
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

R.K. Boel, J.H. van Schuppen

Distributed routing for load balancing

Department of Operations Research and System Theory Report OS-R8820 November

B i!Jliofi1eek
Centrurn voor Ii\ •• -,,)::; ;?;i'l lnfom1a%~

Ams!erdat">

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Distributed Routing for Load Balancing

R.K. Boel
Research Fellow NFWO (Belgian National Foundation for Scientific Research)

Laboratorium voor Theoretische Electriciteit, Rijksuniversiteit Gent
Grote Steenweg Noord 2, B9710 Gent (Zwijnaarde), Belgium

J.H. van Schuppen
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper discusses some open-loop and closed-loop control algorithms for an example of a discrete

event system, viz. the routing of arriving tasks from different arrival streams among several possible service

stations. We show that it is possible to design open-loop policies that give good performance in a way

which is very robust with respect to large changes in the arrival rates. This is possible even though we

assume that there is no on-line coordination between the routing algorithms for the different arrival streams.

Some further improvements of the performance are possible when a simple feedback policy - overflow rout

ing - is implemented. This also gives reasonable robustness of the performance with respect to changes in

the service rates. Several different analysis techniques are needed to obtain the analytical and numerical

solutions necessary to compare the performance of the different policies.

1980 Mathematics Subject Classification (1985 Revision): 93E20, 90822, 68C15. b 9 C 2-'1

Key Words & Phrases: load balancing, distributed communication systems, control, team theory, queueing

theory.

Note: This paper has been submitted for publication.

1. INTRODUCTION

1

In this paper we discuss several approaches to the control of a discrete-event system. In particular we
discuss the problem of how to design routing units for a queueing network consisting of several ser
vice stations with their associated waiting room and of several arrival streams of tasks with their asso
ciated routing units, see Fig. I. This problem is studied from the point of view of a control engineer,
i.e. we are interested in how much information each routing unit should have available at the time of
a decision in order to achieve good performance. In this paper it is assumed that routing units make
a decision on where to send an arriving task at the time of the arrival. We compare open-loop (feed
forward) policies with simple closed-loop (feedback) policies where the routing unit at the time of an
arrival is allowed to look at one queue length only. Thus we limit ourselves to decentralized policies
without on-line coordination, and, as control engineering experience suggests, we cannot expect to be
able to find an "optimal policy". What can be achieved, it turns out from the simple cases which we
have solved analytically or numerically, is reasonable performance (in the sense of small average wait
ing times and low blocking probabilities) in a way which is robust with respect to large changes in the
arrival rates and - to a smaller extent - with respect to changes of the service rates.

Problems of the type we discuss are useful in the design of distributed processors [5, 9-
11, 17, 28, 30, 33, 39] in particular for distributed telephone switches [3, 16] and in the design of routing

Report OS-R8820
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

algorithms for communication or manufacturing networks [20, 35, 38, 43]. A good survey paper on
these issues is that by Wang and Morris [44]. where many more policies are presented and analyzed
than the ones we consider here. For example. in [44] policies are considered where servers with little
work to do request newly assigned tasks to be sent to them, rather than having routing units associ

ated to arrival streams assign tasks. We do not consider this firstly because in our control engineers'
approach the communications overhead is probably quite high, (18], and secondly because we cannot
give an easily calculated performance measure bounding this extra communication cost.

A1 ~1 R1 k----:,-1 station !Oq, D1
Q1

30

Pt
' /

' /

' / x
/ '

/ ' / '
A2 ~1 R2 ~,~~----:~i station 20q, D2

Q2
30

P2

Fig. 1. Model of load balancing system with two stations.

We have also limited ourselves to routing policies for which we can calculate, at least for not too
large a system, the performance measures analytically or numerically efficiently. In particular we have
avoided the independence assumption usually made in papers on random routing [18, 32, 43, 47]. One
phenomenon we are interested in is the performance improvement resulting from the more regular
arrival streams [20] obtained by open-loop, cyclic routing. This effect would be masked by the
independence assumption. This is different from the case of random routing where there is no regu
larisation of the arrival streams.

In order to obtain robustly good performance we will find that the routing unit should at least have
the following properties: Traffic loads - different arrival rates - should be balanced evenly over the
different service stations proportionally to their respective nominal service rates. This can be achieved
via random routing [11,41]. It does not matter then how many arrival streams there are, and hence
the results of Bonomi and Kumar [6] can be used, showing that the optimal solution, in the sense of
minimum mean waiting time, balances the idle times of the different service stations. However it is
well known that, in the case of one arrival stream, significant improvements are possible by alternat
ing arrival streams in a predetermined way between the different service stations [20]. In the case of
one arrival stream it is also known how to calculate the optimal alternating pattern [27]. Even before
the improvement was theoretically recognized it was already used in adaptive overflow routing of tele
phone traffic under the names call-gapping and Selective Dynamic Overload Control (SDOC) [24].
This improvement has to do with the fact that the arrival streams at each service station are now
renewal processes that are more regular than the Poisson process, i.e. with a smaller coefficient of
variation of the interarrival times [25].

Unfortunately the superposition of several independent renewal processes is not a renewal process.
Such a superposition occurs when several uncoordinated routing units deterministically alternate the
service stations to which they send tasks. Moreover intuition suggests that superposing "regular"
renewal processes will lead to a less regular process, i.e. superposition will increase the coefficient of
variation of the interarrival times. Nevertheless we do find a few cases which can be analyzed expli
citly and for which it turns out that deterministically alternating routing is advantageous. This

3

confirms the results of [3] where very large systems were simulated. As far as we know the open-loop
routing algorithms for several arrival streams as discussed in this paper have not yet been analyzed
theoretically. They do provide good robustness of the performance with repect to large changes in the

arrival rates.
In order to also achieve robustness with respect to changes in the service rates, some state informa

tion, i.e. some knowledge of the queue lengths, is necessary. Again when all the routing units have
the same information at all times and hence can be coordinated, then it does not matter that there is
more than one arrival stream. Optimal control results such as "join the shortest queue" (JSQ) [45,46)
can be used. Several extensions of this closed-loop optimal routing have been studied for more com
plicated systems [14, 15, 26, 31, 34). Analytical and numerical solutions for these cases have also been
studied intensively [4, 13, 14, 19, 22, 23). As soon as the assumption is dropped that all the routing
units have the same information set, the problem becomes a team problem. Very few analytical
results are known; the only attempts we know of to apply the results of team theory to problems simi
lar to load balancing are [l, 8). Even there the required information sharing is probably unrealistic
and the optimal strategies are not implementable. Therefore we limit ourselves to very simple stra
tegies where each routing unit follows an open-loop policy except when the queue length at the service
station it would normally route its task too, is longer than a predetermined threshold. We find that
these overflow strategies do indeed give good performance but we cannot draw any conclusion on
how much closer to the JSQ performance lower bound we could come by actually solving the optimal

team problem.
The mathematical model we have used to analyze the problem described above is the following sto

chastically driven discrete-event system. Assume that we have stochastically specified the family of

point processes (Nk,t• k = l, ... ,n +m), viz. the n arrival streams (A;, 1, i = l, ... ,n) and them potential
service completions (D1,1, j = l, ... ,m). The internal state of the system at each time is X1 EX. At

each jump time Tk,t of the counting process Nk,1 the state changes from Xru- to Gk(Xr •. ,-)=Xr •. ,+·

Hence we obtain the following simple dynamical system representation
n+m

dX, = ~ (Gk(X1_)-X1 -)dNk,i (1.l)
k=I

n+m n+m
= ~ (Gk(X1_)-X1-)'Ak(t)dt + ~ (Gk(X1-)-X1-)(dNk,1-'Ak(t)dt),

k=I k=I

where 'Ak(t) is the rate of the point process Nk,t· We do assume that each of these point processes is
self-excited so that 'Ak(t), 'Vk, does not depend explicitly on the state X1. The choice of the routing
units is then equivalent to choosing the functions Gk> k = l, ... ,n corresponding to the n arrival
streams. The form of Gk is constrained by the information available to routing unit rk. The func
tions Gk> k =n + l, ... ,n +m correspond to departures and are assumed fixed.

