual information rate of the stationary Gaussian processes
defined above is given by the formula

z

J(z,y) = 4;12 /D lln det[I — S(271)7S(2)]d=. (E.4)

b. Assume that the function S admits a realization as a finite-dimensional linear system
with

S(z)=C(2I — A)'B+ D, sp(A)cCC. (E.5)

Assume that the following set of relations admits an unique solution ) € R™*"

Q=Q" >0, (E.6)
Q=A"QA+C"C+ (A"QB+C"D)N"Y(B"QA+ D7C), (E.7)
N=1-B"QB - D™D >0, (E.8)
sp(A+ BNYB"QA+ D"C)) Cc C. (E.9)

Then
J(z,y) = —% Indet(I — B"QB — D™ D). (E.10)

30



.M. Gelfand and A.M. Yaglom in [24] derived a formula for the mutual information rate
in a geometric formulation. In [57] a formula analogous to (E.4) is presented for the scalar
case. See also [37, Ch. 5]. In the case the stationary Gaussian processes are generated by
finite dimensional Gaussian systems the result of Theorem E.3 seems new.

Proof: a. A proof of part a. can be given along the same line as the proof of theorem E.5.
However, it also automatically follows from theorem E.5 by using the relation between
divergence and mutual information as given by (C.9).

b. If ||S]|sc = 1 then J(z,y) = +o00. If [|.5]|ec < 1 then it follows from the bounded real
lemma that there exists a @ € R™*™ that satisfies the relations of part b. of the theorem.
A realization X of the transfer function I — ST(271)S(z) is given by

o le=ATe 4+ C*Cp+ C"Du,
op = Ap + Bu,
z=-B"¢ - D"Cp+ (I — D"D)u.
Let
A, = B"QA+D"C, z,=12—-QAp— QBu.
Then a realization of 3 is given by
U_lifn = ATz, — Ag*}v_lAzp + Agua
op = Ap + Bu,
z2=—-B"z, — A,p+ Nu.

It is then easy to check that the transfer matrix of ¥ is equal to H™(2~1)H (%) where
H(z)=—-N""2A,(zI — A)"'B 4+ N'/2,

Note that H(z)and H(z)~! are, as a consequence of (E.5) and (E.9), both analytic outside
the unit disc. Then

-1 1
J(z,y) = yp A ;ln det [I - ST(Z_I)S(Z)] dz

-1 1

=i A ;ln det [HT(Z_I)H(Z)] dz
-1 1 T, —1v2

=— [ —In|det H"(27")|*d=
4T Jp =

= / In | det H™(e="")|%df
ar J_,

ks

-1 :
= ReE 21In det H(e=%)df

—T

-1 1
= Re— [ —Indet H™(27")dz
21 Jp 2

-1
= RGTQWihl det H™(o0)

™

1
= —5111 det(I — B"QB — D" D). O
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Definition E.4 [37, 2.1.6] Let x1,25 : QXT — RP? be two stationary processes on T = 7.
Denote by Py, Py the measures induced by z1,x2 respectively on (R™)". The divergence
rate between Py, Py is defined by the formula

D(P||P2) = Jim D(Pi|—p || Pel[=nn) (E.11)

2n+1
if the limit exists, where Pi|[_, n], Pal[—nn) denote the restrictions of Py, Py respectively to
the time index set {—n,...,—1,0,1,... ,n}.

Theorem E.5 Let y1,y2 : @ X T — RP be two jointly stationary Gaussian processes on
T = Z with values in RP. Assume that they have a mean value function that is zero, that
their covariance functions are denoted by W1, Wy : T — RP*P and that they admit spectral
densities, say Wi, Wy : C — CP*? respectively.

a. The divergence rate between the measures induced by these processes exists and is
given by the formula

D(P1[|P,)

_ 1" . det Wa(e™) (o (MW (6N — T (€

=/ (detwl(eﬂ)) +tr (Wa(e™) T () = Wa(e™)]) dA, (B.12)
_ 41ﬂ /_:: tr (S7(e7)$(c™) ~ 1) ~ Infdet S(e™)d, (E.13)

where

Wi(z) = GT(z"H)G1(2), (E.14)

