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ABSTRACT

The strong finite stochastic realization problem is given a probabili-
ty space and a finite valued stochastic process, to show existence of and
to classify all strong stochastic realizations of the given process that
have a finite state space. In this paper the static version of this problem
is investigated. Results are given on the classification of finite c-alge-

bra's that make two given finite o-algebra's minimal conditional independent.
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1. INTRODUCTION

The purpose of this paper is to present preliminary results for the
strong finite stochastic realization problem.

What is a stochastic system? In filtering and control problems for
dynamic phenomena stochastic models often are appropriate. Markov processes
are the most often used models in such cases, whether suitable or not.

. Stochastic system theory now proposes to consider stochastic dynamic systems
as models for dynamic phenomena. Such a system may loosely be defined as '
consisting of an input, state and output process satisfying the condition
that the future of these processes conditioned on the past depends only on
the current state and the future inputs. The importance of a stochastic
dynamic system is clearly shown in stochastic filtering and stochastic con-
trol theory.

What is the stochastic realization problem? Generally speaking it is
the problem of construction of stochastic dynamic systems given the external
or input-output behavior. The weak stochastic realization proble@ for a
family of finite dimensional distributions is to show existence and to clas-
sify all minimal stochastic systems such that the output process has the
same family of finite dimensional distributions as the given process. In
contrast with this, the strong stochastic realization problem is given a
probability space and a process to show existence of and to classify all
minimal stochastic systems such that the output process is a modification
of the given process.

What are the available results for this problem? The weak Gaussian
stochastic realization problem has been investigated by P.FAURRE [4], while
contributions to the strong version have been given by A. LINDQUIST,

G. PICCI, and G. RUCKEBUSCH, see [5] for references., The classification

of all o-algebra's that make two given o—algebra's minimal conditional in-
dependent, in case that these o-algebra's are generated by Gaussian random
variables, 1s given in [10]. For related results see also [11].

The finite stochastic realization problem is the version of the problem
where the output and state process are restricted to take values in finite
sets. ?inite stochastic systems are also known as stochastic automata.

This problem has first been posed by BLACKWELL and KOOPMANS [1]. There are



many contributions to the weak finite stochastic realization problem, see
[7,8] for references. However there are still many open questions, primari-
ly the characterization of minimal realizations. Potential applications of
the finite stochastic realization problem are in stochastic models for tele-
communication, computer—communication, and engineering problems with jump
processes.

The strong finite stochastic realization problem is the topic of this
paper. The problem formulation may be found in section 2. Attention is here
restricted to a static version of this problem, namely the classification
of all finite o-algebra's that make two given finite o-algebra's minimal
conditional independent. Results for the latter problem are presented in
section 4.

Acknowledgements are due to C. van Putten for his cooperation on a

preliminary version of this paper.
2. PROBLEM FORMULATION

In this section some notation is introduced and the problem defined.
In the paper (Q,F,P) denotes a complete probability space, consisting

of a set Q, a o—algebra F, and a probability measure P. Let

F={G<F | Ga og-algebra, containing all the null sets of F},

Ef ={G eF ] G generated by a finite number of atoms},
the latter being called the set of finite o-algebra's. If F],F2 € F then
F, VF, is the smallest c-algebra in F containing F, and F,. For G € F let

1 2 1 2

LY@ = {x: 0~ R, | x is G measurable}.

If x : @ > R” is a random variable, then F* e F is the o-algebra generated

by x. The notation (FI’FZ) € I is used to indicate that FI’F are indepen-—

2
dent o-algebra's.

2.1. DEFINITION. The conditional independence relation for a triple of
o-algebra's F,F,,G € F is defined by the condition that

&



Epglxz | 61 = Elx, | €] Elx, | G]

for all x, € L+(F1), x, € L+(F2). One then says that F]’FZ are conditional
independent given G, or that G splitts FI’FZ' Notation (F],G,Fz) € CI.