Ideally in a control problem we would like to be able to analyze the transient behaviour of Xi, e.g.
discuss how fast the waiting times of tasks converge to the long term average when the initial condi
tion is X 0 • This is only very rarely possible. Usually we have to limit attention to calculate the

equilibrium distribution lim1-+00 P (X1 = x) = p (x) assuming it exists. The performance measures, such
as mean waiting time, variance of waiting time, blocking probability, rerouting probability, etc. are
then all functionals of this equilibrium distribution.

In this paper we have only analyzed the case where A;,1 are Poisson processes, and the service times
are exponential. Then X1 only should contain information about the queue lengths and about the
internal state of the routing units. The model we describe then reduces to a countable state Markov
process. However the methods of calculation of performance measures are very easily adapted to
more general arrival processes (even non-renewal). General service times are harder to deal with
because the departure processes will no longer be selfexcited (in other words 'Ak(t,X1) for

k =n + l, ... ,n +m).
Summarizing we can say that this paper tries to find good routing policies r;, i = l, ... ,n or

4

equivalently good transition functions G;, i = I, ... ,n such that, given nominal arrival rates A;, i = I, ... ,n
and nominal service rates JJ.j, j = I, ... ,m the important stationary performance measures remain small
even for fairly large changes away from the nominal rates. In section 2 we discuss the simple case of
a discrete-time system with Bernoulli arrivals. This model even allows some simple transient results.
In section 3 we discuss open-loop policies and in section 4 overflow policies for the case with Poisson
arrival streams and exponential service times. In section 5 we discuss some open problems and draw
some conclusions.

2. A SIMPLE DISCRETE-TIME MODEL

To illustrate the concepts discussed in this paper, we first consider a very simple discrete time queue
ing system, see Fig. 1. Assume a weak form of coordination between the different subsystems of the
model, namely the presence of perfectly synchronized clocks. There are two Bernoulli arrival streams
of tasks a1,n and a2,n, independent of each other and each having one arrival per time unit with pro
bability p 1 respectively p 2 , independently of arrivals in other time intervals. There are two service
stations which can process one task per time interval with probability qi. respectively q2 • Associated
with each arrival stream i there is a routing unit R; which assigns arriving tasks to one of the infinite
waiting rooms upon their arrival. We want to compare the performance under different assignment
policies.

First we will discuss how the performance depends on p 1 and p 2 , for the case of perfect service sta
tions: q1=q2 =1. Then we will discuss the robustness of the performance with respect to service
failures. Since waiting times are exactly equal to the number of customers in front of a task times
one time interval, we study only the queue lengths (Q 1,n) and (Q2,n), i.e. the number of customers
waiting or in service.

Fixed routing
Consider first the case where tasks of arrival stream A;,n = ~ai,j are sent to the waiting room of server

i. The queue lengths (Q 1,n) and (Q2,n) are independent stochastic processes. Let Q;0 >1. Then the
transient behaviour of this system can be described as follows. Let

n
G;,n = ~ (1 - a;,j) = n - A;,n,

j=I

be the process counting the time intervals when there is no arrival on stream i. The time between two
jumps of size + 1 of G;,n is geometrically distributed, with mean 1 I (1 - p;). One easily sees that
Q;,n = Q;, 0 - G;,n - I as long as Q;,n ~ 1. As soon as G;,n = Q;o the system starts operating under sta
tionary conditions: Q;,n = A;,n - I· For the two-dimensional Markov process (Q 1,m Q2,n) only the
states (0,0), (1,0), (0, 1), and (1, 1) are ergodic; all the other states are transient. The mean queue
length is p 1, respectively p 2 •

Cyclic routing
The next routing policy to be analysed is cyclic routing: when A;,n is even, then send the arriving task
to the waiting room of service station i, when A;,n is odd then route the arriving task to the waiting
room of the other station. The performance can be analyzed as follows. Define

D1 = inj{k>Ola1,k=O, andlora2,k=O}

and

Dk= inf{k>Dk-1 la1,ka2,k=O}.

During the interval {l, ... ,Di} each station receives exacty one task in each interval, provided one
takes care of sending tasks to different stations at time 1. The queue lengths remain constant in this
interval. The distribution of D 1 is geometric with mean I I (1-p 1p 2):

P(D1 =d) = (p1p2f- 1(1-p1p2).

5

If at D 1 there is no arriving task on both arrival streams, an event which occurs with probability

(l -p1)(1-p2)/(l-p1p 2), then both queue lengths Q1,n and Q2,n decrease by 1 if possible. The

behaviour of the system during the next interval (D 1 + 1, ... , D 1 + D2), is exactly as before. If how

ever at D 1 there is no arrival on stream 1 but there is an arrival on stream 2 (this happens at D 1 with

probability (1-p1)p2I(1-p 1p 2)) then the queue length at station number D 1 mod 2 remains the

same betweeri D 1 and D 1+1, while the other queue length decreases by 1 if possible. During the

next interval (D1+1, ... ,D2), while there are at each time interval arriving tasks on both streams,

the system works as follows. At D 1 + 1 there are two arrivals at station (D 1 + 1) mod 2 and no arrival

at station D 1 mod 2; at D 1 +2 (if D2 ~2) there are 2 arrivals at station D1 mod 2 and none at the

other station, and so on. Thus the queue lengths alternately increase and decrease by I jumping

between Q 1,0 -1 and Q 1,0 • The behaviour in subsequent intervals is described in the same way. This

transient behaviour continues until both queue lengths become less than 2.

Oearly now all states with Q l,n ,;;;;;2 and Q2,n ,;;;;;2 are ergodic. All other states are transient. The

transient behaviour is similar to that for fixed routing, except that the length of the intervals is now

geometrically distributed with parameter l-(p1 +p2)/2, instead of pi, respectively p 2 • The mean

queue length is now the same for both queues, viz.

p1+p2
2P(Q1>0)

according to Little's law. When p 1 and p2 are close to 1 this will be comparable to the queue length

in the fixed routing case.

Periodic routing
The problem with cyclic routing is obviously the fact that the arrival process at each station actually

becomes more irregular, at least when p 1 and/or p2 are large. The following periodic routing policy

overcomes this easily: arriving tasks on stream i at even times n are sent to station i; at odd times,

route arrivals on stream i to station not i. The behaviour is now exactly as with fixed routing, except

that the mean arrival rates at each service station are now (p 1 +p2)/2 (but the arrival rates are time

dependent), instead of beingpi, respectively p2• Again the ergodic states are (0,0), (1,0), (0,1), and

(1, l); all other states are transient. The mean queue length for both queues is now (p 1 +p2)/2. The

transient behaviour is characterized by intervals during which the queue length remains constant, with

an approximately geometrically distributed duration with parameter (p 1 +p2)/2. At the end of each

interval the queue length decreases by - 1.

Random routing
Finally one can consider random routing, where each arrival is routed to either of the two stations

based on independent tosses of a fair coin. Then

P(Q;,n=Q;,n-1+1 I Q;,n-I) = P1P214,

P(Q;,n=(Q;,n-I-l)VO I Q;,n-I) = (l-p1/2)(1-p2/2}.

Because of symmetry considerations one sees that the marginal equilibrium distributions of Q 1,n and

of Q2,n are the same as the equilibrium distribution of an MIMI I-queue with

P = P1P2 . E[Q] = P1P2
(2-p1)(2-p2)' 2(2-pi -p2).

