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Realization theory for linear hybrid systems, part II:
Reachability, observability and minimality

ABSTRACT
The paper is the second part of the series of papers started in [1]. The paper deals with
observability, reachability and minimality of linear hybrid systems. Linear hybrid systems are
continuous-time hybrid systems without guards, whose continuous dynamics is determined by
time-invariant linear control systems. We will show that that if a set of input-output maps has a
realization by a linear hybrid system, then it has a realization by a minimal linear hybrid system.
We will present conditions for observability and span-reachability of linear hybrid systems and
we will show that minimality is equivalent to observability and span-reachability. We will sketch
algorithms for checking observability and span-reachability and for transforming a linear hybrid
system to a minimal one.
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Abstract

The paper is the second part of the series of papers started in [1]. The paper deals with observability,

reachability and minimality of linear hybrid systems. Linear hybrid systems are continuous-time hybrid

systems without guards, whose continuous dynamics is determined by time-invariant linear control

systems. We will show that that if a set of input-output maps has a realization by a linear hybrid

system, then it has a realization by a minimal linear hybrid system. We will present conditions for

observability and span-reachability of linear hybrid systems and we will show that minimality is

equivalent to observability and span-reachability. We will sketch algorithms for checking observability

and span-reachability and for transforming a linear hybrid system to a minimal one.

This work was carried out during the first author’s stay at Centrum voor Wiskunde en Informatica (CWI) in Amstredam, The

Netherlands.
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I. INTRODUCTION

The current paper is a continuation of [1] and its aim is to present results on observability,

reachability and minimality of linear hybrid systems.

The problem of finding a minimal state-space realization of a certain class is a very fundamen-

tal one, and has important applications in systems identification and model reduction. Indeed,

identifiability and minimality are closely related properties, hence characterizations of minimality

may help to understand identifiability for a particular class of systems. In addition, minimization

procedures may give rise to model reduction techniques, which, in turn, can facilitate analysis

and control design for complex systems. Furthermore, it is widely accepted that understanding

of observability and reachability is necessary for control and observer design.

Similarly to Part I, we will investigate linear hybrid system realizations of a family of input-
output maps. By formulating our results for families of input-output maps rather than for a single

input-output map we obtain more general, and hence potentially more widely applicable results.

In addition, considering families of input-output maps should facilitate an easier connection to the

framework of behaviours [2]. Furthermore, results on minimal realizations of families of input-

output maps should help understanding the relationship between minimality and bisimulation

(see the discussion later on).

Recall from [1] that a linear hybrid system is a hybrid system without guards whose continuous

dynamics is determined by time-invariant continuous-time linear systems and whose discrete

dynamics is determined by a finite Moore-automaton. For more on hybrid systems see [3] and

the references therein. Recall that in Part I [1] we already presented sufficient and necessary

conditions on existence of a realization by linear hybrid systems. The current paper presents a

solution to the following problems.

1) Observability, reachability and dimension Find a suitable notion of observability, reach-

ability and dimension for linear hybrid systems.

2) Minimality Consider a linear hybrid system H , and assume that H is a realization input-

output maps Φ. Does there exists a minimal linear hybrid system realization of Φ, and if

yes, is it unique ? In addition, find a necessary and sufficient conditions for H being a

minimal realization of Φ and present a procedure for transforming H to a minimal linear

hybrid system which realizes Φ.
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We will propose a notion of observability and span-reachability for linear hybrid system which

will enable us to develop realization theory. We will show that observability and span-reachability

can be characterized via linear algebraic conditions, which can be checked numerically. If applied

to linear systems, the proposed notions of observability and span-reachability yield the classical

definitions. We will define a notion of dimension for linear hybrid systems, which yields the

classical definition if applied to linear systems. It will be shown that a linear hybrid system

is minimal if and only if it is observable and span-reachable. We will show that if a family

of input-output maps has a realization by a linear hybrid system, then it has a realization by

minimal linear hybrid system and all minimal linear hybrid systems realizing the same family

of input-output maps are isomorphic. In addition, we will show that any linear hybrid system

can be transformed to a span-reachable and observable, and hence minimal, linear hybrid system

which realizes the same input-output behaviour. In addition, this transformation can be done by

an algorithm.

As it was already pointed out in Part I of the current series of papers [1], to the best of our

knowledge, the only results on realization theory of hybrid systems are in [4], [5], [6], [7], [8],

[9]. Except [10], [8], none of the papers cited above deal with linear hybrid systems. In [10],

[8] some of the results of the current paper were stated, but most of the proofs were omitted.

The results of the current paper were included into the first author’s PhD thesis [11].

There is a link between the notion of minimal realization and the notion of biggest bisimulation.

The latter was investigated in several papers, see [12], [13], [14], [15], [16]. In particular,

bisimulation theory was developed for linear switching systems in [12], [17]. The main difference

between linear switching systems and linear hybrid systems is that in the former the discrete

events are viewed as disturbances, while in the latter discrete events viewed as inputs. In addition,

in the case of linear switching systems the automaton is nondeterministic, while for linear

hybrid systems the automaton is deterministic. For deterministic systems, the biggest bisimulation

relation essentially coincides with the indistinguishability relation. More generally, the concept

of bisimulation can be viewed as an extension of the classical notions of system morphism

and observability to non-deterministic systems. In particular, if only span-reachable systems are

considered, then a minimal linear hybrid system, in the sense defined in this paper, roughly

corresponds to a linear hybrid system where the biggest bisimulation is the identity relation.

Although the existence of a strong relationship between minimality and bisimulation is clear,
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much more work needs to be done to explore the details of this relationship.

Theory of rational formal power series [18], [19], and classical automata theory [20], [21]

are the main mathematical tools used in the paper. As it was noted in Part I, formal power

series were already used for realization theory of nonlinear systems, see [22], [23], [24] and the

references therein.

Part I, [1] is a prerequisite for the current paper. In particular, we will use the same notation

and terminology as described in Part I. The proofs of the main result rely heavily on the results

presented in Part I [1]. The outline of the paper is the following. Section II recalls from Part

I the notions related to linear hybrid systems and presents the definitions of span-reachability,

observability, dimension and hybrid system morphism. Section III presents the main theorems

of the paper formally. Section V contains the proof of Theorem 3 which characterizes minimal

linear hybrid systems. Section VI discusses briefly the computational aspects of minimality. Note

that a more detailed exposition is planned in the form of a separate paper. The appendix presents

some of the technical proofs.

II. PROBLEM FORMULATION

A. Linear Hybrid System

Recall from Part I [1] the definition of linear hybrid systems. That is, a linear hybrid system

is a system of the form

H :





d

dt
x(t) = Aq(t)x(t) + Bq(t)u(t)

y(t) = Cq(t)x(t)

q(t+) = δ(q(t), γ(t)), x(t+) = Mq(t+),γ(t),q(t)x(t−)

o(t) = λ(q(t))

(1)

Here q(t) ∈ Q is the discrete state at time t, x(t) ∈ R
nq(t) = Xq(t) is the continuous state at time

t, y(t) ∈ R
p is the continuous output at time t, and o(t) ∈ O is the discrete output at time t.

The behaviour of the system at time t is influenced by the continuous input u(t) ∈ R
m, and the

discrete input γ(t) ∈ Γ. Further, Q is the finite set of discrete states of H , Xq = R
nq , nq > 0 is

the continuous state-space associated with the discrete state q ∈ Q, O is the finite set of discrete
outputs, Γ is the finite set of discrete inputs (events), R

m is the set of continuous input values,

DRAFT



5

and R
p is the set of continuous output values. The state-space of H is the set of all pairs (q, x)

where q ∈ Q is a discrete state and x ∈ Xq is a continuous state. For each discrete state q ∈ Q,

the matrices Aq ∈ R
nq×nq , Bq ∈ R

nq×m and Cq ∈ R
p×nq define a continuous-time linear system

(Aq, Bq, Cq) on Xq = R
nq . The map δ : Q × Γ → Q is called the discrete state-transition map,

and the map λ : Q → O is called the discrete readout map. For each discrete state q ∈ Q and

discrete input γ ∈ Γ, the matrix Mδ(q,γ),γ,q ∈ R
nδ(q,γ)×nq is referred to as a reset map. Recall

from Part I [1] the following notation.
Notation 1 (Linear hybrid systems): A linear hybrid system of the form (1) is denoted by

H = (A, Rm, Rp, (Xq, Aq, Bq, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

where A = (Q, Γ, O, δ, λ) is the Moore-automaton formed by the discrete-state transition and

discrete readout map of the system H . The automaton A is denoted by AH , and the state space
of H will be denoted by HH =

⋃
q∈Q{q} × Xq.