Wy(z) = GI(z"1)Gy(2), (E.15)
S(z) = G1(2)Ga(2)7 . (E.16)

b. Assume in addition that the transfer function S admits a realization as a finite-di-
mensional linear system with a minimal realization parametrized by

z(t+ 1) = Az(t) + Bu(t),

y(t) = Caz(t) + Du(t), (E.17)

where (A, B,C, D) € R"™"™ x R"*P x RP*" x RP*P and sp(A) C C.

Assume further that there exists a matriz () € R™*™ such that the following relations
are satisfied

Q=Q">0,

N =D"D+ B"QB >0,
sp(A— BNY(B"QA+ D"C))c C,
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and that this set of relations admits an unique solution. Let R € R"*"™ be the unique

solution to the Lyapunov equation

R=A"RA+C"C.

Then the divergence rate between the measures induced by the two processes is given

by the formula
1 1
D(PA || P) = —5111 det(B"QB + D"D) + §tr(BTRB +D"D - 1).

Proof: a. Consider the processes restricted to the interval {—m,...,—1,0,1,...

Denote the measures associated with the processes 1,92 by Pi, Py respectively and their
restrictions to the finite interval by Pi|[_p, m], P2l[=m,m]- Define for i = 1,2 the block-

Toeplitz matrix
R = [Wi(j — k)ljk=-m,... 0,...m

From Proposition D.4 follows that

1. (detR?™\ 1 . .
DRI P min) = =510 (o ) + 5t (CRE) = (7))
2

From Szegd’s limit theorem for block-Toeplitz matrices (see e.g. [58]) follows that

lim [det R7]'/?™ = exp 21 / In det W;(e™)dA.
m—00 T J_r
Hence

m b 1 iA
lim L ((de0f2) i/ n {4Vl )
m—oo 2M det RT 27 det VVl(em)

-

Let

S™(t) = [(1 = t)(RT) ™ + (BT TH(RE) ™ = (7)™,

As a consequence of 5zegd’s limit theorem, we know that the spectrum of R* is contained
in a region [mi,Mi] with m; > 0 where m;, M; € R are independent of m. This implies
that the spectrum of $™(t) is also contained in some region [m, M] where m, M € R
are independent of m,t. Hence for a neighborhood of ¢t = 0, %trSm(t) is a uniformly

continuous function in m and t. Therefore, making use of the formula

d ) ity 4
7 log det K (1) = tr (Ix (1) dtlx (t)) )
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we get

Jim o RP(RY) - (RP))

1
= lim —tr5™
im 5 — rS™(0)

: d 1 my—1 my—1
=lim prE Indet((1—#)(RT)™" + t(R5")™")|,_,

m

i d . 1 my—1 my—1

= (hm %ln det((1 —t)(RT)™ +t(RY) )) .

_ d . m\1/2m m\1/2m

=2 {hm (— In(det RT") — In(det R7") )
+Indet((1— t)RY +tRY)/*") | .

d |1 [T a L
= — [27 / In det[(1 — t)Wa(e™) + tW; (™)

— In det W, (™) — In det Wg(eﬂ)]d/\]

t=0

_ % /_ Z tr (W5 (™) — (™)) .

Thus
D(P||Py)
= lim_ 5 DRIl Pl )
1 (7 det
)" (det gjie” ) o _/

1 ks

[W1(e™) = Wa(e™)]) d

= 4 | mmdet(ste ))dA+4T/ (ST( 2)S(e) = 1) d.

b. A realization ¥ of §7(271)S(z) is provided by

2= ATz 4+ C"Cp+ C* Du,
op = Ap + Bu,
=BTz 4+ D"Cp+ D" Du.