All states are now ergodic.

6

Join-the-shortest-queue
Of course, one should compare the performance of these open-loop policies with that of the closed
loop policies, which always assigns arriving tasks to the shortest queue (JSQ). In fact one can show
that for the same arrival processes (A 1,n) and (A 2,n) the queue lengths of cyclic routing and of
periodic routing are, for each n, at most one larger than the queue lengths with the JSQ-policy, pro
vided that the queues are initially empty. However the transient behaviour will be different, if one
starts with long queues. Fig. 2 shows why the transient behaviour of the JSQ-strategy is better than
that of cyclic or periodic routing which in tum for p 1 =/=p 2 are slightly better than that of fixed rout
ing.

Q1,n
Q2,n

··~ .. ,
. ' · .. ,,

. ' ·. ,,
·. ' ·. ,,

' ,,

......... fixed routing

- - - - - random routing

- - - cyclic routing

--JSQ

time n

Fig. 2. The transient behaviour of several open-loop policies.

Note that the actual sample paths will, with high probability, be closer to the average behaviour for
cyclic or periodic routing compared to fixed routing because there are more intervals of decrease:
(p 1p2 .:;:;;;; (p 1Ap2)). The advantage of cyclic and periodic routing over fixed routing clearly is a matter
of averaging out overload and thus reducing the variance, rather than an improvement in mean
behaviour. For JSQ the behaviour is initially entirely different: the longer queue is decremented by
- 1 at every time unit, and all arriving tasks are routed to the shorter queue untill both become
equal; from then on the average behaviour is identical to that of cyclic and periodic routing, but
because the two queue lengths can never be farther apart than one unit, the variance is even smaller
and the sample paths are even closer to the mean behaviour. This variance reduction during transient
intervals is clearly the main advantage of the JSQ policy. Under stationary conditions the only disad
vantage of fixed routing compared with the other strategies is the unfairness when p 1 =/=p 2• In fact the
variance of the queue length in equilibrium for fixed routing is equal to that for the case of JSQ or
periodic routing and slightly smaller than for cyclic or random routing.

7

Imperfect service stations
Large queue lengths can occur due to occasional failures of one of the servers, a very realistic model.
Assume that one of ~he service stations, say station 1, is down during N time intervals. Under fixed
routing then, at the end of the breakdown the queue length at station I will be

Q 1,0 + Binom(N,p 1)

in which the distribution of the random variables has the parameters N and p 1; Q2,N will be 0 or I.
With cyclic routing

Q1,N = Q1,o + Binom(LN 12J,p1) + Binom(N- LN /2j ,p2),

or

Q1,N = Q1,o + Binom(N-LN12J,pi) + Binom(LN12J,p2),

depending on the state of the system at time O; similar expressions can be written down for Q2,N.

The same result holds for periodic routing. For JSQ-routing

Q1,N = Q1,o + Xi. Q2,N = Q2,o + X2,

whereby

X1 + X2 = Binom(N,p1) + Binom(N,p2),

and I Q 1,N -Q2,N I ~ 1 for N> I Q 1,0 -Q2,o I· Since the average waiting time during the busy period
following a breakdown is proportional to the area under the queue-length trajectory, it is clear from
Fig. 2 and the above argument that load balancing (JSQ or cyclic or periodic routing) will approxi
mately halve this cost with respect to fixed routing.

When on the other hand large queue lengths are due to the fact that q1 <l and/or q2<1 then one
should analyse the queues with the techniques of discrete time queues [7,42]. All states are now
ergodic (in z;.) for all five policies provided the respective stability criteria are satisfied:
P1 <qi. p2<q2 for fixed routing, (p1 +p2)/2 < (q1 Aq2) for cyclic, periodic and random routing,
and P1 +p2 < q1 +q2 for JSQ, see Fig. 3.

P2 · · · ·······fixed routing

- - - - - cyclic routing

1.0

--JSQ

' ' ' ' ' q2 ············"-~··.
' : ..
:' . '

Fig. 3. The ergodicity regions for several open-loop policies.

8

3. OPEN-LOOP ROUTING OF SEVERAL POISSON ARRIVAL STREAMS

In this section we consider n independent Poisson arrival streams (A;,,) with rates A.;, i= 1, ... ,n.

The tasks generated by these arrival streams have to be processed by one of m independent servers.

Server j has a waiting room with Nj - 1, (Nj ~ oo) waiting places. Tasks which are routed or rerouted

to a full waiting room are immediately rejected and supposed never to return to the system. We

assume for simplicity that the service time of any task at server j is exponential with mean I I ll-j• and

this service time is independent of all other service times and of all the arrival streams.

To each arrival stream i is associated a routing unit described by the function r;(n) which assigns

the n-th task to server r;(n) upon its arrival. The only information available to routing unit i is the

history of arrival process A;(s), s ~t, up to the present time t and the value of time t (i.e. they know

that Ak(O)=O, for all k). The routing units are designed in a cooperative way, so as to achieve good

performance for all arrivals, and as such this can be considered a team problem. However no on-line

information exchange is possible between the routing units and hence there is no on-line coordination

between them. Moreover the routing strategies are open-loop or feedforward in the sense that no infor

mation at all is available about the state (the queue length) of the servers.

Random routing
The simplest possible strategy, besides fixed routing, is to use random routing. Each routing unit r;

assigns a task to server j with probability p;j, independently of all other assignments or of any state

information. The queue at server j then behaves like a MIMI 1 I Nj queue with arrival intensity
- n
A.ip)= ~PuA; (here p is the matrix of all elements p;j). All performance measures of interest can be

i=I
calculated explicitly from knowledge of 'Xj(p) and ll-j·

Suppose we want to design the system such that the weighted mean waiting time

n n m

J(p) = ~w;E[W;] = ~w; ~Pij E[~]
i=I i=I j=I

is as small as possible. Clearly it does not matter which arrival stream a task comes from Hence we
n

can take all the Poisson streams A;(t) together to obtain one arrival stream with rate A.= ~A.j. For
i=I -*

the case Nj = oo, VJ, Bonomi and Kumar [6] have recently shown that it is possible to find pj =A.j IA.
such that J is minimized, by solving a quadratic optimization problem in pj. This minization reduces

to balancing the idle times.
In order to find the p;j one then has to solve the system of equations in Pu• inn Xm unknowns,

n n -•
~Pu=I, Pu~o. ~Pu"A;=A.j.
j=I i=I

In general there will be infinitely many solutions, one beingp;,j=pj, Vi. Technologically the cheapest

solution will be the one with as few non-zero values Pu as possible. However there will be very little

mixing of arrival streams then and hence the performance will not be robust with respect to changes

in the arrival rate. Suppose the system, designed for a value 'A? of the arrival rate of stream i, is to

operate with arrival rate A; =A.? +LU;. Then each Pj is increased by Pu LUj I /Lj. Since the mean wait

ing time is convex-up as a function of Pj it is clearly advantageous to distribute this increase in load

over all the servers. This suggests the choice Pu= p j. Exact sensitivity calculations require calcula

tions of

di n m _!j__ Aj(p) l

d' - ~ W; ~PU d' (- N +I),
/\j i=l j=I /\j IJ.j(µ.j-~(p)) (1-pj(p) 1

)

a very complicated function indeed.
A completely analogous development can be made for the blocking probability (i.e.