Below we will briefly recall the dynamics of linear hybrid systems, which follows the classical

definition [3]. Denote the set of timed sequences of discrete inputs by (Γ × T )∗, i.e. a typical

element of (Γ×T )∗ is a finite sequence of the form w = (γ1, t1)(γ2, t2) · · · (γk, tk) where k ≥ 0,

γ1, . . . , γk ∈ Γ, t1, . . . , tk ∈ T . The interpretation of the sequence w is the following. The event

γi took place after the event γi−1 and ti−1 is the elapsed time between the arrival of γi−1 and the
arrival of γi. That is, ti is the difference of the arrival times of γi and γi−1. Consequently, ti ≥ 0

but we allow ti = 0, that is, we allow γi to arrive instantly after γi−1. If i = 1, then t1 is simply

the time when the event γ1 arrived. The inputs of the linear hybrid system H are piecewise-

continuous input functions u ∈ PC(T, Rm) and timed sequences of discrete inputs (events)

w = (γ1, t1) · · · (γk, tk) ∈ (Γ×T )∗. Recall from Part I that for an arbitrary state h0 = (q0, x0) of

H the continuous state xH(h0, u, w, tk+1) ∈ Xqk
reached from h0 with inputs u and w at time

∑k
j=1 tj + tk+1 is of the form

xH(h0, u, w, tk+1) =

eAqk
tk+1Mqk,γk,qk−1

eAqk−1
tk · · ·Mq1,γ1,q0e

Aq0 t1x0+

+

k∑

i=0

eAqk
tk+1Mqk,γk,qk−1

eAqk−1
tk · · ·Mqi+1,γi,qi

×

×

∫ ti+1

0

eAqi
(ti+1−s)Bqi

u(s +

i∑

j=1

tj)ds

(2)
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Define the output υH(h0, u, w, tk+1) induced by h0 under inputs u, w at time
∑k+1

j=1 tj as

υH(h0, u, w, tk+1) = (λ(q0, w), Cqk
xH(h0, u, w, tk+1))

Recall from Part I the input-output map of the system H induced by the state h0 ∈ HH of H

as the function

υH(h, .) : PC(T, Rm) × (Γ × T )∗ × T 3 (u, w, t) 7→

υH(h, u, w, t) ∈ O × R
p

(3)

Let H0 be a subset of the state space HH and for each discrete state q ∈ Q define the set

Reachq(H,H0) as the linear span of all the continuous states which belong to Xq and are

reachable from some initial state in H0, i.e.

Reachq(H,H0) = Span{xH(h0, u, w, t) ∈ Xq |

h0 = (q0, x0) ∈ H0, u ∈ PC(T, Rm), t ∈ T, and

t1, . . . , tk ∈ T, w = (γ1, t1) · · · (γk, tk), k ≥ 0, δ(q0, γ1γ2 · · ·γk) = q}

(4)

The linear hybrid system H is called span-reachable from H0 if,

1) The automaton AH is reachable from ΠQ(H0) = {q ∈ Q | ∃x ∈ Xq : (q, x) ∈ H0}, and

2) For each discrete state q ∈ Q, Reachq(H,H0) = Xq.

Two states h1 6= h2 ∈ HH of the linear hybrid system H are indistinguishable if υH(h1, .) =

υH(h2, .), that is the input-output map induced by the state h1 is the same as the input-output map

induced by the state h2. H is called observable if it has no pair of distinct indistinguishable states.

In other words, H is observable if for any two states h1, h2, the equality υH(h1, .) = υH(h2, .)

implies h1 = h2.

Recall from Part I [1] that the input-output maps of interest are maps of the form f :

PC(T, Rm)×(Γ×T )∗×T → O×R
p and the class of all such maps is denoted by F (PC(T, Rm)×

(Γ×T )∗×T, O×R
p). Recall from Part I [1] the definition of a linear hybrid realization. That is,

let H be a linear hybrid system of the form (1) and let Φ be a subset of the set of input-output

maps. Let µ : Φ → HH be any map. Then the pair (H, µ) is called a realization . The map µ

just specifies a way to associate an initial state to each element of Φ. The set Φ is said to be

realized by a hybrid realization (H, µ), if µ : Φ → HH , and for each

υH(µ(f), .) = f
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That is, for each input u ∈ PC(T, Rm), for each timed sequence of discrete inputs w ∈ (Γ×T )∗

and for each time t ∈ T ,

υH(µ(f), u, w, t) = f(u, w, t)

We will say that H realizes Φ if there exists a map µ : Φ → HH such that (H, µ) realizes

Φ. With slight abuse of terminology, sometimes we will call both H and (H, µ) a realization
of Φ. We say that a realization (H, µ) is observable if H is observable and we say that (H, µ)

is span-reachable if H is span-reachable from the range of µ, i.e. if H is span-reachable from

Imµ = {µ(f) | f ∈ Φ}. Recall that denoted by µD the Q-valued component of µ, and by µC

the continuous valued component of µ, that is, for each f ∈ Φ, µ(f) = (µD(f), µC(f)).

For a linear hybrid system H the dimension dim H of H is defined as a pair of natu-

ral numbers; the first component of dim H is the cardinality of the discrete state-space, the

second component is the sum of dimensions of the continuous state-spaces, that is dim H =

(card(Q),
∑

q∈Q dimXq) ∈ N×N. For each two pairs of natural numbers (m, n), (p, q) ∈ N×N

define the partial order relation as (m, n) ≤ (p, q), if m ≤ p and n ≤ q. That is, the pair (m, n)

is smaller than or equal to the pair (p, q), if m is not greater than p and n is not greater than

q. The reason for defining the dimension of a linear hybrid system as above is that there is a

trade-off between the number of discrete states and dimensionality of each continuous state-space

component. Notice that the above ordering of dimensions of linear hybrid systems is a partial
order. That is, there can be two linear hybrid systems, dimensions of which are impossible to

compare. For example, it may happen that one has two hybrid system realization of the same

input/output map such that one of the realization has more discrete states but the dimensionality

of the continious state-spaces is small, while the other realization has fewer discrete states, but

the dimensionality of each continious state space is bigger.

A realization H of Φ is called a minimal realization of Φ, if for any linear hybrid system

realization H
′ of Φ: dim H ≤ dim H

′ , i.e. the following two conditions hold,

1) for any realization H
′ of Φ, the dimension of H

′ is comparable with the dimension of H ,

and

2) the dimension of H
′ is not smaller than the dimension of H .

Since not all hybrid realizations of Φ have comparable dimensions, it is not at all clear that one

can choose a hybrid system realization of Φ whose dimension is minimal. Hence, the existence
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of a minimal linear hybrid realization does not follow trivially, it has to be proven.

Below we will define the notion of linear hybrid system morphisms. Linear hybrid morphisms

play a role, similar to the notion of algebraic similarity for linear systems. Let H
′ be a linear

hybrid system of the form

H
′

= (A
′

, Rm, Rp, (X
′

q , A
′

q, B
′

q, C
′

q)q∈Q
′ , {M

′

δ
′ (q,γ),γ,q

| q ∈ Q
′

, γ ∈ Γ})

and assume that A
′ is of the form (Q

′

, Γ, O, δ
′

, λ
′

). Let H be a linear hybrid system of the

form (1). Let Φ be a set of input-output maps and let µ : Φ → HH and µ
′

: Φ → HH
′ be

two maps (recall that HH and HH
′ denote the state-space of H and H

′ respectively). A map

T : HH → HH
′ is called a linear hybrid morphism from (H, µ) to (H

′

, µ
′

). if the following

conditions hold.

1) There exists a map TD : Q → Q
′ and for each discrete state q ∈ Q of H there exist a

linear map TC,q : Xq → XTD(q) such that

a) The map TD forms an automaton morphism TD : (A, µD) → (A
′

, µ
′

D),

b) for any state (q, x) ∈ HH of H , T ((q, x)) = (TD(q), TC,q(x)) ∈ HH
′ holds.

2) For each discrete state q ∈ Q of H ,

a) The matrices Aq, Bq, Cq, the map TC,q and the matrices A
′

TD(q), B
′

TD(q), C
′

TD(q) com-

mute, i.e.
TC,qAq = A

′

TD(q)TC,q, TC,qBq = B
′

TD(q), and

Cq = C
′

TD(q)TC,q

b) For each input event γ ∈ Γ, the reset maps Mδ(q,γ),γ,q, M
′

δ
′ (TD(q),γ),γ,TD(q)

and the

maps TC,q, TC,δ(q,γ) commute, i.e. TC,δ(q,γ)Mδ(q,γ),γ,q = M
′

δ
′ (TD(q),γ),γ,TD(q)

TC,q

3) For each input-output map f from Φ, T (µ(f)) = µ
′

(f).

The fact that T is a linear hybrid system from (H, µ) to (H
′

, µ
′

) will be denoted by T :

(H, µ) → (H
′

, µ
′

). It is easy to see that there is a one-to-one correspondence between linear

hybrid morphism T : (H, µ) → (H
′

, µ
′

) and pairs maps (TD, TC) such that TD : (A, µD) →

(A
′

, µ
′

D) is an automaton morphism, and TC :
⊕

q∈Q Xq →
⊕

q∈Q
′ X

′

q is a linear map defined

between the direct sums of the continuous state spaces, such that for each q ∈ Q and for

all x ∈ Xq, TCx = TC,qx ∈ X
′

TD(q) and the maps TD, TC,q satisfy the condition 1), 2), and 3)

described above. Using the identification of T with a pair (TD, TC) as described above, the linear

hybrid system morphism T is said to be injective, surjective or isomorphism if both TD and TC are
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respectively injective, surjective or bijective as maps. Two linear hybrid system realizations are

isomorphic if there exists a linear hybrid isomorphism between them. The following proposition

collects some simple properties of linear hybrid morphisms.

Proposition 1 ([11], Proposition 27 and Proposition 28, Chapter 7, page 197–198): With the

notation above,

1) For any state h ∈ HH of H, the input-output maps induced by h and T (h) are equal, i.e.

υH(h, .) = υH
′ (T (h), .).

2) If T is an isomorphism, then (H, µ) is span-reachable if and only if (H
′

, µ
′

) is span-

reachable and (H
′

, µ
′

) is observable if and only if (H
′

, µ
′

) is observable.

3) T is an isomorphism, if and only if T is bijective as a map T : HH 3 (q, x) 7→

(TD(q), TC,q(x)) ∈ HH
′ .

4) If T is surjective, then dim H
′

≤ dim H . If dim H = dim H
′ and T is surjective, then T

is a linear hybrid isomorphism.

The proof is very straightforward and can also be found in [11].

