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The current stored program control (SPC) telephone exchanges are the opera

tional units of the telephone networks. One of the problems with these 

exchanges is the performance degradation during time periods of peak demand. 

The problem of overload control is then to maximize the number of admitted 

and succesfully completed calls under technical constraints of which the 

main one is the available processor capacity. In the paper the processbr 

load of a SPC telephone exchange is modelled as a hierarchical queueing 

system while the p~oblem of overload control is formulated as an optimal 

stochastic control problem. The latter problem is solved. An implementation 

of the derived control law will be suggested. 

1980 MATHEMATICS SUBJECT CLASSIFICATION: 93E20, 90B22, 60K30, 69L20. 

KEY WORDS & PHRASES: stored program control exchange, overload control, 

queueing theory, stochastic control. 

NOTE: This report will be submitted for publication elsewhere. 

Report OS-R8404 

Centre for Mathematics and Computer Science ,, 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 





I. INTRODUCTION 

The purpose of this paper is to present a mathematical model for the 

processor load of a telephone exchange, to formulate the problem of overload 

control as a stochastic control problem, to solve the latter problem, and 

to suggest ways to implement the solution. 

Telephone exchanges are the main operational units of telephone net

works. The currently installed telephone exchanges are computer controlled 

and are called Stored Program Control (SPC) Excrza:nges. In such an exchange 

the operations are executed by a processor according to a stored program. 

The operations of such an exchange may be summarized as follows. If a 

customer takes up the receiver this signal is noticed by the exchange. 

Possibly after some delay, the exchange answers by sending a dial tone. 

After the customer has dialed the desired number, the exchange establishes 

the connection with either the requested local phone or with another 

telephone exchange in the network. 

The objective of the operation of a telephone exchange is to maximize 

the number of admitted and succesfully completed calls without too much 

delay. A call will be termed succesful if it reaches a ringing or busy 

signal, or if it teaches another telephone exchange in the network [7]. 

One of the problems with the operation of a telephone exchange is that 

its performance can degrade considerably during time periods of peak demand. 

During such time periods the response time of the exchange is relatively 

long. This causes impatient customers to dial prematurely, before a dial 

tone has been given, after which an incompletely received telephone number 

takes up processor capacity and ends up as an unsuccesful call. Other 

requests for connections that have been transmitted properly to the 

exchange, may encounter long processing delays. This then causes customers 

to abandon the call and, possibly, to attempt to redial. In this case too 

capacity of the exchange is wasted. Empirical data [7] on customer 

behaviour indicate that when delays are long prematurely dialed calls may 

exceed 20% of the call request, while abandoned calls may exceed 40% of 

the call requests. 

Th~ problem of overload control is then to maximize the number of 

admitted and succesful calls, especially during periods of peak demand. 
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A control variable is the access of a call request to the telephone 

exchange. A call request may be either admitted or refused,access. A 

technical constraint in this problem is that the available processor 

capaci~y is limited. For references on this problem see [6,7,10,13,14,15]. 

Basically two approaches to the problem of overload control have been 

considered. The first approach is to propose a control algorithm based on 

engineering experience. This algorithm is then evaluated theoretically and 

through simulations. One such control algorithm is to limit access to the 

exchange when the number of calls being processes exceeds a certain number, 

and to start readmitting calls only if this quanity falls below another 

level. A second algorithm [7] in the same approach consists of a technical 

structure and a last-in-first-out control law. 

The second approach to the problem of overload control is to synthesize 

a control algorithm via optimal control theory. This approach has been 

proposed by F.C. Schoute [13,14,15], and been worked out for a discrete

time queueing model. The simulation results for this case indicate a 

significant increase in succesfully handled calls, and encourage further 

research in this direction. The background for this approach is system and 

control theory in which the concept of state and synthesis of algorithms 

play a central role. This should be seen in contrast with queueing theory 

in which analysis dominates the discussion. 

The approach presented in this paper is an extension of that of 

F.C. Schoute [14]. The load of the central processor of a telephone exchange 

will be modelled as a continuous-time hierarchical queueing system. The 

problem of overload control will then be formulated as an optimal stochastic 

control problem. The solution to this stochastic control problem will be 

derived~Ways to implement the solution will also be suggested. The approach 

of this paper differs from that of F.C. Schoute [14] in that continuous-time 

queueing systems are considered which makes some unverifiable assumptions of 

[14] unnecessary, and that an optimal stochastic control problem is formulated. 

