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The weak stochastic realization problem for discrete-time count 

* cesses 

J.H. van 

ABSTRACT 

pro-

The weak stochastic realization problem is considered for discrete­

time stationary counting processes. Such processes take values in the coun­

table infinite set N = {0,1,2, ... }. A stochastic realization is sought in 

the class of stochastic systems specified by a conditional distribution for 

the output given the state of Poisson type, and by a finite valued state 

process. In the paper a necessary and sufficient condition is derived for 

the existence of a stochastic realization in the above specified class. 

KEY WORDS & PHRASES: Stochastic realization problem ,stochastic system, 

disc.n•ete-time counting process 

*) This report will be submitted for publication elsewhere. 



I. INTRODUCTION 

The purpose of this paper is to present a result for the weak stochas­

tic realization of a discrete-time counting process and to indicate the major 

open questions. 

The weak stochastic realization problem to be considered is given a 

discrete-time counting process to show existence of and to classify all mi­

nimal Poisson-finite-state stochastic systems whose output equals the given 

process in distribution. The class of Poisson-finite-state stochastic sys­

tems is specified by a conditional distribution for the output given the 

state of Poisson type, and by a finite valued state process. 

The motivation of this problem is the area of control and prediction 

for systems with point process observations. Examples of practical problems 

in this area are the control of queues, the prediction of traffic intensi­

ties, the estimation of software reliability, and the estimation of certain 

biomedical signals. The prediction and control problems for this class of 

systems, under the assumption that the parameter values are known, have 

been considered. Practical application of these results demands the solu­

tion of the system identification problem and the stochastic realization 

problem for the class of Poisson-finite-state systems. 

The stochastic realization problem for Gaussian processes has received 

quite some attention the past fifteen years [2,3,6]. Both the weak and the 

strong version of the problem have been investigated. A considerable body 

of results is available for this problem. The corresponding problem for fi­

nite valued processes for which a realization is sought in the class of 

stochastic systems with a finite state process has also received consider­

ation [4,5,8]. However, little progress has been made on this problem as 

far as a realization algorithm and the characterization of minimal realiza­

tions is concerned. The major bottle neck is a factorization question for 

nonnegative matrices [5]. 

In this paper attention is focused on the weak stochastic realization 

problem for stochastic processes taking values in the positive integers. 

This problem should be distinguished from the finite stochastic realization 

problem for processes taking values in a finite set. A weak stochastic 

realization is sought in the class of Poisson-finite-state stochastic 
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systems described above. A necessary and sufficient condition will be sta­

ted for a discrete-time counting process to have a realization in this class. 

Open questions will be mentioned. 

A summary of the paper follows. The problem formulation is given in 

section 2, while in section 3 a condition for existence of a weak stochas­

tic realization is derived. 

2. PROBLEM FORMULATION 

Below a definition is given of a Poisson-finite-state stochastic sys­

tem and the corresponding weak stochastic realization problem is formulated. 

Notation and terminology that will be used in the paper, will be de­

fined. Let {O,F,P} be a complete probability space and T = Z be the time 

index set. The conditional independence relation for a triple of a-algebra's 

F 1,F2 ,G is defined by the condition that 

+ + + 
for all x 1 EL (F 1) and x2 EL (F2); notation (F 1,G,F 2) E CI. Here L (F 1) 

is the set of all positive F 1 measurable random variables. The smallest 

a-algebra with respect to which a random variable xis measurable is deno-
x ted by F, and that containing the a-algebra's G and H by GVH. The set of 

positive integers is denoted by N = {0,1,2, ... }, while that of strictly pos­

itive integers by Z = {1,2,3, ... }. For n E Z is Z = {1,2, ... ,n}. The set 
+ + n 

nxn 
of nonnegative matrices is denoted by R . For material on this set see 

+ 
[ I J • 

2.1. DEFINITION. A Poisson-finite-state stochastic system is a collection 

cr = {O, F, P, T, N, BN' X, BX, n, A} 

where {Q, F, P} is a complete probability space, T = Z, N = {0,1,2, ... }, 

X = {c 1,c2, ... , en} c (0, 00 ) for some n E Z+, BN, BX are a-algebra's on N 

and X generated by all subsets of N and X, n: n x T + N, A: Q x T -+ X are 

stochastic processes called respectively the output process and the state 
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process, such that for all t ET, k EN 

and 
n­

Ft 

n­
O,t,F t-1 
= a({n , 

s 

;.\-
v Ft, t ET) is a stationary finite-state Markov process. Here 

;.\ 
Vs::::t}),F =cr({11.,VsET}). 

00 s 

Notation: a E PFSI. 

In a stochastic system one exhibits, besides the externally available 

output process, the underlying state process. The state process is of crucial 

importance for the solution of prediction and control problems. The above 

defined stochastic system is called Poisson-finite-state because the con­

ditional distribution of the output process given the past and the state 

process is of Poisson type, and because the state process is a finite-state 

Markov process. 

In the following a stochastic process taking values in N will be called 

a discrete-time counting process. The output of a Poisson-finite-state sto­

chastic system is a discrete-time counting process. 