9

t
limP(Qr,(n),t =Nr,(n))) as performance measure:
->00

_ _ m p/p)N;

Pb,i - .~Pij (I- (p)N +I).
1=1 Pj

1

Cyclic routing
For the case n =I it is known that random routing is not the best open-loop strategy. Ephremides,

Varaiya and Walrand (20] have shown that, with m =2, assigning arrivals alternatingly to each of the

servers, considerably reduces the mean waiting time. In fact, using results of Hajek [27] one could,

for n =I, any m and any set of values JL1> ••• ,11m, find a function r: .l+ ~ {I, ... ,m} which

assigns the n-th arriving task to server r(n), such that the mean waiting time is minimized. When all

the ratios µ1 I JLk are rational with smallest common denominator t, then the optimal r will be periodic

with period t and the optimal routing will be relatively easy to implement. With m = 2 and µ1 = µ2

one does indeed find that alternating routing is optimal: r(n)=((n +I) mod 2)+ 1.

Heuristically the fact that the deterministically alternating routing policies as above are better than

random routing, can be explained as follows. Alternating routing sends newly arriving tasks to those

servers which have not been sent a task for a longer time than most other servers, i.e. to those servers

whose waiting line is expected to be short given the previous assignments. Of course when n >I and

when the routing units are not coordinated, then routing unit i intending to assign a task to server j

does not know whether or not other units have recently assigned a task to server j. After a long time,

t~oo, the superposition of the arrival stream of tasks from A1(t), for all l=l=i, into server j, will look

to routing unit i as a stationary (non-renewal) point process with average arrival intensity

n . 1 N

~ "A,(Nlim N ~ l{r,(n)=j}).
l=l,/,f4 -+OO n =I

The argument in favour of deterministic alternating routing remains true even though the improve

ment will be weaker because our prediction of the different queue lengths will be less accurate.

A second reason why deterministic alternating routing decreases the average waiting times is that

the arrival process, with n = I, at each server j becomes more regular. Take as the simplest example

m =2andN1 = oo. Then the interarrival times at each server are Erlang-2 distributed with a smaller

coefficient of variation than the exponential distribution. The arrival process is a renewal process so

that general GI IM I I-results can be applied. It is known then that the equilibrium distribution, and

hence the mean waiting time, ~locking probabiljties etc. are determined entirely by the unique root in

the open interval (0, 1) of a=A(µ-pn) where A(s) is the moment-generating function of the interar

rival times. Then

limP(Q;r. =n) = p(l-a)~- 1 ,
k-+oo ' k

(J

E[W] = µ(I -a)'

in which Tk is the time of the k-th arrival. The case N 1 < oo can also be solved analytically (see

Takacs (40]), but is too complicated to be interpreted easily. For the case N 1 = oo however, Hajek

[25] has interpreted the above results by showing that a should be as small as possible for good per

formance. Using the convexity of
A.
A (s)=E[exp(-s(Tn+1-Tn))]

he shows that small coefficients of variation lead to small a's, the smallest a corresponding to deter

ministic (scheduled) arrivals. However, a also depends on the higher moments of the interarrival

times.
Unfortunately, when n >I, the above heuristic argument again becomes less clear. First of all, the

10

arrival stream at one server is a superposition of n independent renewal processes and hence is never

a renewal process (excepts when all the renewal processes are Poisson). Hardly any analytical results

are known for queues with non-renewal arrival processes. Moreover, superposing n (> 1) indepen

dent, fairly regular, arrival streams will lead to a less regular stream. Hence the advantage of deter

ministically alternating traffic is partly lost.
Nevertheless, it turns out that using a properly chosen set of deterministic routing policies (ri(n))

leads to a considerable performance improvement over fixed or random routing. Indeed it is usually

found that the equilibrium distribution is of the form limP(Qi, 1 =k)~cxa", fork away from 0 and
f->OO

Nj, and for a value of a considerably smaller than p. This leads to a reduction of the mean waiting

time and, for N 1 <oo, of the blocking probability.
The numerical results, for periodic functions ri(n), have been studied via the matrix-geometric

method. Indeed, the process

X, = (Z,, Q1,1, ... , Qm,,),

where

Z, = (r1(A 1,1), ... ,rn(An,1)),

is itself a Markov process. Note that, given Z,, the queue lengths Q 1,1, ... , Qm,t> are conditionally

independent. Hence it suffices to study each Markov process (Z,,Qj,t) independently. Using the

matrix-geometric methods of Neuts [36] one can reduce this problem, both for N 1 = oo and for

N 1 < oo, to solving a system of linear equations of dimension equal to the cardinality of the state

space of Z,. Roughly speaking the problem of finding the performance of the system is reduced to

the problem of recursively solving the 2nd order difference equation

where

(Ao-pl)po + p1 = 0,

A1Pk-1 + [Ao-(l+p)J]pk + Pk+1 = 0, k=2,3, ... ,Nj-1,

A1PN
1
-1 + [Ao+A1-(l+p)l]pN

1
= 0,

~lTPk = 1,

(3.1)

A 0 +A 1 =P is the transition matrix of (Z,) and Ao respectively A 1 contain those elements of P which

correspond to sending arriving tasks to servers =f=j, respectively to server j. This recursive solution

works very well for all reasonable Nj values. When Nr~oo however stability problems are encoun

tered. It is then better to reduce (3.1) to a first order difference equation

x = ER2m,
[
Pk l .

k Pk+1

Xk+I = [~Ai :l+p)l-Ao] x, =Ax,, xo= ~:] [pl!:A.]P•• (3.2)

~IT [&]xk = 1.

When Nj = oo, then x 0 has to lie in the space spanned by the stable eigenvalues of A (i.e. I Aj(A) I <I
of which there are mn) because otherwise the normalization condition can never be satisfied. The

largest stable eigenvalue turns out from the numerical and simulation experiments to agree very well

with the apparent load factor a (i.e. fork away from O,pk~c.a"). For n =2, m =2, cyclic routing, we

find that, for 1-p small, a~ l-4(1-p)/3+o(l-p). Since E[Q] and E[W] contain a factor

11

approximately equal to cr/(l-o'), this explains the 25% reduction we find in mean waiting for Nj
large. Of course for Nj large this will also reduce the blocking probability by

l: r ~ l ~ -3~ r
For Nj<oo the numerical solution of (3.1) does not pose any problem as long as (Amaxf' is less

than 2w, where Amax is the largest eigenvalue of A and where w is the wordsize of the computer used.
This is quite reasonable if one thinks of the solution xk of (3.2) as a linear combination of eigenvec
tors of A:

2m"

xk = ~(i\;ie;.
i=l

Note that x 0 is now not in the stable subspace of A. Instead x 0 is determined by the boundary con
dition at Nj. For p=0.7, n =2, m =2, cyclic routing, we find that i\max~3.l, and hence on a 32-bit
computer we find very easy and fast algorithms to analyze the performance as long as
Nj<21~32/logi(3.l). For Nj>21 using the results for Nj=oo usually, but not always, leads to a
sufficiently accurate approximation.

Time-varying routing
It has been explained earlier that the regularity of the arrival streams at servers is reduced due to the
superposition of independent streams. Independence is a result of a lack of coordination. It is possi
ble to achieve coordination to some extent in an open-loop policy by making the routing algorithms
time-dependent (cf. the discrete-time case in section 2). However, if one simply uses r;(t), then there
will only be load balancing but no regularisation of the arrival streams. Simple simulation experi
ments do indeed indicate that it is not possible to achieve significant performance improvements over
fixed or random routing, by using r;(t) as routing algorithm. Considerable improvement, even with
respect to the generalized cyclic routing r;(A;,1), can undoubtedly be achieved by using routing algo
rithms of the form r;(A;,"t). This should be compared to the use of time dependent control strategies
for removing fixed modes in decentralized control of linear systems [2]. Another good strategy,
requiring some memory in each routing unit, would be to use r;(A;,1 - A;,kr) for kT~t <(k + 1)T.
This also introduces coordination between the different routing units in open loop. We have not yet
been able to study the performance of these time-dependent routing units analytically. On the other
hand, it is not feasible to properly design the routing units via simulation because there are too many
free parameters. Therefore we will not elaborate further on this type of time-dependent routing.