Let
A, = B"QA+D"C, z,=2—-QAp— QBu.
Then the realization of ¥ may be written as

o'z, = ATz, + ATN" Y A,p + Alu,
op = Ap + Bu,
z2=B"z,+ A.p+ Nu,
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and it is then easy to check that the transfer matrix of ¥ is equal to H(2~1)" H(z) where
H(z)= N""2A,(z1 — A)"'B + N'/2,

Note that H(z) and H(z)~! are both analytic outside the unit disc. Then, analogously to
the proof of Theorem E.3,

D(P||P) = ﬁ Dé (tr (S"(27")S(2) = I) — In|det(H"(27")?) d=

= —Re Indet H(0) + %tr(BTRB + DD - 1)

1 1
=3 Indet(D"D + B*QB) + §tr(BTRB + DD -1). o

F LEQG optimal stochastic control

The purpose of this appendix is to introduce the reader to the discrete-time optimal
stochastic control problem with a Gaussian stochastic control problem and an exponential-
of-quadratic cost function (LEQG). In addition an expression is derived for the cost in
case of an infinite horizon.

The problem formulation consists of a discrete-time partially observed stochastic control
system driven by Gaussian noise processes. The cost function over a finite-horizon is the
expected value of the exponent of an additive form that is quadratic in the state and in
the input process. The class of control laws consists of all measurable nonlinear functions
of the past observations and inputs.

The history of the LEQG optimal stochastic control problem is summarized below.
D.H. Jacobson formulated and solved the discrete-time and the continuous-time complete
observations case of the problem in [38]. Complete observations refers to the case in which
the input may depend on the current and the past state. Various special cases of the
partial observations case were solved [65, 64, 47, 48] but the general case was considered
as not to admit a solution in the form of a finite-dimensional control law. P. Whittle [70]
solved the discrete-time partial observations LEQG optimal stochastic control problem
and established the existence of a finite-dimensional control law. Additional publications
on this and on related problems by Whittle are [71, Ch. 19] and [76, 72, 73, 74, 75].
The solution to the continuous-time partial observations LEQG optimal stochastic control
problem was presented in [11]. Related publications on the LEQG problem are [32, 39,
59, 60]. Recently a rigorous and elegant approach to the LEQG optimal stochastic control
problem has been proposed by M.R. James, see [12, 40, 41].

The LEQG optimal stochastic control problem is of interest for several reasons. Of
interest to the development of stochastic control theory is the fact that a partially ob-
served optimal stochastic control problem admits a control law with a finite-dimensional
representation. It may point the way to other optimal stochastic control problems with
the same property. The solution of the LEQG problem has been shown to be equivalent
to the solution of a H.,-optimal control problem with the entropy criterion. Therefore
the solution to the LEQG problem has certain robustness properties that are of interest
in control engineering.
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Problem F.1 The discrete-time linear-exponential-quadratic-Gaussian (LEQG) optimal
stochastic control problem with partial observations. Consider the Gaussian stochastic
control system

+ N(t)o(1), (F.1)

where T = {0,1,...,t:}, Ty ={0,1,...,t; — 1}, t1 € Z4. See Appendiz B for the full
details of the definition of a Gaussian stochastic control system. Assume that for allt € T,
NV ()N (t)" > 0. Define the class G of control laws by g € G, ¢ = {90,915+ ,91,-1},
go€U,andfort=1,...,t1—1, g; : YixU' — U, where g; are measurable maps. For the
definition of the cost function let ¢ € R, ¢ # 0, Assume that for allt € T1 Dy(t)"D3(t) > 0
and that In. = L{, > 0. Define the cost function J : G — R

-1
1
J@)IEkwp<;fﬂ@ﬂﬁkﬂﬁﬂ+§:4$5®)>k (F2)
s=0
The problem is to determine
inf J(g), (F.3)

g€eG

and to determine a control law ¢* € G such that

J(g%) = inf J(g). F.4
(97) = inf J(g) (I".4)
The representation of the stochastic control system (I'.1) differs from that considered by
P. Whittle in [70] given by

ot 4+ 1) = A(1)2(t) + B(t)u(t) + o(),

(F.5)
y(t+1) = C(1)(1) + w().