III. MAIN RESULTS

The goal of the section is to present the main results of the paper in a formal way. In order to

do so we will have to recall some notation from Part I. Recall from Part I, Section II, Notation 2

the notation used to denote the product of system matrices of a linear hybrid system. We will start

with formulating a linear-algebraic characterization of observability of linear hybrid systems. In

order to do so, we will have to introduce some additional notation. Let H be a linear hybrid

system of the form (1). For each discrete state q ∈ Q define the subspace OH,q of Xq as the

intersection of the kernels of all the matrices of the form Cqk
A

αk+1
qk Mqk,γk,qk−1

· · ·Mq1,γ1,q0A
α1
q0

,

i.e.

OH,q =
⋂

k≥0

⋂

γ1,...,γk∈Γ

⋂

α1,...,αk∈N

kerCqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mq1,γ1,q0A
α1
q0

(5)

Now we are ready to state the characterization of observability for linear hybrid systems.

Theorem 1 (Observability): H is observable if and only if

(i) For each two discrete states s1, s2 ∈ Q, s1 = s2 if and only if the following two conditions

hold

DRAFT



10

(a) Equality of Discrete Outputs

For all k ≥ 0, and for any sequences of discrete inputs γ1, . . . γk ∈ Γ, the corresponding

discrete outputs are the same, i.e. λ(s1, γ1 · · ·γk) = λ(s2, γ1 · · ·γk)

(b) Equality of "Generelized Markov Parameters"

For all k ≥ 0, for all γ1, . . . , γk ∈ Γ, for all l = 1, . . . , k +1, and for all αl, . . . , αk+1 ∈

N,

Aαk+1
qk

Mqk,γk,qk−1
· · ·Mql,γl,ql−1

Aαl
ql−1

Bql−1
=

Aαk+1
vk

Mvk,γk,vk−1
· · ·Mvl,γl,vl−1

Aαl
vl−1

Bvl−1

(6)

where ql−1 = δ(s1, γ1γ2 · · ·γl−1) and vl−1 = δ(s2, γ1γ2 · · ·γl−1).

(ii) For each q ∈ Q, 0 is the only element of the subspace OH,q, i.e. OH,q = {0}.

The proof of the theorem will be presented in Section IV. The intuition behind the characteriza-

tion of observability is the following. Condition (ii) ensures that there are no two indistinguishable

states with the same discrete state components, i.e. there are no two indistinguishable states of

the form (q, x) and (q, y) with x 6= y. Condition (i) ensures that no two states of the form (s1, 0)

and (s2, 0) are indistinguishable. It can be shown that condition (i) and condition (ii) of Theorem

1 can be checked algorithmically, see Section VI for more details.

Corollary 1: Assume that, (1) for each discrete state q ∈ Q, the linear system (Aq, Bq, Cq)

is observable, and either (2) the automaton AH is observable, or (3) for any two distinct

discrete states s1 6= s2 ∈ Q, the Markov parameters of the linear systems (As1 , Bs1, Cs1) and

(As2, Bs2 , Cs2) are not identical. Then H is an observable linear hybrid system.

Proof: Notice that for all discrete states q ∈ Q, the subspace OH,q is contained in the kernel

of the observability matrix [CT
q , AT

q CT
q , . . . , A

nq−1
q CT

q ]T . Hence, condition (1) implies that for all

q ∈ Q, OH,q = {0}, i.e., condition (ii) of Theorem 1 holds. If (2) or (3) holds, then condition (i)

of Theorem 1 holds. Indeed, if (2) holds, then condition (a) of Theorem 1 implies that s1 = s2;

if (3) holds, then condition (b) of Theorem 1 implies that s1 = s2.

Remark 1: One can construct counterexamples, which show that observability of a linear

hybrid system does not imply observability of all the linear subsystems; and conversely, observ-

ability of all the linear subsystems does not imply observability of the whole hybrid system.

Below we will formulate a computable algebraic characterization of span-reachability. Before

we can state the theorem, we need to introduce some additional notation and terminology. Let
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Φ be a set of input-output maps and assume that H is a linear hybrid system of the form (1)

and assume that µ : Φ → HH is a map assigning initial states to each element of Φ. Recall

the definition of the map µD : Φ → Q from Section II. and notice that (AH , µD) is a Moore-

automaton realization. For each discrete state q ∈ Q we will define the subspace RH,q of Xq,

which is analogous to the controllability subspace of linear systems, as follows. For each f ∈ Φ,

define the set RH(f) of all the states (q, x) ∈ HH such that either (q, x) = µ(f), or x = Bqu

for some u ∈ R
m and q = δ(µD(f), v) for some sequence of discrete inputs v ∈ Γ∗. That is,

RH(f) = {(q, x) | (q, x) = µ(f) or, ∃v ∈ Γ∗, u ∈ R
m : q = δ(µD(f), v), x = Bqu, }

With the notation above let RH,q be subspace of Xq spanned by all the vectors

A
αk+1
qk Mqk,γk,qk−1

· · ·Mq1,γ1,q0A
α1
q0

x, such that qk = q, (q0, x) ∈ RH(f) for some f ∈ Φ. That is,

RH,q = Span{Aαk+1
qk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0A

α0
q0

x | f ∈ Φ,

(q0, x) ∈ RH(f), γ1, . . . , γk ∈ Γ, qk = q, q = δ(q, γ1 · · ·γk), k ≥ 0}
(7)

Now we are ready to state the theorem characterizing the span-reachability of linear hybrid

realizations.

Theorem 2 (Span-Reachability): The linear hybrid system realization (H, µ) is span-reachable

if and only if

(i) The automaton realization (AH , µD) is reachable.

(ii) For all q ∈ Q, dim RH,q = dimXq.

The proof of the theorem will be presented in Section IV. The intuition behind the theorem is

the following. First, in order for the linear hybrid realization to be span-reachable , we need

to be able to reach every discrete state by a suitable choice of discrete inputs. Second, the

continuous state-space component asscociated with each discrete state should contain only those

states, which are really necessary. That is, the continuous-state space component Xq should be

the smallest vector space, which contains all the time derivatives of the state-trajectories which

end in Xq. It can be shown the span-reachability of linear systems can be decided algorithmically,

we will discuss the issue in more detail in Section VI.

Corollary 2: If (AH , µD) is reachable and for each discrete state q ∈ Q, the corresponding

linear system (Aq, Bq, Cq) is reachable, then (H, µ) is span-reachable.
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Proof: Since the image of the controllability matrix Im[Bq, AqBq, . . . , A
nq−1
q Bq] is con-

tained in RH,q, it is easy to see that if (Aq, Bq, Cq) is reachable, then condition (ii) of Theorem

2 holds. By assumption, condition (i) of Theorem 2 holds, hence (H, µ) is span-reachable .

The concept of observability and span-reachability plays an important role in characterizing

minimal linear hybrid systems. In this paper we will prove the following characterization of

minimal linear hybrid system realizations.

Theorem 3 (Minimal realization): If Φ has a linear hybrid system realization, then Φ has a

minimal linear hybrid system realization. If (H, µ) is a realization of Φ, then the following are

equivalent;

(i) (H, µ) is minimal,

(ii) (H, µ) is span-reachable and it is observable,

(iii) If (H
′

, µ
′

) span-reachable realization of Φ, then there exists a surjective linear hybrid system

morphism T : (H
′

, µ
′

) → (H, µ).

All minimal hybrid linear system realizations of Φ are isomorphic.

The proof of the above theorem can be found in Section V. One can formulate an algorithm for

transforming a linear hybrid realization to a minimal one, see [11] or Section VI for details.

Corollary 3: If the automaton realization (AH , µD) is reachable and observable (i.e. it is

minimal, see Theorem 3 in Part I, [1]), and for each discrete state q ∈ Q, the corresponding

linear system (Aq, Bq, Cq) is reachable and observable (i.e. it is minimal), then (H, µ) is minimal

Proof: Follows from Corollary 2, Corollary 1 and Theorem 3.

Remark 2: In Example 1, Section VI we will present an example of a family of input-output

maps Φ and minimal linear hybrid system realization (H, µ) of Φ, such that the automaton and

the individual linear subsystems of (H, µ) are not all minimal. In fact, it can be shown that the
family of input-output maps Φ described above cannot have a linear hybrid realization where
the automaton and the linear subsystems are all minimal. Indeed, let (H̃, µ̃) be a realization of

Φ such that the automaton and the linear subsystems of (H̃, µ̃) are all minimal. Then Corollary

3 implies that (H̃, µ̃) is minimal, and hence by Theorem 3 it is isomorphic to (H, µ). The latter

means that the automaton of H̃ is isomorphic to the automaton of H , and each linear subsystem

of H is isomorphic to a linear subsystem of H̃ . Hence the automaton and the linear subsystems

of H have to be all minimal, a clear contradiction.
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IV. SPAN-REACHABILITY AND OBSERVABILITY: PROOFS OF THEOREM 2 AND THEOREM 1

Proof: [Proof of Theorem 1] The core of the proof is to show the following.

(A) υH((s1, 0), .) = υH((s2, 0), .) if and only if part (a) and part (b) of condition (i) holds.

(B) υH((q, x1), .) = υH((q, x2), .) is equivalent to x1 − x2 ∈ OH,q.