Performance for specific examples
To conclude this section on open-loop routing strategies we illustrate for some examples the perfor
mance improvement which can be obtained. In the figures 4.a, 4.b and 4.c we plot, on the basis of
numerical experiments, E[Q], Var(Q) and log(pb) as function of the server load p=i\/ µfor the case
n=2, m=2, i\1=i\2 µ1=µ2, N1=N2=l0, and r1(A1,t) = (A1,t mod2)+1,
r1(A2,1) = ((A2,t + 1) mod 2)+ 1. Note that the mean waiting time for accepted tasks is

E[W] = [1-,:b l E[Q].

We clearly obtain an improvement of up to 25% in performance
(E[Q], Var(Q), E[W], Var(W), Pb) for moderate values of p (p~0.8). The blocking probability is
actually reduced for all values of p. The fact that for large p(~0.9) the improvement becomes
insignificant is due to the fact that the queues are almost never empty. Indeed, for N; = oo, regulariz
ing the arrival stream really has only one advantage: the chance of sending a task to an empty queue
increases. Note also that the fact that for p=0.9, E[Q] is larger for cyclic routing than for fixed

12

4

F.fQ]
3

2

l

o fixed routing with overflow

x fixed routing

+ cyclic routing

p

Fig. 4.a. Mean queue length versus load
for two open-loop routing policies (Fixed routing and Cyclic routing)

and one closed-loop routing policy (Fixed routing with overflow).

12 ---------------.
o fixed routing with overflow

10 x fixed routing +

8
Var(Q)

6

4

2

+ cyclic routing

p

Fig. 4.b. Variance of queue length versus load for two open-loop
routing policies and one closed-loop routing policy.

routing, is misleading; it is due to the heavier load of the queue with cyclic routing since more tasks
are accepted (pb decreases). Indeed the phenomenon disappears when Nj increases.

-2

o fixed routing with overflow

x fixed routing /--f_....
+ cyclic routing /

/
-8

-10 _____ ...__ ___ _ __,

0.0 0.2 0.4 0.6 0.8 1.0
p

Fig. 4.c. Logarithm of blocking probability versus load for two open-loop
routing policies and one closed-loop routing policy.

Robustness of performance

13

The main purpose of routing strategies, different from fixed routing, is to make the performance
robust with respect to changes in the arrival parameters. With fixed routing there is a significant
increase in mean waiting time, blocking probability, etc. when the arrival rates become unequal.
With random routing on the other hand there is no change in performance as long as the total arrival
rate remains unchanged. For cyclic routing with constant total arrival rate, there is actually a small
reduction in mean waiting as one arrival stream becomes dominant. For example, with p=0.7 we
find that for >.1 =>-2 =0.7µ, E[Q]= 1.8115, for >.1 =0.5µ, >.2 =0.9µ we obtain E[Q]= 1.8109, a reduc
tion of less than 0.1 %. For Var(Q) and Pb the reduction is less than l %. It is actually intuitively rea
sonable that for cyclic routing the performance improves as the load becomes more unbalanced: as
one of the two, regularized, superimposed renewal processes becomes more dominating, the superposi
tion itself becomes more regular. The performance approaches that of an E 2 IMI1 queue. These
results are confirmed for other parameter values. In figure 5.a we indicate how E[Q] varies as a func
tion of >.2 for n=m=2, cyclic routing, >.1 =0.7, µ1=µ2=1, N 1=10. Figure 5.b displays E[Q] as a
function of >.1 in case >.1 +>.2=1.4 and figure 5.c displays the logarithm of the blocking probability in
the same case. Here also we find good robustness properties.

Of course all the previous examples were for the case µ1 =µ2, when the alternating routing strategy
is optimal. As soon as µ1 =1=µ2 it becomes necessary to use more complicated routing strategies. We
will describe these strategies by giving the sequence of servers over one period, e.g.
1-1-2-1-2- · · · . The arrival streams at the servers are less regular now. Mathematically this
leads to larger values of the largest stable eigenvalue of A. Nevertheless we still do find a significant
improvement over fixed routing if we choose routing algorithms properly. Consider the case
>-1 =>-2 =0.7, µ1 =l, µ2 =1.5, N 1 =10 then we find:

a. for policies r 1 :1-2, r 2:1-2, E[Qi]= 1.0379, E[Q2]= 1.1117, and a queue length of 1.0748 seen
by each arrival stream 2. Compare this to E[Qi]=2.ll l and E[Q2]=0.862 for fixed routing and
E[Qi]=E[Q2]= 1.244 for random routing.

b. for policies r 1 :1-1-2, r2:1-1-2, E[Qi]= 1.4497, E[Q2]=0.6948, or a mean queue length as
seen by each arrival stream of 1.198.

14

5.---------------.
x fixed routing

4 o random routing

3

E(Q]

2

l

+ cyclic routing

0 ,____,.....___._ _ __.._ _ _.... _ _,
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

i\2

Fig. 5.a. Mean queue length versus i\2 for several open-loop routing policies.

3.0

2.S

0--0-0-0~
2.0

&QJ +--+ + + + + +
1.S

1.0 x fixed routing

o random routing
o.s + cyclic routing

0.0
0.0 0.2 0.4 0.6 0.8 1.0

i\1

Fig. 5.b. Mean queue length versus i\1 for several open-loop routing policies
in the case i\1+i\2=1.4.

For the case i\1 =i\2 =0.7, µ.1 =1, µ.2 =2, N 1 = lO we consider the policies:
a. r 1 :1~1~2, r2 :1~1~2, E[Qi]=0.8011, E[Q2]=0.6948, E[Q]=0.7657 as seen by both arrival

streams.
b.r 1 :1~1~2, r2 :1~1~1~2, E[Qi]=0.9118, E[Q2]=0.5556, E[Q]=0.7931 as seen by arrival

stream 1, E[Q]=0.8228 as seen by arrival stream 2.
These values should be compared to:

-3

x fixed routing

o random routing

+ + + + + + +
+ cyclic routing

-4 ,__ __ __..__ __ _., ______ _._ ______ ________ ~

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5.c. Logarithm of blocking probability versus >.1 for several open-loop routing policies
in the case >.1 + >.2 = 1.4.

- fixed routing: E[Qi]=2.ll, E[Q2]=0.535;
- random routing: E[Qi]=E[Q2]=0.86.

15

It should be noted that in each case the blocking probability Pb,i is smallest for the most balanced
load case, i.e. for policy a. in both examples. The performance is also very robust in these examples
with respect to load changes, just as it was in the case of alternating routing.

4. OVERFLOW ROUTING STRATEGIES

An obvious weakness of the open-loop routing strategies of the previous section is the fact that they
are not robust with respect to changes in the service capacity. If at some time T0 one of the servers,
say server i, suddenly fails, so that from T0 on the service rate drops from /l'j to P.jO• then a long
queue will quickly build up behind it. Our open-loop routing mechanism will not adapt to this at all.
It will keep sending tasks to the failed server; QJt may well, if P.j, 0 is less than the arrival rate at
server i, remain nearly full all the time. The blocking rate will therefore rise drastically.

To make the system robust against such server failures, it is necessary to let the routing units use
information on the queue lengths. The routing strategy now becomes a closed-loop or a feedback pol
icy. Often it is either too costly or technically not feasible to give all routing units access to complete
state information. If this were possible each routing unit would at each time send an arriving task to
the server with the shortest queue in case µ1 =µ2. This minimizes the expected waiting time in the
class of all policies which assign a task upon its arrival to a server [20, 45, 46]. Of course one can do
even better if one postpones the assignment decision until a server becomes free, or equivalently if
unlimited jockeying between the queues is possible (See [4] for a discussion on how much further
improvement in performance this can give). This last case is simply an MIMI m queue.