It is well known in system theory for discrete-time systems that the solutions to the
control problems for the representations (F.1) and (F.5) differ and these solutions cannot
be directly transformed into each other.

Consider the Gaussian stochastic control system (F.1). Define the class G of control
laws by g € G, g = {90,91,--- 91,1}, 9o € Uyand fort =1, ..., t; =1, ¢, : Yix U' = U,
where ¢; are measurable maps. For any g € GG the closed-loop control system is specified
by the relations

2I(t4 1) = A(t)z?(t) + Bi(t)g: + M(t)v(t), z9(0) = zq,

(F.6)
y?(1) = Ci(t)z?(t) + D1(t)g: + N(t)v(t).

where g: = ¢:(y7(0),...,y9(t—1),u9(0),...,u?(t—1)). In the sequel the superindex g on
z9,y9 will be omitted.

The formulation of a closed-loop stochastic control system includes the case of a dynamic
compensator. The solution to Problem F.1 above will not be presented here. Instead an
expression will be presented for the cost of an LEQG problem. This expression is needed
in the body of the paper.
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Proposition F.2 Consider a Gaussian system

z(t4+1)= A(t)z(t) + M(t)v(t), z(to) = zo,

A1) = CWa(t) + N(t)w(t), (F.7)

with xo € G(mg, Qo) and v : @ x T — R Gaussian white noise with v(t) € G(0,V;). Let
c € R. Assume that

(¢)

(ii) Qo = Qg > 0;

(iii) for allt € T, V7' — ¢[NT()N(t) + MT(£)Q1(t + 1)M(¢)] > 0 ;
(v) Qg —¢Q1(0) >0

Define Q1 : T — R™", Vo : T — R™ ", r:T — R recursively by

Vi =V > 0;

Qi(th +1) =0, (F.8)
r(th+1)=c, (F.9)
Va(t) = Vi — N ()N (1) + M()7@a(t + M(1), (F.10)

Q1) = ( )1Qu(t 4+ 1)A(®) + c[CH)N (1) + A1) Qu(t + 1) M(1)]
x Va([C@)N(E) + A() Qa1 + M)+ C()"C(1),  (F.11)

1/2
r(t)=r(t+1) (%V#f)) ) (F.12)
Q2=Q0'[Qy" —c@i(0)]7'Q" — Q5 (F.13)
Q3" = Q5" — cQ1(0). (F.14)
Then
1 tq d 1/2 1
E |cexp <§c;z(s)Tz(s)>] =7r(0) (dzz gz> exp (§mgQ2mo> . (F.15)

Proof 1. Let W : T x X — R

cexp (%c Z z(s)Tz(s))

s=t

Wi(t,z(1)) = E FPV Y, (F.16)

This function is well defined because z is a Markov process and v is (Gaussian white noise.
It will be shown that W satisfies the recursion

W(t,2(t) = E [exp (%cz(t)Tz(t)) W+ 1,2t + 1))‘ y F;f_l] ,

with W(t; + 1,2(¢; + 1)) = c¢. By definition, the formula at the terminal time holds. Let
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t €T 1<t and assume that the recursion formula holds for s =¢+1,...,%;. Then

W(t,z(1))

= F |cexp (%CZZ(S)TZ(8)>

s=t

= F |exp (%cz(t)Tz(t)) E {cexp (% Z Z(S)TZ(S))

s=t+1

th k4 Ftv—l

FP v,

thiHVFtU}

5 [ exp (%cz(t)Tz(t)) W(t+1,2(1+1))

F*V Ff_l] .

where the second equality follows by reconditioning and because z(t) is measurable on
F vV FY The result then follows by induction.