It is a fact that (F|,G,F,) € CI iff E[x, | F, v 6] = E[x; | €] for
all X, € L+(F1), sec [3,I1.45]. Furthermore, it is easily proven that
(F|,6,F,) € CL if F| <G, or if (F ,F,V6) € I. Also (F ,G,F,) € CI iff

(FZ’G’FI) € CI.

i

Let Z denote the integers,

Z+ ={1,2,3,...}, N=4{0,1,2,...},
and for n € Z+

Zn = {1,2,...,n}, Nn = {0,1,2,...,n}.
A definition of a stochastic dynamic sjstem is needed. There are

several alternative definitions in the literature. Consider first the fol-
lowing definition. A discrete time stochastic dynamic system, without input,
consists of a collection of objects and relations among which are the state
process x ¢ @ x T > R™ and the output process y : 2 x T ~» Rk such that for
all t € T

E[exp(iuix + iVTyt) | Fi viy ]

t+l t~1

. T . T e
= Elexp(iu X ot iv yt) | F -]

X
®. This object is called a stochastic dynamic system be-

t+l’yt)' By the
above alternative characterization of the conditional independence relation

X
where Ft = VsSt F

cause for all t € T X, determines the distribution of (x

the above condition is equivalent to the property that for all t € T

X+ X
yto t oX y
(Ft VFt,F ’Ft-lth—l) € CIL
X+ X
where F = Vs F ~. This property says that a stochastic dynamic system

is characterized by the property that past and future of the output and



state process are conditional independent given the current state.
Below a definition is given of a finite stochastic dynamic system with-

out inputs and in discrete time.

2.2, DEFINITION. A finite stochastic system is a collection
{Q,F’P,TQX’BX’Y’BY’X’y}

where {Q,F,P} is a complete probability space, T < Z, X,Y are finite sets,
BX?BY are the finite o=-algebra's on X respectively Y generated by all sub-
sets, x: Q x T > X, Y: @ x T > Y are stochastic processes, such that for all

te T
X+ _y+ X X v
(Ft th ,F t’Ft—IVFt—l) e CI

Notation  {Q,F,P,T,X,B.,Y,B,,x,y} € FSI..

r*

2.3. DEFINITION. An external finite stochastic system is a collection
{a,F,P,T,Y,By,y}

where {Q,F,P) is a complete probability space, T ¢ Z, Y is a finite set, BY
the finite o-algebra on Y generated by all subsets, and y: @ x T > Y a sto-—

chastic process. Notation

{Q,F,P,T,Y,B,,y} € EFSI.

2.4. PROBLEM. The strong finite stochastic realisation problem is given an

external finite stochastic system

o, = {2,F,P,T,Y,By,z} € EFSI.

to solve the following subproblems.

a. Does there exist a finite stochastic system

o = {2,F,P,T,X,By,Y,By,%,y} € FSI,

£



on the same probability space as o,, such that for all t ¢ T Y= 2z, a.s.

If there exists such a system then one calls o a strong finite stochastic
realization of oe, notation ¢ ¢ SFSR(Ge);

b. A minimal strong finite stochastic realization of oy is a strong stochas-
tic realization o, € SFSR(0,) such that if oy € SFSR(o.) is any other re-
alization and for all £t € T szt c Fxlt, then for all t ¢ T Fx2t= Fxlt.
Notation: o€ SFSRmin(oe). The question is then to characterize a mini-
mal strong finite stochastic realization.

c. Classify all minimal strong stochastic realizatiomns of og. _
d. Provide an algorithm that construct, given oo, all minimal strong stochas-
tic realizations.

The strong finite stochastic realization problem has not been resolved.
Attention will in the following be restricted to the static case of the prcb-
lem. Then one supposes to be given a complete probability space, finite sets
Y+, Y_, random variables y+: Q - Y+, y_: Q - Y_, and one is asked to con-

struct a o—-algebra G ¢ F such that
#F*,6,F) € €I and G c @)
Vs = ?

which is minimal in a to be specified sense. Then necessarily G ¢ Ees and
there exists a finite set X and a random variable x: © - X such that G = F~.
Below a basis free treatment will be given of this problem, thus o-algebra's
are used rather then random variables. Solution of this problem is a first

step of the solution of the strong finite stochastic realization problem.