Since the policies of the preceding paragraph are too costly to implement, they only serve as benck
marks against which to compare the following policies. Given any of the open-loop policies of the
previous section, let the only information available for routing unit i at the arrival time Tn of the n-th
task be the binary value "is Q,;(n)(t) larger than a threshold level kr,(n) or not". If not, then the arriv

ing task is assigned to server ri(n); if yes, then the arriving task is assigned to server ri(n)+ 1. Such a
policy is called an overflow policy. It will be analyzed in this section. The synthesis problem of

16

designing a good overflow policy therefore reduces to the choice of good threshold levels
kj, j = l, ... ,m, corresponding to nominal arrival rates A;, i = l, ... ,n, to nominal service rates
µ.j, j = l, .. ,m, and to routing functions r;(n).

Performance measures
For the case of two arrival streams and two service stations we have calculated the following perfor
mance measures for various parameter values:

1. The average queue length E[Qj] at each server, and directly related to it, the average waiting time
at each server.

2. The blocking probability Pb,j= IimP(Qj(t)=Nj) at each server. Notice that the policy described
1->00

above may reroute an arriving task from a waiting line r;(n) with kr,(n) <Qr,(n) <Nr,(n) to waiting

line r;(n)+ 1, which may be full, Qr,(n) + l =Nr,(n)+ 1• If blocking is a serious problem in the sys
tem to be designed, then it is probably sensible to install extra hardware and software to avoid
this. Thus the blocking probabilities we calculate can be reduced further at little extra cost.

3. The fraction of rerouted traffic Pr.j = limP(Qj(t)>kj).
l->00

These three performance measures should remain small when the arrival rates and/ or the service rates
deviate from the nominal values. The case of three arrival streams and three service stations can be
computed by the same method as for the case of two arrival streams and two stations.

The rerouting fractions should be small because there is an obvious communications cost associated
with it. In some systems there will be a separate communication network for transmitting rerouted
tasks. The bandwidth, and hence the cost, of this network will grow with Pr.j• and in fact also with
the burstyness of the rerouting traffic. In other systems rerouting uses the servers and will reduce the
service rate of both sending and receiving server [32]. Since it will be very difficult to model these
costs exactly we prefer to simply use Pr.J• j = I, .. ,m as a performance measure to be kept small.

There is actually another reason why Pr,j should be small, and consequently why the overflow thres
hold levels kj should be large enough. If k1 is chosen too small and when server j + 1 breaks down
(i.e. P.j + 1 becomes considerably smaller than its nominal value used for design purposes), then the fol
lowing undesirable situation will occur eventually: due to normal random fluctuations Qj(t)>kj and
the next arriving task at server j is rerouted to server j + l, where it experiences a long average wait
ing time; the queue length at the server j + l increases further causing more rerouting; this may even
tually lead to instability in case of infinite buffers. Similar problems occur in the feedback control of
classical, continuous, noisy nonlinear systems. The fact that limited observations do not allow the
controller to distinguish large deviations due to noise from systematic deterioration forces the designer
of a practical control system to use dead zones and saturation, i.e. policies very similar to the overflow
strategies discussed in this section [37].

Synthesis of overflow routing
It should be noted that in the overflow strategy described here each decisionmaker, i.e. each routing
unit, has a different information set at each time. Therefore we deal with a team problem, for which
no dynamic programming algorithm is available. Therefore there is no way of proving the optimality
of a bang-bang strategy of the type: reroute when Qr,(n) >kr,(n)· In fact, one expects that the optimal

strategies for this team problem will be randomized. For the case where n and m are small, the fol
lowing analysis shows that the overflow policies can achieve good performance in a way which is
robust with respect to changes in service rates. No claim of optimality can be made however.

17

Performance evaluation
To keep the amount of computer time required for the calculations small, we have mainly concen
trated on the cases n =m =2. A few runs with n =3 and/or m =3 have shown that extension of the
methods is feasible. For an analytic treatment see [21].

First we consider, for n =m =2, the case of fixed routing, ri(n)=i, with overflow. It is then fairly
easy to write the problem of calculating the equilibrium distribution in matrix-geometric form, or at
least in a form similar to that used in the analysis of cyclic routing with overflow. The blocks to be
worked with are now of dimension N 1 (or N 2, choose whatever is smaller). In the symmetric case,
;\1 = ;\2 , µ,1 = µ,2 , N 1 = N 2, we find that, as one expects, k = k 1 = k 2 leads to good performance. It
turns out that a good choice of k should increase with the load p=;\1 I µ,1•

Secondly we considered for n =m =2 the case of cyclic routing with overflow where ri(n) is chosen
to give good open-loop performance as explained in section 3. In principle it is still possible to apply
the matrix-geometric method, and its extension to finite queues, but the blocksizes now become too
large. Each block again has a lot of structure, i.e. it can again be divided in similar blocks, so that
one can hope that a two-step hierarchical application of the matrix-geometric method will lead to
efficient numerical solution methods. This program has not been carried out yet. However we did
find, when N 1 and N 2 are limited to sizes up to about 10 or 15, that then a Gauss-Seidel solution of
the Kolmogorov equations is feasible provided one uses, as suggested in [29], the following tricks to
speed up the convergence:

I. use as initial value for the state distribution, the one corresponding to cyclic routing without
overflow

2. use a selective under relaxation method, where the optimal relaxation coefficient is found to be
about 0.95 in all cases.

A few computerruns have also been made for n =m =3 and for cases with µ,1=;i=µ,2 nominally and
hence with more complicated routing strategies. These confirm both that the Gauss-Seidel approach
remains feasible, and that the general conclusions of the following discussion remain valid. As far as
mean queue length and rerouting probabilities are concerned, simulations using the simulation pack
age QNAP with n =m =8 for several different routing policies r;(n), have shown that roughly the
same results continue to hold. However more sophisticated programming techniques - perturbation
analysis and importance sampling in particular - will be necessary to draw clear cut conclusions about
blocking probabilities in this case.

Numerical results
To illustrate the performance achievable with overflow routing we plot in the figures 6.a and 6.b the
performance measures E[Q] and E[W] respectively for fixed routing with overflow and cyclic routing
with overflow, for ;\1 =;\2 =0.7, µ, 1 =µ,2 =1.0, N 1 =N2 =10 as a function of k 1 =k2 =k =O, 1,2,3,4,5,8.
For the sake of comparison we also indicate in the figures the levels achievable with fixed routing
(equal to the performance of random routing in this case), with cyclic routing with overflow, with
"join the shortest queue" and finally as best possible performance the results for an MIMI 2 I 20
queue with p=0.7. Finally in Fig. 6.c the rerouting probability versus overflow threshold is indicated.
One notices immediately that k = 2 gives good performance (very close to the minimal value achiev
able) in terms of E[Q], E[W] (and also Var(Q) and Var(W) it turns out). However the rerouting
fraction remains excessive. Especially for fixed routing, using an overflow policy with k > 2 leads to a
significant improvement in terms of rerouting fractions with only minor degradations of the perfor
mance measures E[Q], E[W] and Pb·

To illustrate the robustness of the performance, compare the results of Table 1 for µ, 1 =µ,2 =1,
N 1 = N 2 = 10, k 1 = k 2 = 2. Obviously the robustness against disturbances in the arrival rate is com
pletely determined by the open-loop policy.

To study the robustness of the overflow controllers with respect to changes of the service rates we
have compared several cases of reasonably well designed nominal systems. The results are illustrated
in Table 2 for the following example: ;\1 =;\2 =0.7, N 1=N2 =10, k 1=k2 =2 and µ,1 =µ,2 =1 vs.