2. The proof proceeds as in dynamic programming, except that there is no optimization
in each step. Below use is made of Proposition D.5. Thus

1
W(t1,z(t1)) = F |:c exp (§cz(t1)Tz(t1)) ‘ Fiv Fﬁ_l]

1 [v(t) " (NN NTC v(th)
“PV2Neiy) \ev e ) \a)
et Vo(ty 12
= cexp (%Cﬂﬁ(tl)TQl(tl)m(tl)> (dd%‘(/f))

= r(t) exp (%cm(tl)TQl(tl)m(tID .

=E FEVF_,

Suppose that for s =t 4+ 1,t+2,... .1

1
Wis.2(9) = ris)exp Ger(sQu(s)a(s))
It will be shown that this formula holds for s = .
Wi(t,z(t))

_F :eXp (%cz(t)Tz(t)) W(t+1,2(t + 1))‘ v Ff_l]

=F —r(t + 1) exp (%c [2(0)"2(¢) + z(t + 1)TQ1(t + Vz(t + 1)])

=FE|r(t+1)exp (%c (;Eg) A (ZEg))

= r(vyex (e Q0 ()

Fv Ftu—1:|

FEV

where

7 NTN + MTQ:1(t+1)M NTC+ MTQ1(t+1)A
T NCTNHATQi(t+ )M CTCH+ ATQi(t+1)A )
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The first equality follows from step 1 of the proof. The second equality is a consequence
of the induction step. For the last steps we used Proposition D.5 and the formulas for

Va(1)™1, Q1(1), and #(t). Finally
o)

1 & .
S

s=0

FEV Y,

— E[W(0,2(0))] = E [T(O)exp (%CQE(O)TQI(O)QE(O))]

d 1/2
=7r(0) (diz gz) exp (%mgé)gmo) . O

Proposition F.3 Consider the time-invariant Gaussian system

z(t+ 1) = Az(t) + Mo(t), z(to) = zo,

(F.17)
2(t) = Cz(t) + No(t),

with zg € G(mg, Qo) and v : @ x T — R” Gaussian white noise with v(t) € G(0,V;). Let
c€R,c>0. Define Q1 : T — R™ ™ as in Proposition F.2. Assume that:
(i) i=V">0;
(1) Qo= Qf > 0;
(iii) forallt € T, V7' — ¢[NTN + M7Qq(t + 1)M] > 0;
(iv) Q5" - cQi(0) >
)

(v) the following set of relations admits an unique solution ) € R™*™
Q=A"QA+C'C +c[ATQM + C"NV,[A"QM + C"N]", (F.18)
Vb=Vt —eM™QM — eN'N >0, (F.19)
Q5" — cQ > 0; (F.20)

(vi) For all t € T, imr_o Q1,7(t) = Q where Q1 7(t) is the solution of (F.11) with
terminal condition Q1 7(T 4+ 1) = 0.

Then
1<
tlgg@—lnE cexp (5022 )]
L : S
= 5111 det(Vi7 —eM"QM — e¢N'N) + 5111 det V7. (F.21)
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Proof: Consider the horizon {0, 1,...,7T} with zo € G(0, Qo). By (F.10) and assumption
(vi)

lim Vy(¢)~" Jim Vit = eM™Qir(t)M — eN* N1 = V! —eM™QM — ¢cN"N,

T—00
:Illm Q3" = Tlim Qo' — cQ1.7(0)] = Q5" — ¢Q > 0, and finite,

lim < 0.
T—oo Q2

Then

lim — ln F

t—oo t

¢
cexp (%CZZ(S)TZ(S))]
a1 det Q3\"? ¢ det Va(s) 1/2
St (C(det@o) (%)

(by Proposition F.2)
. det Qs | 1 ~, (detVi(s
=1 | —1 |
m [ net (deth) + QtZ n( det Vi )]
_ 11 det V5
~2 " \det1y

- _% Indet(V;™' — eM™QM — ¢N"N) + %hl det(Vy7). .