Throughout the paper use will be made of the theory of stochastic 

integrals and of stochastic differential equations; for references see [5,9]. 

For an elementary introduction see [4]. Knowledge of stochastic control 

theory is helpful, but necessary only for the proofs. 
~ 

A brief sunnnary of the paper follows. In the next section the model is 
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proposed and evaluated. The problem of overload control is formulated as a 

stochastic control problem in section 3. In section 4 this problem is solv~d 

and interpreted. Ways to implement the solution are suggested in section S. 

Acknowledgements are due to F.C. Schoute for useful discussions on the 

problem of overload control and comments on an earlier draft of the paper. 

Acknowledgements are also due to J.W. Cohen for suggesting the problem and 

useful comments. 

2. THE MODEL 

In this section the technical set up of a telephone exchange will be 

sunnnarized and a mathematical model in the form of a hierarchical queueing 

system developed. In the next section the problem of overload control will 

be formulated as an optimal stochastic control problem. 

An engineering model 

To model the operation of a telephone exchange and, specifically, 

the dynamics of the processor load, it is necessary to describe the technical 

set up in some detail. 

A customer who takes up the receiver sends thus a signal to the 

telephone exchange, to be called a aaU request. Call requests are on 

detection at the exchange placed in a buffer by the central processor. These 

buffered requests will be termed aalls-in-build-up. During its presence 

at the buffer a call-in-build-up generates tasks which are again handled 

by the central processor. These tasks consist of a request for a dial 

tone, a request to establish a desired connection, and related actions. 

It has been argued by F.C. Schoute [14] that the variables calls-in

build-up and tasks are the essential state variables that describe the 

dynamics of the processor load. This suggestion is followed below. 
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"CALLS-IN-BUILD-UP'' 

.ARRIVAL 

PROCESS 

QUEUE. 1 

Xt 

"TASKS" 

Queue 2. 

Yt 

Fig. I. An engineering model of a telephone exchange. 

An engineering model for the dynamics of the processor load is the 

hierarchical queueing model depicted in figure I. Call requests by customers 

are represented by the arrival process. The first queue represents the buffer 

with the calls-in-build-up. The first server unit is assumed to have an 

infinite number of servers. The calls-in-build-up in queue I generate tasks 

during their presence there. The second queue represents the tasks for the 

central processor. The second server unit is assumed to have only one server and to 

operate on a first-in-first-out basis. The combined queues will be called a 

hierarchicaZ queueing system because the arrival process of tasks for queue 2 is 

assumed to be proportional to the number of calls-in-build-up present in queue I. 

A mathematical model 

A mathematical model for the above defined hierarchical queueing system 

will be formulated next. It will be assumed that both queues have an 

infinite buffer, that queue I has an infinite number of servers, and that 

queue 2 has only one server. All arrival and server processes are assumed 

to be Poisson processes, possibly with time-varying intensity. 

Assume given a complete probability space {Q,F,P} and a time-index 

set T = R+• The notation (mt'F t' tET) E M1 will be used to indicate that the 

stochastic process mis a martingale with respect to the a-algebra family 

(Ft,tET). Similarly the class of submartingales is denoted by SubM1• For 

terminology on stochastic integrals and martingale theory consult [5]. Below 

Z+ = {1,2, ••• }, N = {O,I,2, ••• }, arid for any n E z+, Zn= {1,2, ••• ,n}, 

N = {0,1,2, ••• ,n}. 
n 



5 

Let the arrival process a: n x T + R be a Poisson process with intensity 

A1: T + R+• Let the servers of queue I be represented by a sequence of 

independent Poisson processes {bk,k E Z+} bk: Q x T + R+, each with 

intens~ty processµ: T + R+. Furthermore, let the task generating processes 

be represented by a sequence of independent Poisson processes {ak,k E Z+} 

~: n x T + R+, each with intensity process A: T + R+• The server process 

of queue 2 is presented by a Poisson process b: Q x T + R with intensity 

µ0 : T + R+• Assume further that the Poisson processes {a,bk'~'b,k E Z+} 

are mutually independent. 

