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ABSTRACT 

The strong finite stochastic realization problem is given a probabili­

ty space and a finite valued stochastic process, to show existence of and 

to classify all strong stochastic realizations of the given process that 

have a finite state space. In this paper the static version of this problem 

is investigated. Results are given on the classification of finite a-alge­

bra's that make two given finite a-algebra's minimal conditional independent. 

KEY WORDS & PHRASES: Conditional independence relation, finite stochastic 

system, finite stochastic realization problem 

*) This report will be submitted for publication elsewhere. ,, 





I. INTRODUCTION 

The purpose of this paper is to present preliminary results for the 

strong finite stochastic realization problem. 

What is a stochastic system? In filtering and control problems for 

dynamic phenomena stochastic models often are appropriate. Markov processes 

are the most often used models in such cases, whether suitable or not. 

Stochastic system theory now proposes to consider stochastic dynamic systems 

as models for dynamic phenom~na. Such a system may loosely be defined as 

consisting of an input, state and output process satisfying the condition 

that the future of these processes conditioned on the past depends only on 

the current state and the future inputs. The importance of a stochastic 

dynamic system is clearly shown in stochastic filtering and stochastic con­

trol theory. 

What is the stochastic realization problem? Generally speaking it is 

the problem of construction of stochastic dynamic systems given the external 

or input-output behavior. The weak stochastic realization problem for a 

family of finite dimensional distributions is to show existence and to clas­

sify all minimal stochastic systems such that the output process has the 

same family of finite dimensional distributions as the given process. In 

contrast with this, the strong stochastic realization problem is given a 

probability space and a process to show existence of and to classify all 

minimal stochastic systems such that the output process is a modification 

of the given process. 

What are the available results for this problem? The weak Gaussian 

stochastic realization problem has been investigated by P.FAURRE [4], while 

contributions to the strong version have been given by A. LINDQUIST, 

G. PICCI, and G. RUCKEBUSCH, see [5] for references. The classification 

of all a-algebra's that make two given a-algebra's minimal conditional in­

dependent, in case that these a-algebra's are generated by Gaussian random 

variables, is given in [IO]. For related results see also [11]. 

The finite stochastic realization problem is the version of the problem 

where the output and state process are restricted to take values in finite 

sets. Finite stochastic systems are also known as stochastic automata. 
~ 

This ~roblem has first been posed by BLACKWELL and KOOPMANS [I]. There are 
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many contrib~tions to the weak finite stochastic realization problem, see 

[7,8] for references. However there are still many open questions, primari­

ly the characterization of minimal realizations. Potential applications of 

the finite stochastic realization problem are in stochastic models for tele­

communication, computer-communication, and engineering problems with jump 

processes. 

The strong finite stochastic realization problem is the topic of this 

paper. The problem formulation may be found in section 2. Attention is here 

restricted to a static version of this problem, namely the classification 

of all finite a-algebra's that make two given finite a-algebra's minimal 

conditional independent. Results for the latter problem are presented in 

section 4. 

Acknowledgements are due to C. van Putten for his cooperation on a 

preliminary version of this paper. 

2. PROBLEM FORMULATION 

In this section some notation is introduced and the problem defined. 

In the paper (n,F,P) denotes a complete probability space, consisting 

of a set n, a a-algebra F, and a probability measure P. Let 

F = {G c F I Ga a-algebra, containing all the null sets of F}, 

E'._f ={GE F I G generated by a finite number of atoms}, 

the latter being called the set of finite a-algebra's. If F1,F2 E F then 

F
1 

v F
2 

is the smallest a-algebra in F containing F1 and F2• For GEE'._ let 

L+(G) = {x: n + R+ Ix is G measurable}. 

If x: n + Rn is a random variable, then Fx E Fis the a-algebra generated 

by x. The notation (F 1,F2) EI is used to indicate that F1,F2 are indepen­

dent a-algebra's. 

2.1. DEFINITION. The conditional independence ~elation for a triple of 

a-algebra's F
1

,F2,G EE'._ is defined by the condition that 
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for all x
1 

€ L+(F 1), x2 € L+(F
2
). One then says that F

1
,F2 are conditional 

independent given G, or that G spZitts F 1,F 2• Notation (F
1

,G,F2) € CI. 