From (A) and (B) the proof of the theorem follows easily. In order to show it, we introduce the

following notation. For any (q, x) ∈ H, u ∈ PC(T, Rm), w = γ1γ2 · · ·γk ∈ Γ∗, γ1, . . . , γk ∈ Γ,

k ≥ 0 define the function

yH((q, x), u, w, .) : (t1, . . . , tk+1) 3 T k+1 7→

Cqk
xH((q, x), u, (γ1, t1)(γ2, t2) · · · (γk, tk), tk+1) ∈ R

p

where qk = δ(q, w). It is easy to see that yH((q, x), 0, w, .) is linear in x, and

yH((q, 0), u, w, .) =

yH((q, x), u, w, .)− yH((q, x), 0, w, .)
(8)

In fact, it is easy to see that yH is related to the continuous-valued part of the input-output

map υH((q, x), .) induced by the hybrid state as follows; yH((q, x), u, w, .)(t1, . . . , tk+1) =

ΠRp(υH((q, x), u, (γ1, t1)(γ2, t2) · · · (γk, tk), tk+1)). Assume now that (A) and (B) hold. Assume

that H is observable. Then υH((s1, 0), .) = υH((s2, 0), .) implies s1 = s2, and hence by (A)
condition (i) of the theorem holds. If υH((q, x1), .) = υH((q, x2), .), then by observability we

get that x1 − x2 = 0, hence by (B) condition (ii) of the theorem holds. Assume that conditions

(i) and (ii) hold. We will show that then H is observable. Assume that (s1, x1) and (s2, x2)

are indistinguishable, that is, υH((s1, x2), .) = υH((s2, x2), .). The latter equality implies that

yH((s1, x1), u, w, .) = yH((s2, x2), u, w, .) for all u, w. By substituting the last equality into

the right-hand side of (8), we get that yH((s1, 0), u, w, .) = yH((s2, 0), u, w, .). The latter,

together with ΠO ◦ υH((si, 0), .) = ΠO ◦ υH((si, xi), .), i = 1, 2, and ΠO ◦ υH((s1, x1), .) =

ΠO ◦ υH((s2, x2), .) implies that υH((s1, 0), .) = υH((s2, 0), .). But then s1 = s2 = s by (A)
and condition (i) of the theorem and thus υH((s, x1), .) = υH((s, x2), .). Hence from condition

(ii) and (B) it follows that x1 = x2. That is, (s1, x1) = (s2, x2), and hence H contains no two

distinct indistinguishable states, i.e. H is observable.

Proof of (A) For each si, i = 1, 2, let fi = υH((si, 0), .) and consider the following singleton

set consisting of one single input-output map Φi = {fi}, i = 1, 2. Define the maps µi : Φi 3
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fi 7→ (si, 0) ∈ H for i = 1, 2. Define the map µ12 : Φ1 3 f1 7→ (s2, 0). It is easy to see that

(H, µi) is a realization of Φi, i = 1, 2 and that f1 = f2 if and only if (H, µ12) a realization of

f1. Thus, Φs1 , Φs2 admit a hybrid kernel representation and yH((si, 0), u, w, .) = yfi,Φi

0 (u, w, .)

for all u ∈ PC(T, Rm), w ∈ Γ∗. From Proposition 1 in Part I, [1] it follows that (H, µi) is a

realization of Φi for i = 1, 2, and (H, µ12) is a realization of Φ1, if and only if

(1) Both sides of the equation in part (a) are equal to (f1)D(γ1 · · ·γk) and hence to each other,

and

(2) for every j = 1, . . . , m, the jth column of the matrices on both sides of the equation (6)

are equal to D(0,0,...,0,αl,...,αk+1)yf1,Φ1

0 (ej, γ1 · · ·γk) and hence to each other.

Hence, f1 = f2 if and only if part (a) and (b) of condition (ii) hold.

Proof of (B) Notice that the υH((q, x1), .) = υH((q, x2), .) is equivalent to yH((q, x1 −

x2), 0, w, .) = 0 for all w ∈ Γ∗, because of (8) and linearity of yH((q, x), 0, w, .) in x. Notice

the following equivalence

yH((q, x1 − x2), 0, w, .) = 0 for all w ∈ Γ∗ ⇐⇒

DαyH((q, x1 − x2), 0, w, .) = 0 for all w ∈ Γ∗, α ∈ N
|w|+1

(9)

That is, yH((q, x1 − x2), 0, w, .) is the constant zero function for all discrete input sequences w,

if for all discrete input sequences w, all the high-order derivatives of yH((q, x1−x2), 0, w, .) at 0

vanish. Indeed, consider the set Φ1,2 = {f}, f = υH((q, x1−x2), .) and let µ1,2 : f 7→ (q, x1−x2).

It is easy to see that (H, µ1,2) is a realization of Φ1,2, hence fC(0, w, .) = yH((q, x1−x2), 0, w, .)

is analytic, and hence (9) holds. Finally, by applying Proposition 1 from Part I to Φ1,2 and

substituting the right-hand side of the second equation in (16), Part I, [1] into (9) we get the

statement of (B).
Proof: [Proof of Theorem 2] Recall the definition of the set Reachq(H, Imµ) from (4) in

Section II. That is, Reachq(H, Imµ) is the linear span of all continuous states which belong to

Xq and which are of the form xH(µ(f), u, w, t) for some f ∈ Φ, u, w, and t. We will show that

RH,q = Reachq(H, Imµ) for all q ∈ Q. From this the statement of the theorem follows easily.

Proof of RH,q ⊆ Reachq(H, Imµ) . Let w = γ1 · · ·γk, k = |w|, and u = 0 or u = ej ,

j = 1, . . .m and consider the map

xH((s, z), u, w, .) : T k+1 3 (t1, . . . , tk+1) 7→

xH((s, z), u, (γ1, t1)(γ2, t2) · · · (γk, tk), tk+1)
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Assume that there exists f ∈ Φ such that (s, z) = µ(f) and q = δ(s, w), i.e. xH((s, z), u, w, t)

belongs to Reachq(H, Imµ) for all t ∈ T |w|+1. Since Reachq(H, Imµ) is a subspace of Xq, and

hence it is linear and closed, it implies that for all α ∈ N
|w|+1, the derivatives DαxH((s, z), ej, w, .)

and DαxH((s, z), 0, w, .) belong to Reachq(H, Imµ) as well. Notice that (2) implies that

DαxH((s, 0), ej, w, .) = DαxH((s, z), ej, w, .) − DαxH((s, z), 0, w, .)

hence DαxH((s, 0), ej, w, .) ∈ Reachq(H, Imµ). Moreover, from (2) it follows that

DαxH((s, z), 0, w, .) = Aαk+1
qk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0A

α1
q0

z

where s0 = q0 and qk = q; and, if αl > 0 and αl−1 = · · · = α1 = 0, and ql−1 = δ(s, γ1 · · ·γl−1)

then

DαxH((s, 0), ej, w, .) =

Aαk+1
qk

Mqk,γk,qk−1
· · ·Mql,γl,ql−1

Aαl−1
ql−1

Bql−1
ej

Hence, RH,q is spanned by vectors of the form DαxH((s, z), 0, w, .) ∈ Reachq(H, Imµ) and

Dα((s, 0), ej, w, .) ∈ Reachq(H, Imµ) for all j = 1, . . . , m, (s, z) = µ(f) for some f ∈ Φ,

which implies that RH,q ⊆ Reachq(H, Imµ).

Proof of Reachq(H, Imµ) ⊆ RH,q. From (2) it follows that any element xH((s, z), u, w, tk+1) ∈

Reachq(H, Imµ) with w = (γ1, t1) · · · (γk, tk) is a sum of expressions

eAqk
tk+1Mqk,γk,qk−1

eAqk−1tk · · ·Mq1,γ1,q0e
Aq0 t1z , (10)

∫ tl

0

eAqk
tkMqk,γk,qk−1

· · ·Mql,γl,ql−1
eAql−1

(tl−s)Bql−1
u(s)ds (11)

where qk = q and q0 = s and ql−1 = δ(s0, γ1 · · ·γl−1). If the expressions of the form (10) and

(11) belong to RH,q, then xH((s, z), u, w, tk+1) belongs to RH,q as well. In order to prove that

the values (10,11) belong to RH,q, notice that the expression (10) is analytic in t1, t2, . . . , tk+1

and the integral expression (11) is analytic in t1, . . . , tk if u is constant. Consider the Taylor-

series expansion of (10) and (11) for u constant. Then the Taylor-coefficients are of the form

A
αk+1
qk Mqk,γk,qk−1

· · ·Mql,γl,ql−1
Aαl

ql−1
z with (ql−1, z) ∈ RH(f) for some f ∈ Φ. Each such vector

belongs to RH,q by the definition of RH,q. Since RH,q is a vector space, the finite linear

combination of such vectors also belongs to RH,q. The set RH,q is closed, hence their limit

belongs to RH,q as well, which implies that (10) belongs to RH,q and (11) belongs to RH,q if u

is constant. If u is piecewise-constant, then (11) is a finite sum of expressions of the form (11),
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for which the function u is constant. Since all the summands belong to RH,q, the whole sum

will belong to RH,q. Finally, if u is a general piecewise-continuous map, the integral in (11) will

be a limit of integrals of the form (11), but with u being piecewise-constant. Since each element

of the approximating sequence belongs to RH,q, and RH,q is closed, it follows that their limit

belongs to RH,q as well; hence the integral in (11) belongs to RH,q.

V. CHARACTERIZATION OF A MINIMAL LINEAR HYBRID SYSTEM REALIZATION:PROOF OF

THEOREM 3

Below we will present the proof of Theorem 3. The proof relies on the relationship between

rational representations, finite Moore-automata and linear hybrid systems presented in Part I ([1])

of the current series of papers. More precisely, we will establish a number of results which relate

observability and span-reachability of linear hybrid systems with observability and reachability

of representations and Moore-automata realizations. These results will enable us to characterize

minimal linear hybrid system realizations in terms of observability and span-reachability. In

addition, we will be able to formulate a procedure for transforming an arbitrary linear hybrid

realization into a minimal one.

We will start with recalling some results on minimality, observability and reachability of

rational representations and Moore-automata in Subsection V-A and Subsection V-B. We will

continue with recalling the relationship between linear hybrid systems, Moore-automata and

rational representations in Subsection V-C. Finally, in Subsection V-D we present the proof of

Theorem 3.