Let further x: Q x T + R represent the number of calls-in-build-up 
+ 

that are being served in queue I, and A: Q x T + R+ the number of tasks 

in queue 2 that are waiting or being served. Let for all t ET 

F = cr({a ,bk ,ak ,b ,Vs~ t,Vk E Z+}) t s s s s 

and let the a-algebra family (Ft,t ET) be constructed such that it 

satisfies the usual conditions [SJ. 

Under the above conditions one obtains the following representations for 

the dynamic behaviour of the processes x and y: 

00 

(2.1) dxt = dat - 1 [ I ,oo) (xt_) I I[l,xt_J(k)dbkt' 
k=l 

00 

(2.2) dyt = I 1 [1,x ](k)d~t - 1[I, 00)(yt_)dbt. 
k=l t-

In (2.1) the second term on the right hand side presents the server process. 

The term I[J,oo)(xt_) is present to let a completion of service effect xt 

only if there are customers being serviced; thus if x > O. The 
t-

infinite sum represents the infinite number of servers. Note that if there 

are xt customers present that then a number of xt servers are busy. That 

the infinite sum presents the situation where each customer is served by 

a separate server is due to the forgetting property of the exponential 

distribution and the assumption that the server processes {bk,k E Z+} are 

independent. The first term on the right hand side of (2.2) represents the 

arrival prodess at queue 2. This arrival process is constructed from the 

task generating process. Note that if there are xt customers present in 

queue I, that then there are xt task generating processes that arrive at 

queue 2. That the infinite sum represents the situation where each customer 

has his own task generating process follows by an argument similar to the 

justification of the infinite sum in (2.1). 



6 

For the processes x and ya special semi-martingale representation is 

derived: 

00 

dxt = da - 1[ I ,oo) (xt_) I I[I,xt_J(k)dbkt t k=l 
00 

= dat - I[l,oo)(xt_) I I[I x J(k)dbkt 
k=I , t- ·: 

00 

= [>..I (t) - I[l oo)(xt_) l I[l,xt_J(k)µ(t)]dt+dm 1t 
' k=l 

= [>..l(t) - xtµ(t)]dt + dmlt 

00 

dyt = I I[l,xt_J(k)d~t - I[l,oo/Yt_)dbt 
k=I 

00 

=[ I I[l J(k)>..(t) - I[l,oo)(yt)µO(t)]dt + dm2t 
k=l ,xt_ 

where (m2t,Ft,t ET) E M1• It follows from these calculations that 

<m
1 

,m
2

> = O. 

The representation of the dynamic behaviour of the processor load is 

thus given by 

(2.3) 

(2.4) 

This representation is analogous to that of a model for software reliability 

developed in [II]. 

To allow readers to evaluate the hierarchical queueing system the 

differential equation for the probability distribution of the queueing 

systems will be presented. 
, 
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2.1 PROPOSITION. Given tlie hierarchical queueing system specified above. Let 

p:T x N x N + R 

p(t,k,m) = P({xt = k} n {yt = m}). 

Then pis a solution of the differential equation 

(2.5) p(t,k,m) = [p(t,k-1,m)I[l,oo)(k) - p(t,k,m)JA 1(t) 

+ [(k+l)p(t,k+l,m) - kp(t,k,m)]µ(t) 

+ [p(t,k,m-l)I[l,oo)(m) - p(t,k,m)]kA(t) 

+ [p(t,k,m+l) - p(t,k,m)I[I,oo)(m)]µ O(t), p(O,k,m). 

PROOF. The elementary calculation is omitted. D 

3. THE PROBLEM FORMULATION 

In this section the problem of overload control will be formulated as 

a stochastic control problem. 

An engineering model for the dynamics of the processor load has been 

presented in section 2, see figure I. This model is now modified to account 

for the fact that access to the telephone exchange can be controlled, see 

figure 2. With the switch Sa call request may be admitted to the telephone 

exchange, or be refused access. It will be assumed that customers that 

have been refused access will not try to regain access. This assumption 

is a modelling approximation. However, it can be circumvented at the cost 

of additional complexity of the model. 