It is a fact that (F 1,G,F2) € CI if£ E[x 1 I F2 VG]= E[x1 I G] for 

all x1 € L+(F
1
), sec [3,II.45]. Furthermore, it is easily proven that 

(F
1

,G,F2) € CI if F1 c G, or if {F 1,F 2vG) €I.Also (F
1

,G,F
2
) € CI if£ 

(F
2

,G,F 1) € CI. 

Let Z denote the integers, 

z+ = {1,2,3, ••• }, N = {0,1,2, ••• }, 

and for n € z+ 

z = {1,2, ••• ,n}, N = {0,1,2, ••• ,n}. 
n n 

A definition of a stochastic dynamic system is needed. There are 

several alternative definitions in the literature. Consider first the fol­

lowing definition. A discrete time stochastic dynamic system, without input, 

consists of a collection of objects and relations among which are the state 
n k process x : n x T + R and the output process y: n x T + R such that for 

all t € T 

E[ ( . T . T ) I Fxt J = exp iu xt+l + iv yt 

where 

cause 

X Xs 
Ft= Vs$t F . This object is called a stochastic dynamic system be-

for all t € T xt determines the distribution of (xt+l'yt). By the 

above alternative characterization of the conditional independence relation 

the above condition is equivalent to the property that for all t € T 

x+ 
where ,.Ft = V >t s-
is characterized 

X 

F s. This property says that a stochastic dynamic system 

by the property that past and future of the output and 
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state process are conditional independent given the current state. 

Below a definition is given of a finite stochastic dynamic system with­

out inputs and in discrete time. 

2.2. DEFINITION. A finite stochastic system is a collection 

{Q,F,P,T,X,Bx,Y,By,x,y} 

where {Q,F,P} is a complete probability space, Tc Z, X,Y are finite sets, 

B_ ,B are the finite er-algebra's on X respectively Y generated by all sub­
x· Y 

sets, x: Q x T • X, Y: Q x T • Y are stochastic processes, such that for all 

t E T 

Notation 

2.3. DEFINITION. An external finite stochastic system is a collection 

{Q,F,P,T,Y,By,Yl 

where {n,F,P) is a complete probability space, Tc Z, Y is a finite set, By 

the finite er-algebra on Y generated by all subsets, and y: Q x T • Ya sto­

chastic process. Notation 

{Q,F,P,T,Y,By,Y} E EFSE~ 

2.4. PROBLEM. The strong finite stochastic realization problem is given an 

external finite stochastic system 

ere= {n,F,P,T,Y,By,z} E EFSI .. 

to solve the following subproblems. 

a. Does there exist a finite stochastic system 

er= {Q,F,P,T,X,Bx,Y,By,x,y} E FSE, 
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on the same probability space as oe, such that for all t E T yt = zt a. s. 

If there exists such a system then one calls a a strong finite stochastic 

realization of oe, notation a E SFSR(oe). 

b. A minimal strong finite stochastic realization of Oe is a strong stochas­
tic realization a

1 
E SFSR(oe) such that if oz E SFSR(ae) is any other re­

alization and for all t ET Fxzt c Fx1t, then for all t ET Fxzt= Fx1t. 

Notation: a 1E SFSR. (oe)· The question is then to characterize a mini-
min _ 

mal strong finite stochastic realization. 

c. Classify ull minimal strong stochastic realizations of ae• 

d. Provide an algorithm that construct, given Oe, all minimal strong stochas­

tic realizations. 

The strong finite stochastic realization problem has not been resolved. 

Attention will in the following be restricted to the static case of the prob­

lem. Thenone supposes to be given a complete probability space, finite sets 
+ - + + Y, Y, random variables y: n + Y, y: n + Y, and one is asked to con-

struct a a-algebra GE! such that 

y+ y-(F ,G,F ) E CI 

which is minimal in a to be specified sense. Then necessarily GE ~f' and 

there exists a finite set X and a random variable x: n + X such that G = Fx. 

Below a basis free treatment will be given of this problem, thus a-algebra's 

are used rather then random variables. Solution of this problem is a first 

step of the solution of the strong finite stochastic realization problem. 