G H-infinity control with an entropy criterion

The purpose of this section is to give the reader a very brief introduction to the discrete
time H, control problem. The H, control problem was formulated by G. Zames in [77].
However its roots go back much further to work on differential games. One of the first
publications directly related to H,, was [51]. A first solution of the H, control problem was
based on frequency domain techniques and for an overview we refer to [23]. A breakthrough
was the paper [18] which presented a complete solution of the H, control problem based
on time-domain techniques. This approach was based on Riccati equations and hence
could be implemented easily. A first solution of the discrete time H., problem can be
found in [66, 49, 9]. Currently several good books are available [10, 67, 50, 31].

The main reason for studying the H., control problem is model uncertainty. Using H, ,
it is possible to suppress the effect of model uncertainty on the behaviour of our plant.
Also dependence on our knowledge of noise characteristics can be handled via H, control.

We consider the following control system:

e(t+ 1) = A)z(t) + Bi(tyu(t) + M(t)u(t), 2(0) = o,
S:oy(t) = Cu02() + Diltu(t) + N(ow(1), (G.1)
A1) = Co(t)a(t) + Da(t)u(t).

Here z € R™ is a state vector in which we are interested. ¥ € R? is a measurement vector
and » € R” is a disturbance affecting both the state evolution as well as our measurement.
Note that » might consist of two independent components; one affecting the state evolution
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and one the measurement. In contrast with LEQG we do not assume that » is white noise
but an arbitrary £ signal. Finally, © denotes our control input and z is an output we want
to make small.

Define the class G of control laws by ¢ € G, ¢ = {g0,91,---,94,-1}, 90 € U, and for
t=1,...,t1—1,g; : Y!xU! — U, where g; are measurable maps. We define the following
cost function:

12115 4
J(g) = su e G.2
) =300 ol + e oo (2)
where
tq
[0l = D o)) (G
s=0

If t1 = oo then we must constrain » to fg, the class of signals for which the infinite sum
(G.3) converges. The problem is then to determine

J(g*) = inf J(g).

(97) = inf J(g)

This problem turns out to be very hard but the related suboptimal problem does have an
elegant solution. For each ¢ € R we are looking for a controller g € GG such that J(g) < ¢ .
In the literature, necessary and sufficient conditions for the solvability of this suboptimal
problem have been derived. Moreover, if it exists, one particular suboptimal controller is
given. This controller is suboptimal for the original optimization problem. However, this
controller minimizes the following criterion:

Je(g) = sup cllz3,, — [1vll3,, — 26 B zo.

V,T0

If t; = 00, (0) = 0, and both the system and the controller are time-invariant, then this

particular controller has another interpretation.
First note that in this case

J(g) = [ISI%, := sup [IS(eM)?
AE[—m,m]

where S denotes the closed loop transfer matrix from v to z. As shown in [52] for the
continuous time and later in [36] for the discrete time, the particular controller mentioned
above is optimal for the following optimization problem:

J.(g*) = inf J.
(97) = inf Je(g)
with

_ -t 1ln det (I — CST(Z_I)S(Z)) dz. (G.4)

Ielg) = ame Jp 2

Clearly this interpretation is only valid for a time-invariant system. Note that this ex-
pression is the same as the expression for the mutual information given in Theorem E.3.
Hence given a controller and hence the closed loop transfer matrix then (G.4) is equal to
an expression of the form (E.10). For the sake of completeness we formulate this in the
following theorem.
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Theorem G.1 Assume that the transfer matriz S admits a realization as a finite dimen-
stonal linear system with

S(z)=C(zI —A)"'B+ D, sp(A)cC . (G.5)

The following set of relations admits an unique solution () € R™*"

Q=Q">0, (G.6)
Q=A"QA+C"C+ (A"QB +C™D)N~Y(B"QA+ D7C), (G.7)
N=c'T-B"QB-D"D >0, (G.8)

sp(A+ BN"Y(B"QA+ D7C)) c C, (G.9)

if and only if ||S]|ee < ¢='/2. Moreover, in that case

_—1, lln det (I —cS"(271)9(z)) dz = —lln det(I —e¢B"QB —¢D™D). (G.10)
dmi Jp = 2
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