An abstract definition of a stochastic system can also be given [4,5,8]. 

It can then be shown that the above defined Poisson-finite-state stochastic 

system satisfies this abstract definition. For the sake of completeness this 

result is put on record. 

2.2 DEFINITION. A (discrete-time) stochastic system is a collection 

a = { Q , F , P , T , Y , By , X , B X , y , x} 

where {~,F,P} is a complete probability space, T = Z, Y, X are sets and 

BY,BX a-algebra's on Y respectively X, y: ~xT + Y, x: QxT • X are stochastic 

processes called respectively the output process and the state process~ such 

that for all t E T 

( y+ v Fx+ F 
xt Fx-v y- ) 

Ft t , t F t-1 E CI, 

where 
y+ 

Ft = a({ys• Vs ~ t}). 
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2.3 PROPOSITION. A Poisson-finite-state stochastic system as defined in 2.1 

is a stochastic system as defined in 2.2. 

PROOF. Let .t € T, k EN, i E Z. Then 
--- n 

by 

E[I(nt=k) I(>,_ 
t+l 

= Erl!<, E[I IFn- VF),_-] IFn- VF A-] 
/\ =c 1.) (nt=k) t-1 00 t-1 t t+I 

= E[r(A =c.) IF"-t]o,t/exp(-\t)/k! 
t+ I 1. 

n-1 \-
(\t' F t-l vFt , t ET) a Markov process, 

n A A t t+I t n- \-
A monotone class argument then gives that (F v F ,F ,F t-l v Ft ) E CI. 

An induction procedure and another monotone class argument then yields that 

;\ n+ ;\+ t n- >,_-
(Ft v Ft+ I , F , Ft- Iv Ft ) E CI 

from which the result is easily deduced. • 
For future use a dynamic representation of a Poisson-finite-state stoc-

hastic system is derived. Define x: Ox T • Rn by x. = I , and c € Rn 
1.t (1,.t= ci) 

by 

For c E Rn define the diagonal matrix 

with on the diagonal the entries of the vector c. Let b E Rn, b. =exp(-c.). 
l. l. 



Then 

(),t)kexp(-11.t) /k! 

n k 
= Ii=I exp(-ci)(ci) I(A = ) /k! 

t Ci 
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Let A E Rnxn be the transition matrix of the stationary finite-state Markov 

process 11.; thus 

A .. = P({x. t+l = I} n {x. = 1})/P({xJ.t = I}) 
1] 1, J t 

if well defined and zero otherwise. Then 

Define 

T k 
6m2kt = I - b D(c) x /k! 

(nt=k) t 

Then 6mlt' 6m2kt are martingale increments: 

One obtains thus the representation 

I xt+ 1 = Axt +Luo.It' 

L I(n =k) = bT D (c)kx/k! + 6m2kt" 
t 

2.4 PROBLEM. The Poisson-finite-state weak stochastic realization problem 

is, given a stationery discrete-time counting process on T = Z, to solve 

the following subproblems: 

a. to give necessary and sufficient conditions for the existence of a 

Poisson-finite-state stochastic system o such that the output process 



6 

of this system equals the given process in distribution; if such a 

system exists then it is called a weak stochastic realization of the 

given process; 

b. to classify all minimal weak stochastic realizations, where minimal re­

fers to the number of elements in the state space. 

One may pose the question why for discrete-time counting processes 

attention is restricted to the class of Poisson-finite-state stochastic 

systems? The answer is that for systems in this class the stochastic fil­

tering problem can easily be resolved. Such systems may therefore be used 

in applications. The system identification problem then demands the 

estimation of the parameters of the filter representation. To answer 

questions about the identifiability of the parameters, the weak stochastic 

realization problem must be resolved. 

For the sake of reference the solution to the stochastic filtering 

problem for a Poisson-finite-state stochastic system is stated below. No 

reference in the literature is known for this result but its proof is ele­

mentary. 

2.5. PROPOSITION. Assume given a Poisson-finite-state stochastic system with 

the representation 

as described above. The solution of the stochastic filtering problem for this 

system is given by 

(D(cl b /k! )[b T D(cl xt /k! J- 1 I (n = k) 
t 

= l:=O[A D (xt)D(c)~/k! ][b T D(c)kxt/k! J- 1 1 (n =k)" 
t 
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PROOF. Omitted. • 
The solution of the above filtering problem is readily implemented. If 

bk E R: , k E N, is defined as bk = D(c)kb/k! then one has the recursion 

3. THE RESULT 

Below a necessary and sufficient condition is given for a discrete­

time counting process to have a weak stochastic realization in the class of 

Poisson-finite-state stochastic systems. 

Some remarks on notation follow. The family of finite dimensional dis­

tributions of a stationary counting process n is denoted by, for any m E Z+, 

where t 1, ••• ,tm ET, tm ~ tm-l ~ .•• ~ t 1, and k 1, ••• ,km EN. Because the process 

is stationary pm is dependent on the ti's only through t 1-t2,t2-t3 , ••• ,tm-l-tm. 