2.5 DEFINITION. The rrrinimal conditional independence ralation for a triple 

of a-algebra's F1,F2,G E ! is defined by the conditions 

I. (F 1,G,F2) E CI; 

2. if HE!, H c G, and (F 1,H,F2) E CI, then H = G. 

Notation (F 1,G,F2) E Cimin' and one says that F1, F2 are rrrinimal conditional 

independent given G, or that G splitts F1, F2 rrrinimally. 

2.6 PROBLEM. The finite a-algebraic realization problem is given {n,F,P} 
+ -and F ,F E Ff, to solve the following subproblems. 

a. Does there exist a GE ~f such that 
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+ -(F ,G,F ) E CI and + -G C (F VF)? 

b. Characterize those GE F+ such that - ... 

+ - + -(F ,G,F) E CI. and G c (F VF). min 

c. Classify all elements of 

I + - + -G. ={GE F_f (F ,G,F) E CI. , G c (F VF)}. -min min 

d. Provide an algorithm that, given F+, F , constructs all elements of G .• -min 
Problem 2.6 has been solved in the case where the a-algebra's are gen-

erated by finite dimensional Gaussian random variables [IO]. 

3. PRELIMINARIES 

In this section certain technical results for the conditional indepen­

dence relation are presented. Due to space limitation the proofs will not be 

given here, but are refered to a future paper; see also [2,9]. 

The following concept will play an important role in the discussion. 

3.1 DEFINITION. Let H,G E F. The projection of Hon G is defined to be 

cr(H!G) = cr({E[hjGJ IV h E L+(H)}) 

the cr-algebra generated by the indicated random variables, with the under­

standing that all null sets of Fare adjoined to it, hence cr(HjG) E F. 

The concept of the projection of one cr-algebra on another has been in­

troduced by McKean [6,p.343]. 

In some of the examples to be discussed in section 4 one has to calcu­

late cr(F 1!F2) when F 1,F2 E Ef' This is done as follows. A partition of n is 

a collection {A. ,i E Z } such that for i 'f j A. n A. "" qi and U:. Z A. = n. i n i J iE n i 
By definition of Ef' for any F1 E Ef there exists a partition {Ai,i E Znl 

s~ch that F1 = cr({A.,iEZ }). Associate with this partition the random vari-
i n _ 

able y:? • Rn, Yi= IAi" Then F1 =FY. Let F1, F2 E Ef be associated with 

{Ai, i E zn1}, F = FYI, {Bi, i E zn2}, F2 ~ FY2. Then E[y1jFY2J may be cal-



culated by the well known formula 

n2 

E[yl.,FY2] = I (E[yl.IB.] / E[IB.]) IBJ"'. 
i j=l i J . J 

and then 

iff 

iff 

iff 

iff 

3.7 PROPOSITION. Let F1,F2,G E F. 

a. Let G c F2• Then (F1,G,F2) E CI iff a(F 1jF2) c G. 

7 

b. If (F 1,G,F2) E CI then (F 1,a(GjF1),F2) E CI. Hence a(F2!F1) ca (GjF1). 
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3.8 PROPOSITION. Let Fl,F2,Gl,G2E F. If (Fl,Gl,F2) E CI, G2 c (F2VGI), and 

(cr(F 1!G
1
),G2,F2) E CI, then (F

1
,G2,F2) E CI. 

3.9 PROPOSITION. Let F
1
,F2,F

3
, GE F. 

a. If (F
1

,G,F2) E CI then cr(F 11F2vG) = cr(F 1 jG). 

b. a(F
1

1cr(F
1

jF2)) = cr(F
1

jF2). 

c. cr(F 1 ja(F2 jF 1)vcr(F 11F2)) = a(F21F 1). 

d. If F2 c F3 c F
1 

v F2, then F3 = F2 v a(F
1 

jF3). 

e. a(cr(F
1

1F2) lcr(F2 jF
1
)) = cr(F2 jF

1
). 

4. THE FINITE a-ALGEBRAIC REALIZATION PROBLEM 

In this section results will be derived for the finite a-algebraic re­

alization problem. The theory for the realization problem in Hilbert space 

and for finite dimensional linear systems will be a guideline for the dis­

cussion given below. 