2.5 DEFINITION. The minimal conditional independence ralation for a triple

of o—-algebra's F G € F is defined by the conditions

1’F2’
1. (FI’G’FZ) e CI;

2, if He F, H € G, and (FI’H’FZ) ¢ CI, then H = G,

Notation (F],G,Fé) € CI . , and one says that F,, F, are minimal conditional

1’

F, mintmally.

independent given G, or that G splitts F., F,

2.6 PROBLEM. The finite o—algebraic realization problem is given {Q,F,P}
and F+,F_ € Ef, to solve the following subproblems.

a. Does there exist a G € F_. such that

£
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EFY,G,F) e CI and G c (FVF)?
b. Characterize those G ¢ F_ such that
(F,6,F) e CI and G c (FVE)
i € “'nin :
c. Classify all elements of

G = {GeF

+ - + -
Coin Ee | (F,6,F) ¢ CIL ; » G < (FVF )}.

d. Provide an algorithm that, given F+, F , constructs all elements Of-gmin'
Problem 2.6 has been solved in the case where the o-algebra's are gen-—

erated by finite dimensional Gaussian random variables [10].
3. PRELIMINARIES

In this section certain technical results for the conditional indepen-
dence relation are presented. Due to space limitation the proofs will not be
given here, but are refered to a future paper; see also [2,9].

The following concept will play an important role in the discussion.

3.1 DEFINITION. Let H,G € F. The projecticon of H on G is defined to be
o(H|G) = o({E[h|6] | Vh e LT D)

the o~algebra generated by the indicated random variables, with the under-
standing that all null sets of F are adjoined to it, hence G(HIG) € F.

The concept of the projection of one og-algebra on another has been in-
troduced by McKean [ 6,p.343]1.

In some of the examples to be discussed in section 4 one has to calcu-
late G(FllFZ) when F ,F, ¢ E.. This is done as follows. A partition of Q is

a collection {Ai,l € Zn} such that for i # j A, n Aj = ¢ and U,iezn A; = Q.

By definition of F_, for any F, € Ee there exists a partition'{Ai,i € Znl

£’ 1
sych that F1 = c({Ai,ieZn}). Associate with this partition the random vari-
able y: @ + R", Y, =1,;. Then ¥, = F . Let F,» F, € F; be associated with

: . L . 2
{A;, i€ an}, F = ¥yl {Bi’ ie an}, F, = FY2, Then E[yIIFy ] may be cal-



culated by the well known formula

ny
¥27 - S
ELy,, |F72] jzl (E[yIiIBj] /‘E[IBj]) Ipss

and then
( 1| 2) ({EL lil ]l lEZnl})'

3.2 PROPOSITION. Let F sF FB,GE ¥. Then

(F|,G,F,VFy) € CI <iff

(F,,G,F,) e CI and (F ,GVF,,F,) ¢ CL.

3.3 THEOREM. Let F,,F,,F,,G ¢ F with F, c F,. One has that (F|,G,F,) e CI
iff (F,»G,F,)) ¢ CI and (F ,GVF F3) e CI,
iff (F,,G,F,) ¢ CI and G(FI]FBVG) < F, vV G.

3.4 COROLLARY. Let F,,F,,G € F. Then (F,VG,G,GVF,) ¢ CI

Lff (F,»G,F,) e CI.

3.5 THEOREM. Let F FZ’GI’GZ e F, with G2 c Gl. One has that

(FI’GI’FZ) e CI and c(FllGl) c G2
iff

(F,6,,F,) ¢ CI and c(FllFZVG]) < F, V G,.

3.6 COROLLARY. Let F,,F, ¢ F. Then (F ,o(F|F,),F,) e CI.

3.7 PROPOSITION. Let F,,F,,G ¢ F.
a. Let G < F,. Then (F],G,Fz) e CI ZIff o(Flle) c G.

b. If (F;,G,F,) ¢ CI then (Fl,o(GIF]),FZ) € CI. Hence o(F,[F,) c o (G[F)).



3.8 PROPOSITION. Let F,,F,,G,,G, ¢ E. If (F|,G,F,) € CI, G, c (F,vG,), and
(6(¥,]6,):6,,F)) € CI, then (F,,6,,F,) « CI.

3.9 PROPOSITION. Let F,,F,,F,, G e F.

a. If (F,G,F,) ¢ CI then o(F |F,v6) = o(F,[6).

b. o(F, |0, [F))) = o(F,[F,).

c. o(F |o(F,[F)Iva(F |F))) = o(F,[F,)).
d. If ¥, cFycF VF, thenFy=F,
e. 0(a(F[F,) [a(F,|F))) = o(F,|F)).

v o(F]]FB).