18

3.0

2.5

2.0
E[Q]

1.5

1.0

0.5

0.0
0

*

a
y . b

""
~ + ..,...

c
d

2 4 6 8 10
Overflow threshold

Fig. 6.a. Mean queue length versus overflow threshold for several routing policies:
Fixed routing with overflow (x), Cyclic routing with overflow (+),
Fixed routing (a), Cyclic routing (b), JSQ (c), and MI M 12120 (d).

3.0

2.5

2.0
E[W]

1.5

1.0

0.5

~

0.0
0

+

a

y . b
x + T

+ + +

.
2 4 6 8 10

Overflow thresholds

Fig. 6.b. Mean waiting time versus overflow threshold for several routing policies:
Fixed routing with overflow (x), Cyclic routing with overflow (+),

Fixed routing (a), and Cyclic routing (b).

1.0 ..------------------.

0.8 x fixed routing with overflow

0.6

Pr
0.4

0.2

0.0
0

+ cyclic routing with overflow

+
.f.

+ +

2 4 6 8
Overflow threshold

10

Fig. 6.c. Rerouting probability versus overflow threshold for two routing policies.

Routing policy E[Wi]=E[W2] E[Wi] E[W2]

A.1 =A.2 =0.7 ..\1 =0.3 A.2=1.1
Fixed routing 2.043 0.450 00

Random routing 2.043 2.043 2.043

Cyclic routing 1.596 1.589 1.589

Fixed routing with overflow 1.274 1.10 1.54

Cyclic routing with overflow 1.222 1.206 1.206

JSQ 1.108
Ml M/2120 0.966 0.966 0.966

Table 1. Performance of several routing policies.

/J.J =0.5, /J.2=1.5.

Routing policy E[W] Pb E[Wi] E[W2] Pb I Pb 2
/J.J =µ2=1.0 /J.J =0.5, /J.2=1.5

Fixed 2.043 0.086 00 1.863 l 0.00075

Fixed with overflow 1.37 0.0015 2.12 1.79

Cyclic 1.596 0.000206 3.84 1.55 0.000580 0.000580

Cyclic with overflow 1.222 0.000173 2.281 1.159 0.000313 0.000313

JSQ 1.108

MIM/2120 0.966 0.966 0.966

Table 2. Robustness of performance for several routing policies.

19

Clearly if the rerouting cost is significant it is difficult to build a very robust system, with overflow
control, since there always is significant rerouting from the slow server. Apart from rerouting

20

considerations we find that k = 2 is about optimal in the above example. The mean waiting time at
each server and the blocking probability are indeed minimal for k = 2 in the unbalanced case
(µ.1 =0.5, /Li= 1.5). Notice that in the balanced case k = 1 was optimal (see Fig. 5a, Sb) but that the
results were not very sensitive to an increase in k. For the unbalanced case the results of Table 3
show that the dependence on k is quite strong for the case: ;\.1 =Ai=0.7, N1 =Ni=lO;

µ1 =0.5, /Li= 1.5; cyclic routing with overflow.

Overflow E[Wi] E[Wi] Pb I =pb i Pr I Pr i
threshold
1 2.482 0.959 0.000383 0.731 0.346

2 2.281 1.159 0.000313 0.579 0.203

3 2.500 1.326 0.000346 0.486 0.125

4 3.152 1.455 0.000434 0.430 0.079

5 3.837 1.553 0.000580 0.394 0.051

Table 3. Performance of cyclic routing with overflow as function of overflow threshold.

Clearly when rerouting is·· expensive it will be worthwhile to pay for a communication network that
allows for more centralized control, or for processing capacity that will detect server failures quickly
and modify the overflow limit of other servers accordingly. This last suggestion amounts to a decen
tralized adaptive controller. This raises new, unsolved, stability problems.

To understand better how the overflow policy operates we plot in the figures 7.a and 7.b
E[Q1 I Qi =n] and E[Qi I Q1 =n] respectively for the case of cyclic routing with overflow,
;\.1=;\.i=0.7, N 1=Ni=l0, k 1=ki=2, the balanced case µ1=µi=l.O vs. the unbalanced case
/LJ =0.5, /Li= 1.5.

10

xk=l +
8 ok=2 +

+ 0

+ k=5 + x
+ 0

6 0 x
0 x

E[Q1 IQ2=n] 0 x
0 x

4 0 .J.
0 x
x + x + 2

t w "'
0 .

0 2 4 6 8 10 12
n

Fig. 7.a. Conditional queue length E[Q 1 I Qi =n] versus n for overflow thresholds k = 1,2,5
in case of cyclic routing with overflow.

Notice the tempting conjecture that for an "optimal" choice of the overflow limit one should have
that Ek[Q 1 I Qi =n]>n for n~k and Ek[Q1 I Q2 =n]<n for n>k. However this is not properly for
mulated since the conditional expectations themselves depend on the choice of k. In fact this

21

12
xE[QdQ2=n]

+ +
10 +

+ E[Q2 I Q1 =n] +
+

Conditional
8

+
queue length

6 +
+ x

4 - +
+ x

+ x x x
2 x x x

x
x x

0
0 2 4 6 8 10 12

n

Fig. 7.b. Conditional queue length versus measured queue length
for overflow threshold k =2 in case of cyclic routing with overflow and µ1 =0.5 and µ2 =1.5.

suggested conjecture is an equilibrium condition in game theoretic sense and thus an individual

optimization rule. There is no reason to believe that it will give a good social optimum, and we have
indeed found good choices of k for which the conjecture is false.

5. CONCLUSIONS

In the previous sections we have shown that, at least for the simple models which we could analyze,

open-loop cyclic routing and closed-loop overflow routing can provide good performance reasonably

robustly. However a lot of open problems remain. First of all we would like to be able to analyze
cyclic routing with overflow more efficiently, e.g. by the modified matrix-geometric method. For the

case m = 2, with infinite buffers, N 1 = N 2 = oo [12] opens up the possibility of obtaining an analytic
solution via reduction to a boundary value problem [13].

The analysis of systems with overflow routing would be much easier if the queues behind different

service stations remained conditionally independent. For the small systems (n =2 or 3, m =2 or 3)
which we could study, this independence assumption turns out not to be a good approximation.

When n and m are large, it might be possible to design the routing units in such a way that the
independence assumption becomes a good approximation. To achive this, design the open-loop cyclic

routing units in such a way that tasks from arrival stream i are sent to a service station in K;, where

K; is a small subset of {l, ... ,m}. Let K;={/ENJK1nK;¥=0} be the indices of all arrival streams
which use at least one service station in common with arrival stream i. Let the overflow routing be

organized in such a way that overflow tasks from arrival stream i, i.e. overflowing from K;, are distri

buted over the service stations which do not belong to U / EK, K1, i.e. those service stations which do

not receive any non-overflow tasks interacting with the tasks of arrival stream i. Clearly if the rerout

ing probability is sufficiently small then the independence assumption will be a good approximation.

This will greatly simplify the design of the routing units. Moreover on intuitive grounds we conjec

ture that, for n and m large enough so that both K; and (UtEK,Ktf contain sufficiently many elements

to achieve good load balancing, the robustness and stability of such a system will actually be better

than was the case for the strategies discussed in section 4.

22

ACKNOWLEDGEMENT
The authors are grateful to the Flemish Department of Education of the Belgian Government, and to

The Netherlands' Government which through their cultural exchange agreement provided financial

support for their cooperation. They also thank Mr. F. van den Broeck for implementing some of the

algorithms of this paper.

REFERENCES
1. M. A.ICARDI, F. DAVOLI, and R. MINCARDI (1987). Decentralized optimal control of Markov

chains with a common past information set, IEEE Trans. Automatic Control, 32, 1028-1031.