+ - h Let be given F ,F E ff· There always exists a GE !'._f such tat 
+ - + - + . (F ,G,F) E CI and G c (F VF). For example G = F or G = F satisfy this 

condition. This easily shown by verifying the definition of the conditional 

independence relation. This solves subprobem 2.6.a. 

The characterization of those GE ff such that (F+,G,F-) E CI. and min 
+ -G c (F VF) is subproblem 2.6.b. Consider first a special case of this sub-

problem. 

+ -4.1 PROPOSITION. [6]. Let F ,F E _!. Then GE F, G c F, and 

(F+,G,F-) E CI . iff G = cr(F+IF-). 
min 

Thus within F- there is an unique a-algebra making F+,F- minimal condi­

tional independent. One calls a(F+jF-) the minimal future-induced realiza­

tion of F+,F-. A result as 4.1 with+ and - interchanged also holds, and one 

calls a(F-,F+) the ~ast-induced minimal realization of F+,F-. 

To formulate a characterization of minimal splitting a-algebra's a con­

dition like stochastic observability i~ needed. Such a condition is motivat-
y+ y- X + ed next. Consider F , F , F E ~f with the random variables y, y, x as 

defined below 3.1. Stochastic observability is defined by the condition that 

the map 



+I X x + E[y G] 

is injective on the support of x. The interpretation of this condition is 

9 

that if one knows the conditional probab{lity measure of y+ given x, then sto­

chastic observability implies that one can recover the value of the state x. 
+ The conditional probability measure of y given x one can in principle re-

cover by performing many observations of y+ for the same x. The stochastic 

observability condition is equivalent to cr(Fy+jGx) = Gx. The following con­

jecture should then be clear. 

+ - + -4.2 CONJECTURE. Let F ,F ,GE Ef• One has that (F ,G,F ) E CI . min 
iff 

+ -I. (F ,G,F) E CI; 

+ - + -4.3 PROPOSITION. Let F ,F ,GE F. If (F ,G,F) E CI. , then 
min 

cr(F+jG) = G = cr(F-IG). 

PROOF. By (F+,G,F-) E CI and 3.5 one has that (F+,cr(F+IG),F-) E CL.This, 

cr(F+IG) c G, the assumption, and the definition of CI. imply that 
min 

cr(F+IG) = G. A symmetric argument yields the other equality. 0 

However the converse implication of 4.2 does not hold as the following 

example shows. This example is due to J.C. Willems. 

n 4.4 EXAMPLE. Let n = z9, F = 2 the a-algebra generated by the atoms of F, 

andi P: F + [0,1] the probability measure that gives equal weight to all the 

atoms of F. This will be called the uniform measure on {n,F}.Furthermore tet 

F+ = cr({I,2,3},{4,S,6},{7,8,9}), 

F = cr({l,4,7},{2,S,8},{3,6,9}), 

Gt = cr({2,3},{6,9},{7,8},{l,4},{5}), 

G2 = {<p, n}. 

'then (F+,Gt,F-) E CI, cr(F+IGt) =Gt= cr(F-IG1), (F+,G
2

,F-) E Cimin and 

G2 c G1 • The proof of these statements is an elementary calculation. 
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In this and subsequent examples the reader is suggested to draw a pic­

ture of the probability space with the atoms of F+ as horizontal bars and 

the atoms of F as vertical bars. 

The reader may be tempted to think that any two minimal splitting cr-al­

gebra's have the same number of non-trivial atoms. This is not true. 

4.5 EXAMPLE. Let n = z8 , F = 2n, P: F • [0,1] the uniform measure, 

F+ = cr({l},{2,3},{4,5,6},{7,8}), 

F -- cr({l,2,4},{3,5,7},{6,8}), 

Gt = cr({l,2,4},{3},{5,6,7,8}), 

G2 = cr({l},{2,3,4,5},{6},{7,8}). 

+ - + -Then (F' ,G1,F) E CI . and (F ,G2,F) E CI .• The minimality is proven by min min 
+ -verifying that there is no proper sub cr-algebra of G1,G2 making F ,F con-

ditional independent. 