4, THE FINITE o—~ALGEBRATC REALTZATION PROBLEM

In this section results will be derived for the finite o—algebraic re-
alization problem. The theory for the realization problem in Hilbert space
and for finite dimensional linear systems will be a guideline for the dis-

cussion given below.

Let be given F+,F_ € Ef. There always exists a G ¢ E{ such that
- - + - . :

(F+,G,F ) € CI and G < (F+VF ). For example G = F or G = F satisfy this

condition. This easily shown by verifying the definition of the conditional

independence relation. This solves subprobem 2.6.a.

The characterization of those G ¢ Ef such that (F+,G,F—) € CImin and
G c (F+VF_) is subproblem 2.6.b. Consider first a special case of this sub~-

problem.

4.1 PROPOSITION. [6]. Let ¥',F e F. Then G ¢ F, G ¢ ¥, and
+ - . . _ +).-
(F,G,F ) e CI . Zff G=o0(F [F7).

Thus within F there is an unique o-algebra making F+,F- minimal condi~
tional independent. One calls U(F+{F_) the minimal future-induced realiza-
tion of F+,F—. A result as 4.1 with + and - interchanged also holds, and one

=1t ) . . s e e -
calls o(F |F') the past-induced minimal realization of F+,F .

To formulate a characterization of minimal splitting o-algebra’s a con-
dition like stochastic observability is needed. Such a condition is motivat-
P, eF

. + . . . + -
ed next. Consider F” R with the random variables y , y , x as

£
defined below 3.1. Stochastic observability is defined by the condition that

the map



X > E[Y+!GX]

is injective on the support of x. The interpretation of this condition is

that if one knows the conditional probability measure of y+ given x, then sto-
chastic observability implies that one can recover the value of the state x.
The conditional probability measure of y+ given x one can in principle re-
cover by performing many observations of y+ for the same x. The stochastic
observability condition is equivalent to 0(Fy+lGx) = G*. The following con-

jecture should then be clear.

4.2 CONJECTURE. Let F',F ,G ¢ F . One has that (F',G,F) « cT_.
iff
1. (F,6,F) e CI;

2. 6(F|G) = G = o(F |G).

4.3 PROPOSITION. Let F ,F ,G ¢ F. If (F ,G,F) e cr_. , then
G(F[6) =6 = a(F |6).

PROOF. By (F',G,F ) ¢ CI and 3.5 one has that (F+,O(F+|G),F-) e CI. This,
o(F+{G) c G, the assumption, and the definition of CImin imply that
c(F+lG) = G, A symmetric argument yields the other equality. 0

However the converse implication of 4.2 does not hold as the following

example shows. This example is due to J.C. Willems.

4,4 EXAMPLE. Let Q = Zg’ F = 2Q the o~algebra generated by the atoms of F,
and: P: F > [0,1] the probability measure that gives equal weight to all the

atoms of F, This will be called the uniform measure on {Q,F}. Furthermore let

F' = 0({1,2,3},{4,5,6},{7,8,9}),

F =0({1,4,7},{2,5,8},{3,6,9}),

G, = 0({2,3},16,9},{7,8},{1,4},{5}),
G, = {¢, Q}.

+ - + - + -
Then (F',G,,F ) e CI, o(F IGl) =G, = o(F lG]), (F',6,,F ) e CL . and

G2 c G?. The proof of these statements is an elementary calculation.
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In this and subsequent examples the reader is suggested to draw a pic-—
ture of the probability space with the atoms of F' as horizontal bars and
the atoms of F as vertical bars.

The reader may be tempted to think that any two minimal splitting o-al-

gebra's have the same number of non-trivial atoms. This is not true.

4.5 EXAMPLE. Let Q = ZS’ F = ZQ, P: F > [0,1] the uniform measure,

F o= o({1},{2,3},{4,5,6},{7,8}),
F = o({1,2,4},{3,5,7},{6,8}),
G, = 0({1,2,4},{3},{5,6,7,8}),
6, = 0({1},{2,3,4,5},(63,{7,8)).