ARRIVAL 

PROCESS 

REJECTION 
PROCESS 

ADMITTANCE 
PROCESS 

''CALLS-IN-BUILD-UP'' 

QUEUE 1 

Xt 

"TASKS" 

Queue. 2 

Yt 

Fig. 2. An engineering model of a controlled telephone exchange. 
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A mathematical model for the above specified engineering model will 

be formulated below. The class of admissable control policies will consist 

of controls for the switch S that at each time moment are based on the past 

of all.processes of the queueing system. The formulation of the stochastic 

control problem is completed by the specification of the cost function 

for which a discounted cost is taken of the form 

(3.1) 

tl 

= E[ Jr g(x ,Y )exp(-cs)ds] 
s s 

to 
where g: N x N +Rand c ER+• 

A preliminary formulation of the stochastic control problem is then to 

determine a control in the class of admissable controls, if one exists, 

that minimizes the cost function J 1(u). Below a formal problem formulation 

is given that follows [2] rather closely.The objective for the following 

discussion is to construct, for any control policy, a measure on the given 

measurable space. 

Let {Q,F} be a measurable space on which are defined counting processes 

n: Q x T + R and b: Q x T + R, and families of counting processes 
+ + 

{~,k E Z+}, {bk,k E Z+}, ~: Q x T + R+, bk: Q x T + R+• Form E Z+ let 

T : Q + TU{+co} be them-th jump time of the counting process n. Let further 
m 

{zm,m E Z+} be random variables zm: Q + {0,1} and a: Q x T + R+ 

(X) 

(3.2) 

Define the a-algebra families, fort ET 

= cr({a ,n ,Vs~ t})vGt, 
s s 

and for m E Z+ 

H = cr({T.,z.,Vi E Z }), 
m 1 1 m 

K = cr({T.,z.,Vi E Z ,j E Z 1}), 
m 1 J m m-



where Z = {1,2, ••• ,m}. 
m 

Let Ao: T + R+ and 

(3.3) - {u ,K vG Z+) lvm E z+ u = ,m E m m T 
m 

u . n + [0,1], u 1.S K vG . 
m m m T m 

-For any U E Uthe conditions 

(3.4) I. E_[I{ T --r :,:; t} IHmvG,.,J 
u m+l m 

T +t 

= I - exp(- mJ A
0

(s)ds); 

T 
m 

measurable}. 

3. bk, ak, b, fork E Z+ are mutually independent Poisson processes 

with the intensities specified in section 2; 

determine a probability measure p_ on {n,F}o The proof of this fact is 
u 

analogous to that of the remark in [2, p. 224Jo 

The interpretation of the above construction is that with respect to 

Pun is a Poisson process with intensity AO' and that when a call request 

arrives or the process n jumps, that then u determines the probability 
m 

that this request is admitted into the arrival process a; see (3.2) and 

(3.3(2)). 

-3.1 PROBLEM. Determine u* EU such that 
tl 

J(u*) = E-*[ J g(x ,y )exp(-cs)ds] :,:; J(u)' u s s 
to 

-* for all u EU. If such au exists it is called an optimal control. 

As in [2, lemma I] one can then show that there exists a predictable 

process u: n X T+ [O,I] {ut,Ft,t ET} such that with respect to P- the 
u 

counting process a has the intensity process {utA0 (t),Ft,t ET}, or that 
" 

(3.5) 

9 
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-where (m ,F ,tET) E M1(P-u). Moreover, form E Z, is u = u a.s. P-. 
· t t + T m U 

m 
One can then reformulate problem 3.1. Let the class of admissable 

controls be 

(3.6) u = 

(3.7) 

{u: Q x T + [O, 1 JI (u ,F , t ET) a predictable process, such that 
t t 

there exists a probability measure 1> on {Q,F} such that with 
respecttoPuand (Ft,t ET): u 

lo n has the intensity process A
0

(t); 

2. a has the intensity process utA
0
(t); 

3. 8it'bk,b have the intensity processes as given in section 2; 

4. while n,~,bk,b are mutually independent; 

So E lf~o1 exp(-cs)g(x ,Y )dsl < 00 }. u s s 

Under certain integrability conditions it can be shown that given a 

predictable process (ut,Ft,t ET) there exists a probability measure Pu, 

see [8]. The only restrictive condition in the class of admissable controls 

is condition 5. However, this is necessary for the comparison of cost 

functions. It will be assumed that U is not empty. The queueing processes 

x and y are specified by the representation 

(3.8) 

(3.9) 

This representation follows from the discussion of section 2,and (3.5). 