If c, b E Rn then D(c)D(b) = D(b)d(c), while D(c)b = D(b)c. Let 
+ n T nxn 

u ER+ u = (I 1 ..• I). A stochastic matrix is an element A ER+ such that 

uTA = uT. Note that if x: ~ xT + Rn is defined as in section 2 by xit = 
2 

I(A = c.)' that then (xit) = xit' while for i j j, xitxjt = 0. 
t i 

3.1. THEOREM. Asswne given a stationary discrete-time counting process on 

T = Z, say with finite-dimensional distribution, form E Z+, 

p (t 1, ••• ,t ,k1 , ••• ,t ). m m m 

There exists a weak stochastic realization of this process in the class of 

Poisson-finite-state stochastic systems iff there exists an E Z+, a stoc­

hastic matrix A e: R:xn, and r, c E (0, 00 )n, such that if b e: (0, 00)n, bi =exp 

(-c.), then for any me: Z , t 1, ••• ,t ET, t < t 1 < ••• <t 1,k1, .•• ,k e: N 
i + m m m- m 

one has 



8 

p (t 1, ••• ,t ,k1, ••• ,k) 
m m m 

k t -t k t2-t3 
= u T D(b)D(c) I A I 2 D (b)D(c) 2 A 

The above existence criterion is analogous to that of the existence 

of a finite stochastic realization as given in [4]. However, there condi­

tional distributions are used, as where here unconditional distributions 

are preferred. Remarks on a realization algorithm are given below the proof. 

PROOF. a ~ Assume there exists a weak stochastic realization say specified 

by the representation 

I( k) = bTD(c)kx /k' +L'im n = t . 2kt' 
t 

as discussed in section 2. Let r = E(xt). Then for t 1 < t 2 

= k) [F~--I v F~] 
I I 

E[xt I( = k)J 
2 ntJ 

t -t 
= A 2 I D(b) D(c)k r/k~, 

p (t 1,k) = E[I( 
I nt 

I 

] = u T D (b) D ( c) k r /k ! = k) 



It will be shown by induction that for 

t -t k 
A rn m-1 (b) ( ) m / ' ' ••• D D c r k 1 .... km •• 

By the above this holds form l. Suppose it is true for m - I. Then 

= E[E[xt 
0 

t -t k 1 
A O l D (b) D(c) /k 1 ! E[xtl 

tO-tl kl 
= A D (b) D ( c) . . . D (b) 

p (t 1 , .. ,t ,k 1, ... ,k) 
m m m 

= E[ I _ ) I (n - k 1 • • • (n = k ) ] 
t 1 tm m 

t - t k 

) .•• I(n =k )] 
t m 
m 

k 
= uT D(b) D(c) I A m-1 m m 

D(b) D(c) r/k 1 ! ... km! 
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b. <= If the indicated factorization exists then one has n E Z+, A E R:xn 

a stochastic matrix, and c E (0, 00)n. One can then construct a probability 

space and a Poisson-finite-state stochastic system on it and part a. of the 

proof then shows that 

E[I(n _) ... I k) J (nt 
t 1-k 1 = m ID k 

T D(b) D ( c) kl t1-t2 D(b) D (c) mr /k 1 !k2!, .. km! = u A ... 

= p (t 1 , •.. t ,k 1 , ... ,k ). 
m m m • 
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A major unsolved question for the stochastic realization problem under 

discussion is the construction of a realization algorithm. The following 

heuristic procedure may be considered. 

I. Assume that the function k! p 1(t,k), as function of k EN, 1s a positive 
n nxn 

Bohl function meaning that there exists a n E Z+, h, g ER+, F E R+ such 

that 

Assume further that F can be chosen diagonal, say F = D(c) with c ER:. 

Define b, d E Rn+ as b1. = exp(-c.), d. = exp(c.) • 
l l l 

Then 

k! pl (t,k) = h TD(c)kg = uT D(h) D (c)kg 

= uT D(b) D(d) D(h) D(clg 

= uT D(b) D(c)k D(d) D(h) g 

T k 
= b D ( c) r, 

nxn 
2. Determine a stochastic matrix A ER+ such that for all 

t 1,t2 ET, t 2 < t 1, k 1,k2 E: N, 

k t -t k 2 
= uT D (b) D (c) 1A l 2 D(b) D(c) r. 

n nxn 
Step land 2 determine n E Z+ c E (0, 00 ) , A ER+ • 

3. Check whether the condition of theorem 3. I holds for any m E Z+. 

A major difficulty with the above algorithm is that nothing 1s known 

about factorization of positive functions as in step 1 above. In addition 

little is known about the factorization in step 2 of positive functions 

with more then one countably infinite index. Analogous difficulties occur 

1n the finite stochastic realization problem [4,5]. 

Another major unsolved question is the characterization of minimal 

realizations. It seems that this question is also analogous to that of the 

finite stochastic realization problem, see [SJ. There it is shown that this 



question leads to a factorization problem for nonnegative matrices. The 

latter problem is unsolved. 
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