+ - + - . . . .
Then (F ’Gl’F ) € CImin and (F ’GZ’F ) € CImin' The minimality 1s+prgven by
verifying that there is no proper sub g-algebra of GI’GZ making ¥ ,F con-
ditional independent. _

The characterization of minimal splitting o-algebra's remains unsolved.

such that (F+,G,F—) € CIm. and

The classification of all G ¢ F in

G c (F+VF_) is subproblem 2.6.c. It iust be pointed out that
(F+,G,F_) € CImin does not imply that G, c (F+VF_). A counterexample is eas-.
ily given. The above restriction is made to simplify the problem. In realiza-
tion theory it is usually the case that any minimal realization projected

on the past gives the future-induced realization. What is true of this

statement for the finite o-algebraic realization problem?

- + -

4.6 CONJUCTURE. Let F+,F »G € F, and assume that (F ,G,F ) ¢ CImin and
Gc (FVE). Let ' = o(F |F).

a. Then o(G|F') = F  and o(G|F ) = F .

b. Then also G ¢ (F_+VF+_).

4.7 EXAMPLE. Let @ = ZIO’ F = 29, P: F > [0,1] be the uniform measure on F.

Furthermore let

o({1,4},{2,5,8},{3,6,9},{7,10}),
U({l,293}’{43536’7}’{8:9:10}):
= ¢({1,2,4,5},{3},{6,7,9,10},{8}).

@0 o
[}
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Then (F ,G,F ) e CI_. , o(G|F) = F, o(GlF) =
=F #F ' = o({1,4},12,3,5,6,8,9},{7,101), G £ (F "vF ).

Conjecture 4.6 is thus false. If one wants to preserve the property
that any minimal o-algebra projected on the past gives the future-induced
o-algebra and symmetrically, then a condition must be imposed. As to how to

choose this condition is indicated by the following result

4.8 PROPOSITION. Let ¥ ,F ,G ¢ F, and assume that (F ,G,F ) ¢ CI asd
Gc (FIVF). One has that G ¢ (F 'VE') iff o(G|F) = F & and
o(G|F ) = F .

PROOF. o(G|F'VE ) = G c (F vE )

iff (F'VF ,F VF' ,8) € CI by 3.7.a,

_iff (F_,F+—VF+,G) € CI by reduction (=) or 3.4 («),

iff (F,F ,F'VG) ¢ CI by 3.2 and by 3.6,

iff (F ,F ,G) e CI and (F ,F  VG,F') e CI by 3.2,

iff o(G|F) ¢ ' by 3.7.a and by 3.4,

iff o(G|F) = F by 3.7.b.

The conclusion then follows with a symmetric argument. [J

In the following the classificatien problem 2.6.c. is restricted to

- — e
those G € F. such that (F+,G,F ) € CImin and Gc (F VF ) :=TF

£ 0°

4.9 PROPOSITION. Let F',F ,G € F and assume that G c F

0
a. Then (F ',G,F ) ¢ CI 4ff (F ,G,F) e CI.
—+ +— . + -
b. Then also (F ,G,F ) ¢ CImin Tff (F ,G,F ) ¢ CImin'
PROOF. a. =. By 3.6. (F FO,F ") € CI. This and 3.4. 1mp1y (F FO,F_) € CI.

with 3 9.c. one concludes that o(F IF ) = F . hence (F ,G,Ft7) =

(F ,G,0(F~ ]F )) € CI. These statements, G ¢ (F VF ), and 3.8 imply that
(F sG, F ) € CI. By a symmetric argument (F 5G, F ) € CI. <, This is obvious
by the definition 2.1.
b. This result follows easily from a. and 2.5. [

4.10 PROPOSITION. Let F ,F ,G ¢ F, and assume that (F',G,F ) e CI and
G Fg. Then a. o(G|F") = F *, o(G|F) = F' 5 b. o(G[F) =F
o(G|F*) = F

and
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PROOF. a. Apply 4.8. b. Apply 4.9.a, 3.9.e. and a. [

The following result is an attempt to obtain the required classifica-
tion 2.6.c. and algorithm 2.6.d. Note the.analogy with the classification

in the Hilbert space case [5].