* 3.2 PROBLEM. a. Determine au EU such that 
tl 

J(u*) = E [ J g(x ,y )exp(-cs)ds] ~ J(u) u s s 
to 

for all u EU. If such a control exists it is called an optimal control 

for this problem 

* b. Determine a control u EU such that for all t ET 
tl 

(3. 10) , E *[ J g(x ,y )exp(-cs)ds IF J u s s t 
to 

t1 

~ E [ J g(x ,y )exp(-cs)ds I Ft], u s s 

to 
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for any control u EU such that for alls ET, withs~ t, u = u*. If 
s s 

such a control exists it is called a conditionally optimal control. 

3.3 PROPOSITION. Asswne that u* E .!!_ is an optimal control for problem 3.2. 

Define.form E Z+ ~ = uT, where T is them-th jump time of n. Then 
m m m 

{~ ,m E Z } is an optimal control for problem 3.1. 
m + 

PROOF. This is analogous to that of [2, Prop. 2]. 

4. STOCHASTIC CONTROL 

The optimal stochastic control problem 3.2 posed in section 3 will be 

solved below. 

• 

4. L THEOREM. Given the stochastic control problem 3. 2. Asswne that there 

exists a function v: T x N x N • R that satisfies the system of differential 

equations 

( 4. l) v(t,k,m) - cv(t,k,m) + g(~,m) 

+ [v(t,k-1,m) - v(t,k,m)Jkµ(t) 

+ [v(t,k,m+l) - v(t,k,m)JkA(t) 

+ [v(t,k,m-1) - v(t,k,m)Jµ 0 (t)I[l,oo)(m) 

+ [v(t,k+l,m) - v(t,k,m)]A
0

(t).IR_(v(t,k+l,m)-v(t,k,m)) 

= O, v(t 1,k,m) = O. 

* Define the control law u T x N x N • R 

(4.2) 

Asswne that 

(4.3) exp(-cs)g(x ,y )dsl < 00 • 
s s 

• to 
a. Then u* EU is an admissable conditional optimal control for problem 3.2. 

b. Let for m E z+, ~* = u; • Then (~* ,m E Z ) is an optimal control for 
m m m + 

problem 3. 1. 
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4.2 REMARKS. l. The solution presented in 4.1 has a nice interpretation. 

From the proof of 4.1 it follows that v(t,xt,yt) is an estimate of the 

future cost based on the current information at time t ET. At any time 

t E T . 

is then the increase or decrease of the estimated future cost if a new call 

request is admitted to the exchange. The optimal control 

has thus the interpretatlonthat a call request should be admitted if and 

only if the estimated future cost is reduced by doing so. 

2. Whether a solution to the system of differential equations (4.l) exists 

is an open question. The main difficulty is that this system is doubly 

infinite because k,m EN. It seems likely that there exist k(t), m(t) EN, 

depending on t ET, such that fork> k(t), m > m(t) no call requests should 

be admitted. This divides the set N x Nin two areas in which (4.l) should 

be solved. However the determination of k(t) and m(t) is not clear. In 

section 5 a finite and time-invariant version of the stochastic control 

problem will be investigated for which one can hope to obtain more explicit 

results. 

4.3 PROOF of 4.1. Leth: Q x T x U • R 
t 

(4.3) ht(u) = J exp(-cs)g(xs,ys)ds + v(t,xt'yt)exp(-ct). 

to 
It will be shown that u* as defined in 4.1 belongs to U, that for any 

u EU the process h(u) = (ht(u),Ft'tET) E SubM1(Pu), and that h(u*) EM1(Pu*). 

2. By the differentiablity assumption on v, the stochastic calculus rule, 

the representation (3.8,3.9), and some calculations, it follows that 



v(t,xt,yt) = v(O,x0 ,y0) 

t 

+ Jr [v(s,x ,y ) 
s s 

to 
+ [v(s,x +I,y) - v(s,x ,y )Ju A

0
(s) s s s s s 

+ [v(s,x -1,y) - v(s,x ,y )]I[I )(x )x µ(s) s s s s , 00 s s 

+ [v(s,x ,y -1) - v(s,x ,y )]I[I )(y )µ
0

(s)]ds + m, s s s s , 00 s t 

13 

where (mt ,Ft, t ET) E M1 (Pu). Then 

+ inf ktAO(t)[v(t,xt+I,yt)-v(t,xt,yt)]]dt 
ktdO,I] 