A. Minimality of Rational Representations

In this section we will recall some results on reachability and observability of rational rep-

resentations. In addition, we will present procedures for converting a rational representation to

a reachable and observable one. These results will be used for studying minimality of linear

hybrid systems. In the sequel we will use the definitions and notation of Section V of Part

I, [1]. Let J be an arbitrary set and let Σ be a finite set, which will be referred to as the

alphabet. Recall the notation introduced in Section II and in Section II, Part I. and recall the

definition of formal power series and their rational representations from Section V, Part I. Let

R = (X , {Aσ}σ∈Σ, B, C) be a rational representation such that B is indexed by the index set J .
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Recall from Section V, Part I that the representation R is called reachable if dim WR = dim R

and R is called observable if OR = {0}, where WR and OR were defined in (17), Section V, Part

I. For any subspace W ⊆ X , the representation R is said to be W -observable if W ∩OR = {0}.

It is clear that if R is observable, then R is W -observable for any subspace W . We will refer

to the subspace OR as the observability kernel of R and to the subspace WR as the reachability
subspace of R. If dimX = n, the it can be shown (see [11] for the proof) that

WR = Span{AwBj ∈ X | w ∈ Σ∗, |w| ≤ n, j ∈ J} and

OR =
⋂

w∈Σ∗,|w|≤n

ker CAw

(12)

That is, the subspaces WR and OR can be computed, for example, by representing them as

images and kernels of finite matrices. Hence, if J is a finite set, then observability of R can be

check numerically by verifying OR = {0}; W -observability of R can be checked numerically

by verifying OR ∩ W = {0}; and reachability of R can be checked numerically by checking if

dim WR = n. For more on numerical algorithms for checking reachability and observability see

[11].

Let Ψ = {Sj ∈ R
p � Σ∗ �| j ∈ J} be a family of formal power series indexed by J and

assume that R = (X , {Aσ}σ∈Σ, B, C) is a representation of Ψ. Similarly to linear systems or

Moore automata any R can be transformed to a reachable representation of Ψ defined as follows.

Construction 1: Define Rr = (WR, {Aσ|WR
}σ∈Σ, B, C|WR

), where the linear maps Aσ|WR
,

σ ∈ Σ, and C|WR
are the restrictions of the maps Aσ,σ ∈ Σ and C respectively to the

subspace WR. Notice that for all j ∈ J , Bj belongs to WR. It follows that Rr is a well-defined

representation of Ψ, and it is reachable.

The representation R can also be transformed to an observable representation of Ψ, defined as

Construction 2: Ro = (X /OR, {Ao
σ}σ∈Σ, Bo, Co), where X /OR denotes the quotient space

of X with respect to the subspace OR and Co(x + OR) = Cx, Bo
j = Bj + OR for all j ∈ J ,

and Ao
σ(x + OR) = Aσx + OR, for all σ ∈ Σ. Here x + OR denotes the equivalence class

{z ∈ X | x − z ∈ OR}. It follows that Ro is a well-defined representation of Ψ, and it is

observable.

If R is reachable then Ro will be reachable and observable too. Recall from Theorem 2 from

Section V, Part I that a representation is minimal if and only if it is reachable and observable.

Hence, the following procedure transforms R to a minimal representation of the same family Ψ.
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Construction 3: Transform R to a reachable representation Rr as described in Construction

1. As the next step, transform Rr to an observable representation (Rr)o using Construction 2

with R = Rr. The resulting representation Rm = (Rr)o of Ψ is reachable and observable, and

hence minimal.

Notice that the linear spaces in (12) are computable, therefore the representations Ro and Rr

defined above, and hence the minimal representation Rm = ((Rr)o) are computable from R.

B. Minimality of Moore automata

Below we will recall some of the results on observability and reachability of Moore-automata

and we will show that any Moore-automaton can be transformed to a reachable and observable,

and hence minimal, Moore-automaton realizing the same input-output behaviour. These results

will be used for studying minimality of linear hybrid systems.

In the sequel we will use the notation and terminology of Section VI Part I of the current

series of papers, [1]. Recall from Section VI, Part I the concept of Moore-automaton and the

notion of a Moore-automaton realization of a family of discrete input-output maps. Let Γ be the

finite set of input symbols, let O be the finite set of output symbols, and let J be an arbitrary

index set. Consider a finite Moore-automaton realization (A, ζ) with A = (Q, Γ, O, δ, λ) and

ζ : J → Q. Recall from Section VI, Part I the definition of reachability and observability for

(A, ζ). Recall the definition of the indistinguishability relation Ro; for any two states q1, q2 ∈ Q,

(q1, q2) ∈ Ro holds, if for all w ∈ Γ∗, λ(q1, w) = λ(q2, w). It can be shown (see [11], [20], [21]

for the proof) that if card(Q) = n, then Ro can be finitely represented as

(q1, q2) ∈ Ro ⇐⇒ λ(q1, w) = λ(q2, w) for all w ∈ Γ∗, |w| ≤ n (13)

Hence, observability of A can be checked algorithmically by checking if (q1, q2) ∈ Ro =⇒

q1 = q2 for all discrete states q1, q2. Similarly, the set of all states Qr = {q ∈ Q | ∃j ∈ J, w ∈

Γ∗ : δ(ζ(j), w) = q} reachable from Imζ can be finitely described by

Qr = {δ(ζ(j), w) | j ∈ J, |w| ≤ card(Q), w ∈ Γ∗} (14)

Hence, if J is finite, then reachability of (A, ζ) can be algorithmically decided by checking if

card(Qr) = card(Q).
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Assume that (A, ζ) is a realization of the family of input-output maps D = {φj : Γ∗ → O |

j ∈ J}. Then (A, ζ) can be transformed to a reachable automaton realization which realizes the

same family of maps D. This transformation is very similar to the classical one, see [21], [20].

Construction 4: Define the realization (Ar, ζr) by Ar = (Qr, Γ, O, δr, λr), where the state

space Qr is just the set of all reachable states, see (14); the state-transition map is just the

restriction of δ to the reachable set Qr, i.e. for all q ∈ Qr and γ ∈ Γ, δr(q, γ) = δ(q, γ); the

readout map λr is the restriction of λ to Qr, that is, for all q ∈ Qr, λ(q) = λr(q); finally,

ζr(j) = ζ(j) for all j ∈ J . It is easy to see that (Ar, ζr) is a well-defined realization of D, and

it is reachable.

Similarly, the automaton realization (A, ζ) can be transformed to an observable automaton

realization of D. This transformation is again very similar to the classical one [21], [20].

Construction 5: Define the automaton Ao = (Qo, Γ, O, δo, λo) as follows. Recall the definition

of the indistinguishability relation Ro, see (13), and notice that Ro is an equivalence relation.

Denote by [q] the equivalence class induced by Ro which is represented by q ∈ Q. That is,

[q] = {s ∈ Q | (s, q) ∈ Ro}. Let Qo = {[q] | q ∈ Q}, and define the maps δo and λo as follows.

For each q ∈ Q and γ ∈ Γ let δo([q], γ) = [δ(q, γ)] and let λo([q]) = λ(q). It is easy to see that

δo and λo are well defined. Finally, define the map ζo : J → Qo by ζo(j) = [ζ(j)]. It is easy to

see that (Ao, ζo) is well-defined, it is a realization of D and it is observable. Moreover, if (A, ζ)

is reachable, then (Ao, ζo) will be reachable too.

Recall from Theorem 3, Section VI, Part I that a Moore-automaton realization is minimal if and

only if it is reachable and observable. Hence, we can use the constructions above to transform

(A, ζ) to a minimal realization (Am, ζm) of D.

Construction 6: First transform (A, ζ) to a reachable automaton realization (Ar, ζr) of D

using Construction 4. Then transform (A, ζ) = (Ar, ζr) to a reachable and observable, i.e.

minimal, realization (Am, ζm) = ((Ar)o, (ζr)o) of D using Construction 5.

It is easy to see that the construction of (Ar, ζr), (Ao, ζo), and (Am, ζm) can be done by

algorithmically, if J is finite and we can compare the elements of O.

C. Relationship Between Rational Representations, Moore-automata and Linear Hybrid Systems

In Part I, Section VII we presented a correspondence between rational representations and

Moore-automata and linear hybrid systems. Below we will review this correspondence, which
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will be used later on for providing a characterization of minimality for linear hybrid systems.

Let Φ be a set of input-output maps. Recall from Definition 1, Section III, Part I the notion of

a hybrid kernel representation, and recall that if Φ has a linear hybrid realization, then Φ has a

hybrid kernel representation. Therefore, we can assume that Φ has a hybrid kernel representation.

Recall from Part I, Section VII, Definition 2 the definition of the set of formal power series ΨΦ

associated with Φ and recall from Part I, Section VII, Definition 3 the definition the family
DΦ of discrete input-output maps asscociated with Φ. In Part I, Section VII we showed that the

family Φ has a realization by a linear hybrid system if and only if ΨΦ is rational and DΦ has a

realization by a finite Moore-automaton.

More precisely, recall from Construction 1, Section VII, Part I, the definition of the repre-
sentation RH,µ asscociated with (H, µ). Recall from Construction 2, Section VII, Part I the

definition of the Moore-automaton realization (ĀH , µD) asscociated with (H, µ). In Theorem

4, Section VII, Part I we argued that if (H, µ) is a linear hybrid system realization of Φ, then

RH,µ is a rational representation of ΨΦ, and (ĀH , µD) is a realization of DΦ. Conversely, let R

be an observable representation of ΨΦ, and let (Ā, ζ) be a reachable realization of DΦ. Recall

from Construction 3, Section VII, Part I the definition of the linear hybrid system realization
(HR,Ā,ζ , µR,Ā,ζ) asscociated with R and (Ā, ζ). In Theorem 5, Section VII, Part I we showed

that (HR,Ā,ζ , µR,Ā,ζ) is a realization of the original family of input-output maps Φ. We would like

to remark that both the construction of RH,µ and (ĀH , µD) from (H, µ), and the construction

of (HR,Ā,ζ, µR,Ā,ζ) from the representation R and a Moore-automaton realization (Ā, ζ) can be

carried out algorithmically. A short sketch of the algorithms can be found in Section VI.