2. B.D.O. ANDERSON and J.B. MOORE (1981). Time-varying feedback laws for decentralized controls,

IEEE Trans. Automatic Control, 26, 1133-1139.
3. R.N. ANDRIES, M. GRUSZECKI, J. MASSANT, G.H. PETIT, and P. VAN EsBROECK (1985). Simula

tion of distributed microprocessor control in digital switching systems, in Proceedings ITC 11,

Paper 5.10-1, ed. A. Minoru, Elsevier Science Publishers B.V ..

4. J.P.C. BLANC (1985). A note on waiting times in systems with queues in parallel Technical Report

85-46, Department of Mathematics and Informatics, Technical University of Delft, Delft.

5. S.H. BOKHARI (1979). Dual processor scheduling with dynamic reassignment, IEEE Trans.

Software Engrg., 5, 341-349.
6. F. BONOMI and A. KUMAR (1988). Adaptive optimal load balancing in a non-homogeneous mul

tiserver system with a central job scheduler, Preprint, A.T.&T. Bell Laboratories, Holmdel.

7. H. BRUNEEL (1986). A general treatment of discrete-time buffers with one randomly interrupted

output line, European J. Oper. Res., 27, 67-81.
8. G. CASALINO, F. DAVOLI, R. MINCARDI, P.P. PuLIAFITA, and R. ZAPPOLI (1984). Partially nested

information structures with a common past, IEEE Trans. Automatic Control, 29, 846-850.

9. L.M. CASEY (1981). Decentralized scheduling, Australian Comput. J., 13, 58-63.

10. T.C.K. CHOU and J.A. ABRAHAM (1982). Load balancing in distributed systems, IEEE Trans.

Software Engrg., 8, 401-412.
11. Y.C. CHOW and W. KOHLER (1979). Models of dynamic load balancing in a heterogeneous multi

processor systei:p, IEEE Trans. Comm., 28, 354-361.

12. J.W. COHEN (1988). A two-queue model with semi-exhaustive alternating service, in Performance

'87, ed. P.J. Courtois, G. Latouche, Elsevier Science Publishers B.V., Amsterdam.

13. J.W. COHEN and O.J. BoXMA (1983). Boundary value problems in queueing systems

analysis, North-Holland Puhl. Co., Amsterdam.

14. B.W. CONOLLY (1984). The autostrada queueing problem, J. Appl. Probab., 21, 394-403.

15. C. CoURCOUBETIS and P. VARAIYA (1985). Optimal resource allocation for two processes, AT&T

Technical Journal, 64, 1-14.
16. J.R. DE LOS Mozos MARQUES and A. BUCHHEISTER (1981). ITT 1240 Digital exchange traffic

handling capacity, Electrical Communication, 56, 207-217.

17. E. DE SOUZA E SILVA and M. GERLA (1984). Load balancing in distributed systems with multi

ple classes and site constraints, in Performance '84, 17-33.

18. D.L. EAGER, E.D. LAZOWSKA, and J. ZAHORJAN (1986). Adaptive load sharing in homogeneous

distributed systems, IEEE Trans. Software Engrg., 12, 662-675.

19. M. EISENBERG (1979). Two queues with alternating service, SIAM J. Appl. Math., 36, 287-303.

20. A. EPHREMIDES, P. VARAIYA, and J. WALRAND (1980). A simple dynamic routing problem, IEEE

Trans. Automatic Control, 25, 690-693.
21. G. FAYOLLE, P.J.B. KING, and I. MITRANI (1982). The solution of certain two-dimensional Mar

kov models, Adv. Appl. Prob., 14, 295-308.

22. L. FLATTO and H.P. MCKEAN (1977). Two queues in parallel, Comm. Pure & Appl. Math., 30,

255-263.
23. I. GERTSBAKH (1984). The shorter queue problem: A numerical study using the matrix-geometric

solution, Eur. J. Oper. Res., 15, 374-381.

23

24. D.G. HAENSCHKE, D.A. KETILER, and E. OBERER (1981). Network management and congestion
in the U.S. telecommunications network, IEEE Trans. Comm., 29, 376-385.

25. B. HAJEK (1983). The proof of a folk theorem on queueing delay with applications to routing in
networks, J. A. C.M., 30, 834-851.

26. B. HAJEK (1984). Optimal control of two interacting service stations, IEEE Trans. Automatic
Control, 29, 491-499.

27. B. HAJEK (1985). Extremal splittings of point processes, Math. OR, 10, 543-.
28. K. HWANG, W.J. CROFT, G.H. GOBLE, B.W. WAH., F.A. BRIGGS, W.R. SIMMONS, and C.L.

COATES (1982). A UNIX-based local computer network with load balancing, IEEE Computer, 15
(1982, April), 55-66. ,

29. L. KAUFMAN, B. GOPINATH, and E.F. WUNDERLICH (1981). Analysis of packet network conges
tion control using sparse matrix algorithms, IEEE Trans. Comm., 29, 453-466.

30. P. KRUEGER and M. LIVNY. Load balancing, load sharing and performance in distributed
systems, University of Wisconsin-Madison.

31. A. KUMAR (1986). Adaptive load control of the central processor in a distributed system with a
star topology, in IEEE Conference on Decision and Control, 1697-1699, IEEE Press.

32. K.J. LEE and D. TowsLEY (1986). A comparison of priority-based decentralized load balancing
policies, Perform Eva/. Rev., 14, 70-77.

33. G. LE LANN (1981). A distributed system for real-time transaction processing, IEEE Computer,
14 (1981, Feb.}, 43-48.

34. W. LIN and P.R. KUMAR (1982). Stochastic control of a queue with two servers of different rates,
in Analysis and Optimization of Systems, 719-728, ed. A. Bensoussan, J.L. Lions, Springer-Verlag,
Berlin.

35. D. MITRA and R. CIESLAK (1986). Randomized parallel communications on an extension of the
Omega network, AT&T.

36. M.F. NEUTS (1981). Matrix-geometric solution in stochastic models - An algorithmic approach, The
John Hopkins University Press, Baltimore.

37. B.B. PETERSON and K.S. NARENDRA (1982). Bounded error adaptive control, IEEE Trans.
Automatic Control, 27, 1161-1168.

38. P. SARACHIK (1984). Congestion reducing dynamic routing strategies for multidestination traffic
networks, in Proceedings of the 23rd Conference on Decision and Control, 1383-1387, IEEE Press.

39. H.S. STONE (1978). Critical load factors in two distributed systems, IEEE Trans. Software Engrg.,
4, 254-258.

40. L. TAKACS (1962). Introduction to the theory of queues, Oxford University Press, New York.
41. A.N. TANTAWI and D. TOWSLEY (1985). Optimal static load balancing in distributed computer

systems, J. ACM, 32, 445-465.
42. D. TOWSLEY (1980). The analysis of a statistical multiplexer with nonindependent arrivals and

errors, IEEE Trans. Comm., 28, 65-72.
43. D. TOWSLEY and R. MIRCHANDANEY (1987). The effect of communication delays on the perfor

mance of load balancing policies in distributed systems, in Second International Workshop on
Applied Mathematics and Performance/ Reliability Models of Computer/Communication Systems, 213-
226.

44. Y.T. WANG and R.J.T. MORRIS (1985). Load sharing in distributed systems, IEEE Trans. Com
puters, 34, 204-217.

45. R.W. WEBER (1978). On optimal assignment of customers to parallel servers, J. Appl. Probab., 15,
406-413.

46. W. WINSTON (1977). Optimality of the shortest line discipline, J. Appl. Probab., 14, 181-189.
47. P.S. Yu, S. BALSAMO, and Y.-H. LEE (1986). Dynamic load sharing in distributed database sys

tems, in Proc. Fall Joint Comput. Conf., 675-683.