+ exp(-ct)[utA0 (t)[v(t,xt+l,yt)-v(t,xt,yt)J 

inf ktA0 (t)[v(t,xt+l,yt)-v(t,xt,yt)]]dt + exp(-ct)dmt. 
ktdO, I J 

Let for any u EU r(u): ~ x T • R 

inf {ktAO(t)[v(t,xt+I,yt)-v(t,xt,yt)J}. 
ktdO,IJ 

3. Take any u EU. Because v satisfies the differential equation (4.1), one 

has 

(4.4) 
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By definition of r(u) one 

h(u) E SubM1(Pu). Because 

condition 

has that for any t 

v(t 1,xt ,yt) = O, 
1 I 

exp(-cs)g(x ,y )ds. 
s s 

ET rt(u) ~ O. Hence 

h (u) satisfies the 
t1 

terminal 

to 
4. Consider now the control policy u*specified by (4.2) 

By the measure transformation construction, the processes x and y that 

satisfy (3.8, 3.9) exist. Then (u:,Ft,t ET) is a predictable process. 

It is now necessary to assume (4.3). Then u* EU is an admissable control. 

* From the definition of r(u) it is seen that r(u) = O, hence that 

h(u*) E M1(Pu*). From [1,16] then follows that u* is conditional optimal 

for problem 3.2. From 3.3 then follows that (i:i* ,l"lE Z ) is optimal for problem 
m + 

3.1. 

5. TOWARDS AN IMPLEMENTATION 

Practical application of results from optimal control theory to over

load control demands a control law that is time-invariant. The reason 

for this is that one is generally interested in long term control of over

load. In additions a time-invariant control law is much easier to implement. 

An approach to determine a time-invariant control law is to use the 

solution of the optimal stochastic control problem of section 4 and to 

let the starting time t 0 go to-oo. This comes down to taking the limit 

lim v(t,k,m) = w(k,m), and to use as optimal control law the structure t..-oo 
of (4.2) with w instead of v. However, there is a difficulty with this 

approach. The system of differential equations for v(t,k,m) is doubly 

infinite because it is indexed by N x N. This makes convergence analysis 

rather involved. 

Below another approach is followed that proceduces an algorithm that 

is relatively easy to implement. Specifically, it will be assumed that the 

server units have finite waiting rooms and that, if the waiting rooms are 

filled, additional customers or tasks are not admitted or produced. 

• 
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5.1 ASSUMPTIONS. Consider the hierarchical queueing system developed in the 

sections 2 and 3. 

1. Tn queue 1 there can be maximally k 1 customers in the system that are 

being served. 

2. If the serving room of queue 1 is filled then newly arriving customers 

are turned away and are assumed not to return. 

3. In queue 2 there can be maximally m1 customers in the system that are 

waiting or being served. 

4. If the waiting room of queue 2 is filled then the servers of queue 1 

stop serving completely. 

5. The intensities of the arrival and server processes do not depend on 

time explicitly. Below these intensities will be denoted by A
0

,µ,A,µ 0 ER. 

Under the assumptions 5.1 one can derive the following representation 

for the controlled hierarchical queueing system 

(5. 1) dxt = [Aout1N (xt)-µxtIN (yt)]dt + dmlt' xt 
kl -1 m -1 0 1 

(5.2) dyt = [AxtIN (yt)-µOI[l oo)(yt)]dt + dm2t' yt • 
m -1 ' 0 1 

In (5.1) one notices that if there are k 1 or more calls-in-build-up in the 

first queue then the arrival process to the first queue is stopped. Similarly, 

if there arem
1 

or more tasks in queue 2, then the servers of queue 1 stop 

serving, see (5.1), with as a consequence that the arrival process to queue 

2 stops also, see (5.2). In the following it is assumed that 

y : Q • N • 
to ml 

X : 
to 

5.2 PROBLEM. Consider the stochastic control system described by (5.1 ,5.2), 

with the assumptions 5.1 and cost function (3.1). 

a. Assume that the class of admissable controls is specified by (3.3). The 
-* problem is then to determine an optimal control u EU. 

b. As in section 3 one can reformulate the above problem. Assume that the 

class of admissable controls is given by (3.6). The problem is then to 

* determine an optimal control u EU. 
" 