The characterization of minimal splitting cr-algebra's r~mains unsolved. 

The·classification of all G 
+ -G c (F VF) is subproblem 2.6.c. 

. + -
E Ff such that (F ,G,F) E CI . and 

- min 
It must be pointed out that 

+ -(F ,G,F ) E CI . does not imply min 
+ -th&t ~ c (F VF). A counterexample is eas-

ily given. The above restriction is made to simplify the problem. In realiza-

tion theory it is usually the case that any minimal realization projected 

on the past gives the future-induced realization. What is true of this 

statement for the finite cr-algebraic realization problem? 

+ -4.6 CONJUCTURE. Let F ,F ,GE!_, 

G c (F+VF-). Let F+- = cr(F+IF-). 

+ -and assume that (F ,G,F) E CI. min 

a. Then cr(GIF+) = F-+ and cr(GIF-) = +­
F 

-+ +­
b. Then also G c (F VF ). 

and 

4.7 EXAMPLE. Let n = z10 , F = 2n, P: F • [0,1] be the uniform measure on F. 

Furthermore let 

F+ = cr({l,4},{2,5,8},{3,6,9},{7,10}), 

F = cr({I,2,3},{4,5,6,7},{8,9,10}), 

G = cr({l,2,4,5},{3},{6,7,9,10},{8}). 



Then (F+,G,F-) E CI . , a(GjF-) = F+-, a(GIF+) = 
min 

= F+ :/: F-+ = a(·{l,4},{2,3,5,6,8,9},{7,IO}), G ¢ (F-+VF+-). 

I I 

Conjecture 4.6 is thus false. If one wants to preserve the property 

that any minimal a-algebra projected on the past gives the future-induced 

a-algebra and symmetrically, then a condition must be imposed. As to how to 

choose this condition is indicated by the following result 

+ - + -4.8 PROPOSITION. Let F ,F ,GE F, and assume that (F ,G,F) E CI a~d 
+ - -+ +- I + -+ G c (F VF). One has that G c (F VF ) iff a(G F) = F and 

a(GIF-) = F+-. 

PROOF. a(GIF+vF-) = G c (F+VF+-) 
+ - + +-iff (F VF ,F VF ,G) E CI by 3.7.a, 

iff (F-,F+-VF+,G) E CI by reduction(=>) or 3.4 (4=), 
- +- + iff (F ,F ,F VG) E CI by 3.2 and by 3.6, 

- +- + - +­iff (F ,F ,G) E CI and (F ,F VG,F) E CI 

iff a(GIF-) c F+­ by 3.7.a and by 3.4, 

iff a(GIF-) = F+- by 3.7.b. 

by 3.2, 

The conclusion then follows with a symmetric argument. D 

In the following the classification problem 2.6.c. is restricted to 

those GE Ef such that (F+,G,F-) E CI . and G c (F-+vF+-) := F0• min 

+ -4.9 PROPOSITION. Let F ,F ,GE F and assume that G c Fo· 

a. Then (F-+,G,F+-) E CI iff (F+,G,F-) E CI. 

b. Then also (F-+,G,F+-) E CI . iff (F+,G,F-) E CI .• 
min min 

+ - + -PROOF. a.~. By 3.6. (F ,FO,F) E CI. This and 3.4. imply (F ,FO,F) E CI. 

with 3.9.c. one concludes that a(F-IF
O

) = F+-, hence (F-+,G,F+-) = 
-+ I -+ = (F ,G,a(F- F

O
)) E CI. These statements, G c (F vFO), and 3.8 imply that 

-+ - + -(F ,G,F) E CI. By a symmetric argument (F ,G,F) E CI. 4=. This is obvious 

by the definition 2.1. 

b. This result follows easily from a. and 2.5. D 

+ - + -4.10 PROPOSITION. Let F ,F ,GE!_, and assume that (F ,G,F) E CI and 

G ~ Fo. Then a. a(GIF+) = F-+, a(GIF-) = F+-; b. a(GIF-+) = F-+ and 

I +- +-a(G F ,) = F • 
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PROOF. a. Apply 4.8. b. Apply 4.9.a, 3.9.e. and a. 0 

The following result is an attempt to obtain the required classifica­

tion 2.6.c. and algorithm 2.6.d. Note the analogy with the classification 

in the Hilbert space case [5]. 