D. Proof of Theorem 3

We will need a number of technical lemmas for the proof of Theorem 3. The proofs of these

lemmas can be found in the appendix. The lemmas relate morphisms, and reachability and ob-

servability of automata and representations with morphisms, span-reachability and observability

of linear hybrid systems. The reader is advised to review Subsections V-A, V-B and V-C and

the corresponding sections of Part I, [1]. In the sequel we will use the notation and terminology

of the above mentioned sections. In particular, the reader should be familiar with Definition 2,

Definition 3, and Construction 1, Construction 2, and Construction 3 of Section VII, Part I, as

we will use the notation introduced there without explicitly referring to it.
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Lemma 1: Assume that R is an observable representation of ΨΦ and (Ā, ζ) is a reachable

Moore-automaton realization of DΦ. Then (H, µ) = (HR,Ā,ζ, µR,Ā,ζ) is span-reachable.

Lemma 2: Assume that R = (X̂ , {Fσ}σ∈eΓ, B, C) is an observable representation of ΨΦ and

(Ā, ζ) is a reachable realization of DΦ. Let (H, µ) = (HR,Ā,ζ, µR,Ā,ζ) and assume that H is of

the form (1). Then ĀH = Ā and there exists a representation morphism iR : RH,µ → R, such

that for any discrete state q ∈ Q of H and for any x ∈ Xq, iR(x) = x.

Lemma 3: Assume that (H, µ) is a linear hybrid realization and assume that H is of the

form (1). Then the following holds. (H, µ) is span-reachable if and only if RH,µ is reachable

and (ĀH , µD) is reachable. (H, µ) is observable if and only if ĀH is observable and RH,µ is

Xq-observable for all q ∈ Q.

Lemma 4: If R is an observable representation of ΨΦ and (Ā, ζ) is a minimal realization of

DΦ, then (H, µ) = (HR,Ā,ζ, µR,Ā,ζ) is an observable and span-reachable realization of Φ.

Lemma 5: Assume that (H, µ) is a span-reachable realization and H is of the form (1), R

is observable and (Ā, ζ) is reachable. If T : RH,µ → R is a representation morphism and

φ : (ĀH , µD) → (Ā, ζ) is an automaton morphism, then there exists a surjective linear hybrid

morphism (TD, TC) : (H, µ) → (HR,Ā,ζ, µR,Ā,ζ) such that TC,qx = Tx for all x ∈ Xq and q ∈ Q,

and φ = TD.

Lemma 6: Assume (H, µ) is a realization of Φ, and assume that H is of the form (1). Then

there exists a span-reachable linear hybrid realization (Hr, µr) of Φ, such that dim Hr ≤ dim H;

and dim Hr = dim H if and only if H is span-reachable .

Proof: [Proof of Theorem 3] First, we will show that if Φ has a linear hybrid system

realization, then Φ has a linear hybrid system realization satisfying (iii). Indeed, if Φ has a linear

hybrid system realization, then Theorem 1 in Part I, [1] implies that ΨΦ has a representation and

DΦ has a Moore-automaton realization. By Theorem 2 in Part I, [1] and Theorem 3 in Part I, [1]

we can pick a minimal representation R of ΨΦ and a minimal realization (Ā, ζ) of DΦ. Then

by Lemma 4 the linear hybrid system realization (Hf , µf) = (HR,Ā,ζ, µR,Ā,ζ) is an observable

and span-reachable realization of Φ. We will call the realization (Hf , µf) the free realization of
Φ. We will show that (iii) holds for (Hf , µf). Indeed, let (H, µ) is a span-reachable realization

of Φ and assume that H is of the form (1). Then RH,µ is reachable and (ĀH , µD) is reachable.

By Theorem 3 in Part I, [1] and Theorem 2 in Part I, [1] there exists surjective morphisms

T : RH,µ → R and φ : (ĀH , µD) → (Ā, ζ). Then by Lemma 5 there exists a surjective linear
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hybrid system morphism SH,µ = (φ, TC) : (H, µ) → (Hf , µf) such that TCx = Tx for all

x ∈ Xq, q ∈ Q.

Below we will show that (iii), (ii), and (i) are equivalent. This also implies that (Hf , µf)

is minimal, since (Hf , µf) satisfies (iii). Since (Hf , µf) exists whenever Φ has a linear hybrid

system realization, we get that if Φ has a linear hybrid system realization, then Φ has a minimal

linear hybrid system realization.

(iii) =⇒ (i). Assume that (H, µ) satisfies (iii). Assume now that (H̃, µ̃) is a realization of Φ.

Then by Lemma 6 there exists a span-reachable realization (Hr, µr) of Φ, such that dim Hr ≤

dim H̃ . Therefore, there exists a surjective linear hybrid morphism T : (Hr, µr) → (H, µ). Then

Proposition 1 implies that dim H ≤ dim Hr ≤ dim H̃. Hence, (H, µ) is a minimal realization

of Φ.

(ii) =⇒ (iii) Let (H, µ) be any span-reachable and observable realization of Φ and assume

that H is of the form (1). We will show that (iii) holds for (H, µ). Consider the surjective linear

hybrid morphism SH,µ = (φ, TC) : (H, µ) → (Hf , µf) existence of which was proved above.

We will show that SH,µ is injective and thus it is a linear hybrid isomorphism. From the fact

that SH,µ is an isomorphism it follows that the inverse linear hybrid morphism S−1
H,µ is also an

isomorphism. For any span-reachable realization (H
′

, µ
′

) of Φ, there exists a surjective linear

hybrid morphism T : (H
′

, µ
′

) → (Hf , µf), which implies that S−1
H,µ ◦ T : (H

′

, µ
′

) → (H, µ) is a

surjective linear hybrid morphism. Hence, (H, µ) satisfies (iii).
The proof that SH,µ is an isomorphism goes as follows. Since SH,µ is surjective, it is enough

to show that SH,µ is injective. First we will show that φ is injective. If (H, µ) is observable,

then (ĀH , µD) is observable by Lemma 5. Observability of ĀH implies that φ is injective.

Indeed, if q1, q2 ∈ Q, then λ̄(qi, w) = λ̃(φ(qi), w), i = 1, 2 for all w ∈ Γ∗, where λ̃ denotes

the readout map of Ā and λ̄ denotes the readout map of ĀH . Hence, if φ(q1) = φ(q2), then

λ̄(q1, w) = λ̄(q2, w) for all w ∈ Γ∗, which by observability of ĀH implies that q1 = q2. Next,

we will show that TC is injective. Denote by Qf the set of discrete states of Hf and denote

by X f
s the continuous state-space component of Hf asscociated with the discrete state s ∈ Qf

of Hf . Recall that the linear map TC is of the form TC :
⊕

q∈Q Xq →
⊕

s∈Qf X f
s Assume that

xi ∈ Xqi
, i = 1, 2 and TCx1 = TCx2. Since TCxi ∈ X f

φ(qi)
, i = 1, 2, TCx1 = TCx2 implies that

φ(q1) = φ(q2). Since φ is injective, we get that that q1 = q2 = q and x1, x2 ∈ Xq. We will

show that x1 = x2. By Lemma 5, observability of (H, µ) implies that RH,µ is Xq observable.
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Assume that RH,µ = (X , {Mσ}σ∈eΓ, B̃, C̃) and assume that R = (X̃ , {Fσ}σ∈eΓ, G, H). Recall that

TC is the restriction of the representation morphism T : RH,µ → R to
⊕

q∈Q Xq. Since T is a

representation morphism and x1−x2 ∈ Xq ⊆ X , it follows that C̃Mw(x1−x2) = HFwTC(x1−x2)

for all w ∈ Γ̃∗. Hence, if TC(x1 − x2) = 0, then C̃Mw(x1 − x2) = 0 for all w ∈ Γ̃∗, that is,

x1 − x2 ∈ ORH,µ
∩ Xq. Since RH,µ is Xq-observable, i.e. ORH,µ

∩ Xq = {0}, it follows that

x1 − x2 = 0, i.e. x1 = x2.

(ii) =⇒ (i) Let (H, µ) be a span-reachable and observable realization of Φ. Let SH,µ :

(H, µ) → (Hf , µf) be the isomorphism, existence of which was shown above. Then dim H =

dim Hf , thus (H, µ) is minimal.

(i) =⇒ (ii) Let (H, µ) a minimal realization of Φ. From Lemma 6 it follows that (H, µ) has

to be span-reachable. Indeed, if (H, µ) is not span-reachable, then by Lemma 6 there exists a

span-reachable realization (Hr, µr) of Φ such that dim Hr < dim H , which is a contradiction.

Hence there exists a surjective T : (H, µ) → (Hf , µf). But (Hf , µf) and (H, µ) are both minimal,

thus dim H = dim Hf . Then Proposition 1 implies that T is a linear hybrid isomorphism, and

since (Hf , µf) is observable, Proposition 1 implies that (H, µ) is observable too.

Finally, the statement of the theorem on isomorphism of all minimal linear hybrid realizations

can be shown as follows. If (Hi, µi), i = 1, 2 are two minimal realizations of Φ, then (Hi, µi)

are both span-reachable and observable. But from the proof of (ii) =⇒ (iii) it follows that

(Hi, µi) are both isomorphic to (Hf , µf), and hence to each other.

The proof above implies the following.

Corollary 4: If R is a minimal representation of ΨΦ and (Ā, ζ) is a minimal realization of

DΦ, then (HR,Ā,ζ, µR,Ā,ζ) is a minimal realization of Φ.