16 

5.3 THEOREM. Given the stochastic control problem 5.2 with the assumption 

5.1 • 

a, There exists a solution to the system of differential equations 

v: TX Nk X N -+ R 
1 ml 

(5.3) v(t,k,m)-cv(t,k,m)+g(k,m) 

+ [v(t,k-1,m)-v(t,k,m)]kµIN (m) 
m -1 

I 
+ [v(t,k,m+l)-v(t,k,m)JkAIN (m) 

m -1 
1 

+ [v(t,k,m-1)-v(t,k,m)Jµ OI 2 (m) 
+ 

+ [v(t,k+l,m)-v(t,k,m)JA
0

IN (k)* 
k

1
-t 

*IR_(v(t,k+l,m)-v(t,k,m)) = O, v(t
1

,k,m) = O. 

b. ·The solution to problem 5. 2.b. is the control law 

(5.4) 

c. The solution to problem 5. 2. a is given by the control (u ,mEZ ) , where 
m + 

with u* specified by b., 

-* * u = u 
m Tm 

foraU m E z+. 

M PROOF. a. Let M = (k1+t).(m1+t) f: T-+ R 

f(t)T = (v(t,O,O),v(t,O,l), ••• ,v(t,O,n1),v(t,I,O), ••• ,v(t,k
1

,m
1
)). 

Denote the elements of f(t) by 

T 
f(t) = (fO O(t),fO 1(t), ••• ,fO (t),f1 O(t), ••• ,fk (t)). 

' ' ,ml ' l ,ml 
M Let further g1 ER, 

• g1 = (g(O,O),g(O,I), ••• ,g(O,m1),g(l,O), ••• ,g(k1,m1)), 

MxM M M 
and A ER , F: R -+ R be such that the differential equation (5.3) is 

represented by 



(5.5) 

where 

f(t) = G(f(t)) - g1, f(t 1) = O, 

G(x) = (A+cI)x + F(x), 

if k::;k - 1, 
1 

0, otherwise. 

The components of Fare indicated as those off. It is then a calculation 

to show that G is Lipschitz, of which the key step is to show that if 

x,y ER then 

This is easily done. The existence of a solution f of (5.5), and hence cif 

the solution v of (5.3), follows then from standard analysis. 

b. The proof of this statement is analogous to that of 4.1. 
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• 
Although the optimal control law of 5.3.b is indexed by a finite number 

of values, it is still time-varying. Implementation of this control law is 

therefore difficult. In the following attention is restricted to stationary 

control laws. 

5.4 PROBLEM. Consider the stochastic control system (5.1,5.2) and the class 

of stationary control laws 

(5.6) U ={(u(x ,Y ),tET)lu:NkxN +[O,I], 
-s t- t- l m1 

and (x,y) are determined by (5.I,5.2) 

with ut = u(xt_,ut_)} 

Consider further the cost function 
00 

(5.7) w(x ,yt ,u) = E [ J exp(-c(s-t
0

))g(x ,y )dslFxt,YJ. 
t 0 0 u s s 0 

to 
The proelem is then to determine a control u* EU, to be called an optimal 

-s 
stationary control, such that for any u E .!!s, xto E Nkt' Yto E Nm

1 
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Because x and y are finite valued, the conditional expectation in (5.7) 

is well defined. It is aasily seen that the expression for w does not depend 

on t ET explicitly. Because only controls dependent on (xt,yt) are 

admitt~d in ~s' is (x,y) a Markov process. Hence w depends only on (xto'yt
0

) 

and u. 
. * Define w: Nk xN + R 

I m I 

(5.8) * w (k,m) = inf w(k,m, u). 
UEU -s 

Problem 5.4 can be solved by methods from the theory of Markov decision 

processes [12, Ch.6]. The key steps are outlined below 

5.5 THEOREM. Consider the stochastic control problem 5.4. Asswne that the 

class U is relatively complete. 
-s 

a. For any s,t ET, s < t, 

(5.9) 

t 

w*(xs,ys) = inf Eu[J exp(-c(-r-s))g(x.,y.)d-r 
UEU -s s 

+ exp(-c(t-s))w*(xt,y) JFx,y]. 
t s 

* b. If there exists au EU such that for all s,t ET, s < t, 
-s 

t 

(5.10) E *[Jr exp(-c(-r-s))g(x ,Y )dT 
U T T 

s 

+ exp(-c(t-s))w*(xt,yt)JFx'y] 
t s 

= inf E [ r exp(-c(-r-s) )g(x ,Y )d 
U J T T T UEU -s s 

+ exp(-c(t-s))w*(x ,yt) JFx'y] 
t s 

then u* is an optimal stationary control. 

c. w* as defined by (5.8) is the unique solution of equation (5.9). 