4.11 THEOREM. Let F ,F ¢ F,

G, ={6eF| F e F ) ecI, Gc F,
s(FTle) =6 =0o@F |G },
H={HeF | F cHcF,
—+ - -+
o(F "[B) = o(F |o(F "[D)].

Furthermore, define the realization map r: H~ G., r(H) = c(F_+|H). Then r

1
is well defined, and a bijection.

PROOF. 1. r is well defined. Let G = r(H) = o(F '| H). By F'. c H
@& *,1,F"7) ¢ CI. This and 3.7.b. imply that (F ,G,F ) =

= @ Lo T|W,F) € CL.By HeH G = o(F|H) < Fy. Also
cFT|G) = oF o T|H) = o(F "|H) =G

by 3.9.b., while
c(F)6) = o o T|H) = o(F T|H) =G,

by definition of H. Thus r is well defined. ‘
2. r is surjective. Let G ¢ G,, H = F' VG. Then F' cH=F VGc FO’ by

21
G c FO. Also

o(F o TH) = oF |o(F T|F vE))

o(F |o@F T|6)) by 3.9.a.,

o(®|e)

G, by G € G,

s(FI6) = o FF[FTVE) = o(F T |H).
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Thus H ¢ H. As shown above G = G(F_+IH) = r(H).

3. r is injective. Let HI’HZ € H be such that r(H]) = r(H2). Then HI’HZ e H
and 3.9.d. imply that H, = Foov a(F'+]H]) =T vr@) = FT v r@,) =
= HZ' |
The last condition of H cannot be dispensed with.
4,12 EXAMPLE. Let Q = Z7, F = 29; P : F~>[0,1] the uniform measure,
F' o= 0({1,2},{3,4,5},16,7)),
F = 0({1,3},{2,4,6},{5,7}).
-+ + +~ - . .
Then F =F and F = F . According to 4.11 all elements of El are given
by: F ' =F , F =F,
G] = 0({1’2},{3}’{4’5)6,7})’ G2 = 0({1’3}1{2}’{4’5’6’7})’
G3 = G({1:293’4}9{5};{6’7}), G4 = G({]92:3’4}s{5,7}’{6})a
G, = 0({1},{2,6},{3,4,5},{7}), G = 0({1,3},{2,6},{4,5},(71),
G, = 0({1},{2,6},{3,4},{5,7}), G4 = o({1},{2,4,6},{3,5},{7}),
Gy = 0({1},{2,4},{3,5},{6,7H), G, = 0({1,2},{3,5},{4,6},{7]).

. + -
In this case these og—algebra's also satisfy (F ,G,F ) ¢ CImin and
G c (F+VF-). Furthermore the set H as defined in 4.11 is not totally or-

dered.

Another aspect of the classification of all minimal realizations is the
relation between these. In realization theory of Hilbert spaces all minimal

realizations are equivalent [5].

4,13 CONJECTURE. Let FI’FZ’GI’GZ

¢ F. If (F,6,,F) e CI
o+ -
(F',G,,F ) e CL . , and G,,G, < F, then a(6,]e,) = ¢

min’

and o(Gz'G]) =G

2 1’

Unfortunately this conjecture is also false.
4,14 EXAMPLE. Consider example 4.12. Then
0(G2|G3) # G4 and o(GSlcz) # G,e

Let
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L]

+ -
- R = {(6,,6,) € F. x F, | (F »6,F ) € CL .

+ —_
(F ,G6,,F) € CI, , G,G, < Fg, }

0(6,]6y) = 6,, 0(6,]6)) =6,
Then 4.14 shows that R is not an equivalence relation.

To conclude let us summarize the results of the finite o-—algebraic re-
alization problem. The characterization of the minimal conditional indepen-
dent relation is unsolved. A partial classification of all minimal splitting
o-algebra's is given, although a condition has been imposed. The projection
is not an equivalence relation for minimal splitting o-algebra's. Apparent-—
ly the results for the finite c-algebraic realization problem are complete-

ly different from the Hilbert space case [5]. Much remains to be done.
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