Remark 3 (Minimization of Linear Hybrid Systems): We can use the following procedure for

transforming a linear hybrid system realization to a minimal one. Assume that (H, µ) is a linear

hybrid system realization of Φ. Construct the rational representation RH,µ and compute the

Moore-automaton realization (ĀH , µD). Transform the representation RH,µ of ΨΦ to a minimal

rational representation R of ΨΦ, using Construction 3 from Subsection V-A. Transform the

Moore-automaton realization (ĀH, µD) of DΦ to a minimal Moore-automaton realization (A, ζ)

of DΦ, using Construction 6 from Subsection V-B. Finally, construct the linear hybrid realization

(HR,A,ζ , µR,A,ζ), as described in Construction 3, Section VII, Part I. Then Corollary 4 ensures

that that (HR,A,ζ , µR,A,ζ) is a minimal realization of Φ.
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The construction above can be implemented, the details will be presented in Section VI.

VI. ALGORITHMS FOR MINIMIZATION, OBSERVABILITY AND SPAN-REACHABILITY

The purpose of this section is to give a flavour of the algorithmic aspects of minimality of

linear hybrid systems. We do not intend to describe the algorithms in full detail. The interested

reader can find a more detailed account on the topic in [11], [10]. Note that the algorithms

which will be outlined below have been implemented. Assume that Φ is finite and let (H, µ) be

a realization of Φ. We will be interested in the following problems.

Computing the representation RH,µ. It is easy to see that Construction 1, Section VII, Part

I, [1] for constructing RH,µ can be implemented as a numerical algorithm.

Computing the automaton ĀH . Recall from Part I, Section VII, Construction 2, [1] the

definition of the automaton ĀH asscociated with the linear hybrid system H . It is clear that

the only difficulty in computing the automaton ĀH from H is that its output space O × Ō is

infinite. However, for our purposes it is sufficient to compute another automaton ĀH,N which

has a finite output space. More precisely, let M(N) be the number of all words over Γ̃ of length

at most N . The automaton ĀH,N = (Q, Γ, RM(N)×m × O, δ, λN) has the same state-space and

state-transition maps as AH , but its readout map is of the form λN(q) = ((ZN
q,1, . . . , Z

N
q,m), λ(q))

for all q ∈ Q, where ZN
q,j denotes the vectors of finite length formed by the values Zq,j(s) for all

words s ∈ Γ̃∗ of length at most N . Here Zq,j is the formal power series defined in (21), Section

VII, Part I, [1]. In can be shown (see [11] for the proof) that the following holds.

Proposition 2 ([11]): If we choose N so that max{card(Q), card(Q)m +
∑

q∈Q nq} ≤ N ,

then ĀH,N is observable (reachable) if and only if ĀH is observable (reachable). Moreover, if

(H, µ) is a realization of Φ, then (ĀH,N , µD) will be a realization of the indexed set of input-

output maps DΦ,N , where DΦ,N the indexed set of input-output maps which was defined before

Proposition 2, Section VIII, Part I.

Checking observability, span-reachability and minimality of (H, µ) . Using Lemma 3

we can check observability or span-reachability of (H, µ) as follows. We compute (ĀH,N , µD)

and we compute RH,µ as described above. From Proposition 2 and Lemma 3 it follows that in

order to check observability of (H, µ), we need to check if RH,µ is Xq-observable for all q ∈ Q

and if (AH,N , µD) is observable. The first step is equivalent to checking ORH,µ
∩ Xq = {0}

for all q ∈ Q, where ORH,µ
is the observability subspace OR of R = RH,µ as defined in (12);
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the second step is equivalent checking that for all q1, q2 ∈ Q, (λN(q1, w) = λN(q2, w), w ∈

Γ∗, |w| ≤ card(Q)) =⇒ q1 = q2. Proposition 2 and Lemma 3 also imply that in order to check

span-reachability of (H, µ), we have to check if RH,µ is reachable and (AH,N , µD) is reachable.

That is, we have to check if dim WRH,µ
= dim RH,µ, where WRH,µ

is the reachability subspace

WR of R = RH,µ as defined in (12); and we have to check if card(Qr) = Q, where Qr is the set

of states reachable from Imµ, defined in (14) for (A, ζ) = (AH,N , µD). For checking minimality

of (H, µ) we have to check if (H, µ) is span-reachable and observable. Hence, we just have to

combine the algorithms outlined above.
Minimizing (H, µ). We compute the representation RH,µ and the Moore-automaton realization

(ĀH,N , µD). We transform R = RH,µ to a minimal representation Rm by using Construction 3,

Subsection V-A. We transform (ĀH,N , µD) to a minimal realization (Ā, ζ) by using Construction

6 in Subsection V-B. It is easy to see that if we apply the steps of Construction 3, Section

VII, Part I to (Ā, ζ) and Rm, then a we can compute a linear hybrid realization (H, µ) =

(HRm,Ā,ζ, µRm,Ā,ζ). From Proposition 2, Section VIII, Part I it follows that (H, µ) will be a

minimal realization of Φ.
To demonstrate the procedure above, consider the following numerical example.
Example 1: Recall from Example 1 from Part I, Section II-B the definition of the linear hybrid system realization

(H, µ) and the definition of the family of input-output maps Φ. Using the algorithms sketched above (H, µ) can

be transformed to the following minimal realization (Hm, µm) of Φ. Hm is of the form

Hm = Hm = (Am, Rm, Rp, (Xm
q , Am

q , Bm
q , Cm

q )q∈Qm , {Mm
δm(q,γ),γ,q | q ∈ Qm, γ ∈ Γ})

where the automaton Am is of the form: Am = (Qm, Γ, O, δm, λm) where Qm = {q1, q2, q3}, Γ = {a, b} and the

transition function δm is defined by δm(q1, z) = q1 for z = a, b, δm(q2, a) = q3, δm(q3, b) = q2, δm(q2, b) = q2,

δm(q3, a) = q3. The readout map is of the form λm(q1) = o, λm(q2) = d, λm(q3) = g. The linear systems and

the reset maps are of the following form.

Am
q1

=




−3 0 0

0 −2 0

0 0 −1


 , Bm

q1
=




0

0

0.71


 , Cm

q1
=

[
1 1 1.41

]
, Mm

q1,b,q1
=




0 0 0

1 1 0

0 0 1


 , Mm

q1,a,q1
=




1 1 0

0 0 0

0 0 1


,

Am
q2

=


−1 0

0 0


 , Bm

q2
=


 0

−1


 , Cm

q2
=

[
1 0

]
, Mm

q3,a,q2
=

[
0 1

]
, Mm

q2,b,q2
=


1 0

0 1


, Am

q3
=

[
−1

]
, Bm

q3
=

[
0
]
, Cm

q3
=

[
0
]
, Mm

q3,a,q3
=

[
1
]
, Mm

q2,b,q3
=


1

0


. The map µm : Φ → HHm

is defined as µm(f1) = (q1,
[
0 1 0

]T

)

and µm(f2) = (q2,
[
0 0

]T

). Notice that none of the linear subsystems of Hm is minimal. Consider the sub-

automata A1 = (Q1, Γ, O, δ1, λ1) and A2 = (Q2, Γ, O, δ2, λ2) of Am, where Q1 = {q1} and Q2 = {q2, q3}
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and δi(q, γ) = δm(q, γ), λi(q) = λm(q), for all q ∈ Qi, i = 1, 2. Consider the subsystems Hi, i = 1, 2 of Hm

formed by the discrete states belonging to Qi, i = 1, 2 and the corresponding linear systems and reset maps. That

is, for i = 1, 2, Hi = (Ai, R
m, Rp, (Xm

q Am
q , Bm

q , Cm
q )q∈Qi

, {Mδm(q,γ),γ,q | q ∈ Qi, γ ∈ Γ}) Define the maps

µi : {fi} 7→ µm(fi), i = 1, 2, where f1, f2 are the input-output maps defined above. Then it is easy to see that for

i = 1, 2 the system (Hi, µi) is a minimal realization of fi, but none of the linear subsystems of Hm, and hence

of Hi, i = 1, 2, are minimal. Hence, (Hm, µm) and (Hi, µi), i = 1, 2 represent examples of minimal linear hybrid

realizations such that none of the linear subsystems is minimal.

To demonstrate experimentally that the input-output behavior of (Hm, µm) is the same as that of (H, µ) we have

carried out simulations; we tested the response of the system on ten switching scenarios under generated white

noise continuous input. As the theory predicts, the responses of (H, µ) and (Hm, µm) are almost identical, the

small discrepancy can be attributed to the presence of numerical errors in the computation. For an illustration see

Figure 1.

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7  8  9
 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7  8  9

Fig. 1. The value of the input-output map f1 for white noise continuous input and timed sequence of discrete inputs

(b, 1)(a, 2)(a, 3)(b, 1), 1. The left-hand side figure shows the continuous response of the original system H from the initial

state µ(f1), the right-hand side figure shows the continuous response of the system Hm from the initial state µm(f1)

VII. CONCLUSIONS AND FUTURE WORK

Linear algebraic conditions for observability and span-reachability, along with a characteriza-

tion of minimality of linear hybrid systems were presented. We also showed that if a family of

input-output maps has a realization by a linear hybrid system, then it also has a realization by a

minimal linear hybrid system. Moreover, any linear hybrid system realization can be transformed

to a minimal linear hybrid system realization which realizes the very same family of input-output

maps as the original one. Topics of further research include realization theory for piecewise-affine

systems on polytopes, and general non-linear hybrid systems without guards.