PROOF. The proof is analogous to that of the discrete-time setting presented 

in [12,6.2] and therefore omitted. D 
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The class of admissable controls U is called relatively corrrplete [17] 
-s 

tf for all EE (0 ) · N N there exists au EU such that *,oo , xto E k1' yto E m1 -s 

w(xtO'ytO'u) < w (xtO'ytO) + E. 

5.6 THEOREM. Consider the stochastic control problem 5.4. Assume that the 

class U is relatively corrrplete. Assume further that there exists a 
-s 

w: Nk x N • R such that 
1 ml 

(5.11) g (k, m)-cw ( t , m) 

+ [w(k-1,m)-w(k,m)Jµk~ (m) 
m

1
-t 

+ [w(k,m+l)-w(k, m) J)..kIN (m) 
m

1
-t 

+ [w(k,m-1)-w(k,m)Jµ 0I[l,oo)(m) 

+ [w(k+l,m)-w(k,m)])..OIN (k)IR_(w(k+l,m)-w(k,~)) = O. 
k

1
-t 

a. Then an optimal stationary control law for problem 5.4 is given by 

(5. 12) 

b. The total cost is given by w(xtO'yt0). 

PROOF. Let s,t ET, s < t. Let w be a solution to the equation (5.11). A 

calculation then shows that for any u EU 
-s 

t 

E cj" exp(-c('r-s))g(x ,Y )d-r + exp(-c(t-s))w(x ,Y ) IFx,y] u -r -r t t s 
s t 

= E [w(x ,y) + I exp(-c(-r-s))[g(x ,y )-cw(x ,Y) 
U S S "f "f T "f 

s 

+ [w(x ,Y +1)-w(x ,y )J)..x IN (y) 
-r-r -r-r -r 1· 

ml-

+ [w(x -1,y )-w(x ,y )]µx IN (y) -r -r -r -r -r 1 -r . 
ml-

+ [w(x ,Y -1)-w(x ,y )Jµ OI[l )(y) -r -r -r -r ,oo -r 



20 

+ [w(x +l,y )-w(x ,Y )]\
0

u IN (x )]dTjFx'y] 
T T T T T k -l T S 

t 1 

= w(x ,Y) + E [J exp(-c(T-s)) s s u 
s 

[w(x +l,y )-w(x ,Y )]\OIN (y) 
T T T T k -1 T 

1 

[u -IR: (w(x +l,y )-w(x ,y ))]dTIFX'YJ. 
T - TT TT 'S 

The expression on the right-hand side of the above equation is minimized 

for u = u*(xt ,Y ) given by (5.12), and then vanishes. Thus w is a 
t - t-

solution of the equation (5.9), and by 5.5.c. the solution of (5.9); thus 

w = w*. Furthermore u* specified by (5.12) achieves the minimum value as 

shown above, and from 5.5.b. then follows that u* is an optimal stationary 

* control. Because w = w, by (5.8) .the total cost is given by w(x ,Y ). D to to 

The equation (5.11) for w can be solved by a policy improvement method, 

by a successive approximation method, or a combination of these methods; 

see [12,6.2]. 

Implementation of the control law (5.12) can now be considered. The 

equation (5.11) for w can be solved, and the control law is then given by 

(5.12). 

6. OPEN QUESTIONS 

The problem of overload icontrol of a SPC telephone exchange has been 

formulated as a stochastic control problem. The latter problem has been 

solved. A stationary control law has been derived that may be considered 

for implementation. Simulations of the controlled queueing system have 

not yet been made. 

The approach of this paper can still be made more realistic. In practice 

one may observe y but not x. In this case one obtains a stochastic filtering 

problem and a partially observed stochastic control problem. These problems 

may be considered in the future. In practice one does not know the values 

of the parameters of the queueing system, for example of A
0

, µ, A, µ0 • Thus 

one encounters a system indentification problem for point process systems 

and the adaptive control problem for point process observations. Much 

research remains to be done. 
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