+ -4.11 THEOREM. Let F ,F E F, 

Q1 ={GE! I (F-+,G,F+-) E cI, G c F
0

} 

cr(F-+jG) = G = cr(F+-jG) , 

H = {H E !_ I F+- c H c F O, } 
cr(F-+IH) = cr(F+-lcr(F-+IH)) • 

Furthermore, define the realization map r: H • Q.1, r(H) = cr(F-+IH). Then r 

is well defined, and a bijection. 

-+, +-PROOF. 1. r is well defined. Let G = r(H) = cr(F H). By F CH 
-+ +- -+ +-(F ,H,F ) E CI. This and 3.7.b. imply that (F ,G,F ) = 

= (F-+,cr(F-+jH),F+-) E CI. By HE.!! G = cr(F-+IH) c F
O

• Also 

by 3.9.b., while 

by definition of.!!· Thus r is well defined. 
+- +- +-2. r is surjective. Let GE g1, H = F vG. Then F c H = F v G c FO, by 

G C Fa· Also 

cr(F+-lcr(F-+IH)) = cr(F+-lcr(F-+IF+-vG)) 

= cr(F+-lcr(F-+IG)) by 3.9.a., 
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Thus HE!!· As shown above G = cr(F-+jH) = r(H). 

3. r is injectfve. Let H1,H2 E _!! be such that r(H1) = r(H2). Then HI,H2 EH 

and 3.9.d. imply that HI= F+- v cr(F-+IHI) = F+- v r(HI) = F+- v r(H
2

) = 

= H2. 0 

The last condition of H cannot be dispensed with. 

4.12 EXAMPLE. Let Q = z7, F = 2n, P F + [O,I] the uniform measure, 

F+ = cr({I,2},{3,4,S},{6,7}), 

F = cr({I,3},{2,4,6},{S,7}). 

-+ + +- -Then F = F and F = F. According to 4.II all elements of QI are given 
by: F-+ = F+, F+- = F, 

Gt = cr({l,2},{3},{4,S,6,7}), G2 = cr({I,3}~{2},{4,S,6,7})~ 

G3 = cr({I,2,3,4},{S},{6,7}), G4 = cr({I,2,3,4},{S,7},{6}), 

GS = cr({l},{2,6},{3,4,S},{7}), G6 = cr({I,3},{2,6},{4,S},{7}), 

G7 = cr({I},{2,6},{3,4},{S,7}), GB = cr({I},{2,4,6},{3,S},{7}), 

G9 = cr({I},{2,4},{3,S},{6,7}), G10 = cr({l,2},{3,S},{4,6},{7}). 

+ -In this case these a-algebra's also satisfy (F ,G,F) E CI. and m1.n 
+ -G c (F VF). Furthermore the set Has defined in 4.II is not totally or-

dered. 

Another aspect of the classification of all minimal realizations is the 

relation between these. In realization theory of Hilbert spaces all minimal 

realizations are equivalent [SJ. 

+ -
4.I3 CONJECTURE. Let FI,F2,GI,G2 E F. If (F ,GI,F) E Cimin' 

(F+,G2,F-) E Cimin' and G
1

,G2 c F
0

, then cr(G1!c2) = G2 and cr(G2 !G1) = G1• 

Unfortunately this conjecture is also false. 

4.I4 EXAMPLE. Consider example 4.I2. Then 

cr(G2!G3) f G3 and cr(G3 !G2) f G2• 

Let 
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Then 4.14 shows that R is not an equivalence relation. 

To conclude let us sunnnarize the results of the finite cr-algebraic re­

alization problem. The characterization of the minimal conditional indepen­

dent relation is unsolved. A partial classification of all minimal splitting 

cr-algebra's is given, although a condition has been imposed. The projection 

is not an equivalence relation for minimal splitting cr-algebra's. Apparent­

ly the results for the finite cr-algebraic realization problem are complete­

ly different from the Hilbert space case [SJ. Much remains to be done. 
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