We hope that the presented results will be useful for model reduction and identification of

hybrid systems. The results of the paper indicate, that simply combining linear identification
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methods with ways of estimating the discrete state might fail even for relatively simple classes

of hybrid systems. Indeed, from Remark 2 and Example 1 in Section VI it follows that there
exists an input-output map f , such that f has a realization by a linear hybrid system, but it cannot
be realized by a linear hybrid system for which the automaton and all the linear subsystems
are minimal. Hence, it is impossible to identify a linear hybrid system which realizes f , by
estimating the automaton based on the discrete outputs and then estimating the linear systems
for each discrete state.
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APPENDIX

Proof: [Proof of Lemma 2] Since (Ā, ζ) is reachable and A coincides with Ā with the

exception of the readout map, we get that (A, ζ) = (AH , µD) is reachable. By substituting

formula (24) in Part I, [1] into the formula (25) in Part I, [1] it is easy to see that Xq = RH,q

for all q ∈ Q, hence by Theorem 2 (H, µ) is span-reachable.

Proof: [Proof of Lemma 3] Assume that H is of the form (1), and assume that µ is of

the form µ : Φ → HH . Consider the representation RH,µ from (19) in Part I, [1]. For each

pair q1, q2 ∈ Q of discrete states define the subset of words R(q1, q2) ⊆ Γ̃∗ as follows. A

word v ∈ Γ̃∗ of the form v = eα1γ1e
α2γ2 · · · e

αkγke
αk+1 belongs to R(q1, q2), if and only if

δ(q2, γ1 · · ·γk) = q1. From (21) in Part I, [1] it follows that

RH,q = Span{MsMeMwB̃f,j, MvB̃f | s, v ∈ Γ̃∗, f ∈ Φ,

j = 1, . . . , m, w ∈ Γ∗, wes, v ∈ R(q, µD(f))}

which implies that WRH,µ
∩ Xq = RH,q for all q ∈ Q. It is easy to see that RH,µ is reachable if

and only if
⊕

q∈Q Xq =
⊕

q∈Q WRH,µ
∩ Xq =

⊕
q∈Q RH,q and the equality below holds.

R
|Q|m = Span{eq,j | j = 1, . . . , m,

q = δ(µD(f), w), w ∈ Γ∗, f ∈ Φ}
(15)

Since eq,j , q ∈ Q, j = 1, . . . , m are linearly independent, it follows that (15) holds if and only

if (AH , µD) is reachable. The latter is equivalent to (ĀH , µD) being reachable. That is, RH,µ
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is reachable and if and only if
⊕

q∈Q Xq =
⊕

q∈Q RH,q, or, equivalently Xq = RH,q for all

q ∈ Q, and (AH , µD) is reachable, i.e. (H, µ) is span-reachable . Since span-reachability of

(H, µ) implies reachability of (AH, µD) and hence reachability of (ĀH , µD), we have proven

the first equivalence of the lemma.

Next, we will show that (H, µ) is observable if and only if ĀH is observable and RH,µ

is Xq observable for all q ∈ Q. It is easy to see that part (i) of Theorem 1 is equivalent to

[(λ(q1, w) = λ(q2, w), w ∈ Γ∗ and Zq1,j = Zq2,j, j = 1, . . . , m) ⇐⇒ q1 = q2], which, in turn,

is equivalent to [(λ̄(q1, w) = λ̄(q2, w), ∀w ∈ Γ∗) ⇐⇒ q1 = q2]. But the latter expression

is equivalent to (ĀH , µD) being observable. That is, part (i) of Theorem 1 is equivalent to

observability of (ĀH , µD). Consider part (ii) of Theorem 1. From (22) in Part I, [1] it follows

that for each q ∈ Q, OH,q = ORH,µ
∩ Xq. That is, part (ii) of Theorem 1 is equivalent to

Xq ∩ OR = {0} for all q ∈ Q, i.e. R is Xq-observable for each q ∈ Q. Hence, by Theorem 1

(H, µ) is observable if and only if (ĀH, µD) is observable and RH,µ is Xq observable for each

q ∈ Q.

Proof: [Proof of Lemma 2] Assume that H is of the form (1) and µ is of the form µ : Φ →

HH , and assume that RH,µ is of the form (20) in Part I, [1]. Recall that Xq ⊆ X̂ , hence the

identity map iq : Xq 3 x 7→ x ∈ X̂ is well defined. Define iR :
⊕

q∈Q Xq⊕R
Nm → X̂ as follows.

Let iR(x) = iq(x) = x for all x ∈ Xq, q ∈ Q, and let iR(eq,j) = FwBf,j such that δ(ζ(f), w) = q

for some w ∈ Γ∗. We will show iR is well defined. First, since (Ã, ζ) is reachable, for each

q ∈ Q there exists f ∈ Φ and w such that δ(ζ(f), w) = q. If (q, v) is also such a pair that

q = δ(ζ(g), v), then FwBf,j = FvBg,j . Indeed, in this case λ̄(ζ(f), w) = λ̄(q) = λ̄(ζ(g), v),

hence w ◦ Zf,l = v ◦ Zg,l, l = 1, . . . , m. But for each s ∈ Γ̃∗, CFsFwBf,j = (w ◦ Zf,j)(s) =

(v ◦ Zg,j)(s) = CFsFvBg,j. Since R is observable, we get that FwBf,j = FvBg,j. Hence, we

have shown that iR is a well defined linear map. It is easy to show that the other conditions for

iR being a representation morphism hold as well.

Proof: [Proof of Lemma 5] In order to fix the notation, assume that HR,Ā,ζ = (Ã, Rm, Rp,

(X̃q, Ãq, B̃q, C̃q)q∈ eQ
, {M̃eδ(q,γ),γ,q

| q ∈ Q̃, γ ∈ Γ}), Ā = (Q̃, Γ, O×Ō, δ̃, λ̃), Ã = (Q̃, Γ, O, δ̃, ΠO◦

λ̃), and R = (X̃ , {Fσ}σ∈eΓ, G, S), where G = {Gj ∈ X̃ | j ∈ IΦ}. Assume that RH,µ is of the

form (20) in Part I, [1]. It is easy to see that φ can be viewed as an automaton morphism

φ : (AH , µD) → (Ã, (µR,Ā,ζ)D). Next, we have to show that TC satisfies the requirements

for a linear hybrid morphism. First, we have to show that TC(x) = Tx ∈ X̃φ(q) for each
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q ∈ Q, x ∈ Xq. Indeed, by Lemma 3 we get that RH,µ is reachable. Hence each x ∈ Xq is a

linear combination of elements of the form MsB̃f and MzMeMvB̃f,l with f ∈ Φ and l = 1, . . . , m

and s, vez ∈ R(q, µD(f)), where R(q1, q2) is the set defined in the proof of Lemma 3. Since

φ is an automaton map, it follows that if s, vez ∈ R(q, µD(f)), then s, vez ∈ R(φ(q), ζ(f)).

Notice that T (MsB̃f ) = FsGf and T (MzMeMvB̃f,l) = FzFeFvGg,l. Hence, by the definition of

X̃φ(q), T (MzMeMvB̃f,l) and T (MsB̃f ) belong to X̃φ(q). Hence TC(x) ∈ X̃φ(q). It is easy to see

that all the other conditions for (φ, TC) being a linear hybrid morphism hold too. The map φ is

surjective, since (Ā, ζ) is reachable; and it is easy to show that TC is surjective. Hence, (φ, TC)

is indeed a surjective linear hybrid morphism.

Proof: [Proof of Lemma 4] Assume that H is of the form (1) and assume that RH,µ is as in

(20) in Part I, [1]. Assume that R = (X̂ , {Fσ}σ∈eΓ, G, S). Consider the map iR from Lemma 2 and

notice that for each x ∈ Xq, C̃Mwx = SFwiR(x) = SFwx. Hence, ORH,µ
∩Xq ⊆ OR∩Xq = {0},

since R is observable. That is, RH,µ is Xq observable for each q ∈ Q. The realization (H, µ) is

span-reachable by construction and (ĀH , µD) = (Ā, ζ) is observable by the assumption of the

lemma. Thus, by Lemma 3, (H, µ) is span-reachable and observable.

Proof: [Proof of Lemma 6] Let (Ar = (Qr, Γ, O, δr, λ), µD) be the reachable automaton

realization constructed from (AH, µD) as described in Subsection V-B. For each q ∈ Qr let

X r
q = RH,q. Since nr

q = dimX q
r < +∞, we can identify X q

r with R
nr

q . Define the linear maps

Ar
q : X r

q → X r
q , Cr

q : X r
q → R

p and M r
δr(q,γ),γ,q : X r

q → X r
δr(q,γ), γ ∈ Γ as the restriction

of the linear maps corresponding to the matrices Aq, Cq, Mδ(q,γ),γ,q to the subspace RH,q, that

is, for all x ∈ Xq Ar
qx = Aqx , Cr

qx = Cqx ,and M r
δ(q,γ),γ,qx = Mδ(q,γ),γ,qx for all γ ∈ Γ. It

is clear that we can identify Ar
q, Cr

q , and M r
δr(q,γ),γ,q with a nr

q × nr
q, p × nr

q and nr
δr(q,γ) × nr

q

matrix respectively. Let Br
q ∈ R

nr
q×m be the matrix of the linear map R 3 u 7→ Bqu ∈ RH,q.

Define Hr as (Ar, R
m, Rp, (X r

q , Ar
q, B

r
q , C

r
q )q∈Qr , {M

r
δr(q,γ),γ,q | q ∈ Qr, γ ∈ Γ}) and define µr

as µr(f) = (q, x) if µ(f) = (q, x), where we view x ∈ RH,q as an element of Xq. It follows

from Theorem 2 that (Hr, µr) is span-reachable. Using Proposition 1 in Part I, [1] it is easy to

see that (Hr, µr) is a realization of Φ. Finally, card(Q) ≤ card(Qr) and dim RH,q ≤ nq, which

implies dim Hr ≤ dim H; in addition, dim Hr = dim H implies that card(Q) = card(Qr) and

dim RH,q = nq for all q ∈ Q, which means (A, µD) is reachable and RH,q = Xq, q ∈ Q, i.e.

(H, µ) is span-reachable .
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