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ABSTRACT 

The purpose of this paper is to give an exposition of an approach to 

the problem of stochastic realization theory. We will introduce this prob­

lem through the concept of splitting relations and splitting random variables 

and show in detail how one can construct all minimal splitters for gaussian 

random vectors. With these ideas in mind, we then introduce the relevant 

definitions of (autonomous) stochastic dynamical systems and the problem of 

stochastic realization theory and of white noise representation as they 

arise naturally in this context. The case of gaussian random processes is 

then worked out in detail. 
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1 • INTRODUCT'ION 

It may be argued that from the theoretical (and certainly from the 

pedagogical) point of view one of the most outstanding contributions of 

mathematical system theory has been the axiomatization of the concept of 
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an abstract dynamical system and of the concept of state, in the context of 

systems with inputs and outputs. This has not only provided a long overdue 

generalization of the autonomous case, which has been studied in great detail 

in topological dynamics, but it also gives a very nice and useful axiomatic 

framework for the study of many problems in control theory, (recursive) 

signal processing, digital computation and automata theory, etc. 

One of the outstanding and completely new problems which has arisen 

quite naturally in this framework is the so-called problem of state space 

realization. This concerns the question of representation of an input/out­

put map as a system in state space form. For deterministic systems it may 

be argued that the theory (far from being closed) is quite advanced and 

completely worked out, both on the abstract and on the algorithmic level, 

for linear time-invariant systems. However, this is not the case for 

stochastic systems where other than some partial results for finite state 

stochastic automata and a fairly complete theory for finite dimensional 

gaussian processes very little research has been done on these problems. 

In fact, a conceptual framework in which to treat these questions is still 

very much absent. 

In the present paper we will attempt to give a systematic exposition 

of some of the main probems and results in this area. In view of the space 

limitation, we are unable to include proofs. These are either well-document­

ed in the literature, or will appear elsewhere. We have concentrated our 

efforts for a great deal on some original aspects which involve introducing 

these problems via deterministic relations and splitting random variables 

and giving s:ome general definitions of the abstract notion of a stochastic 

dynamical system and introducing the realization problem from this point 

of view. We will also give a rather complete description of the situation 

with gaussian processes. Unfortunately, due to space limitations we have 

not been able to include a review of some recent results on finite state 

processes (see [1] for a good exposition and [2,3] for some more recent 
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results); nor have we been able to cover some recent work on a a-algebraic 

approach to these problems [4]. 

Especially the realization of gaussian processes has been given a 

great deal of attention in the recent system theory literature. Although 

DOOB [5] already posed some questions in this direction, it is particularly 

since the work of KALMAN [6] that one has seen some significant progress in 

this area. Particularly important in this development has been the work of 

FAURRE [7,8,9] and of ANDERSON [10] who basically solved what we will call 

the 'weak' or 'measure theoretic' version of this problem and also showed 

its relation to the classical problem of spectral factorization. There has 

been some recent progress in this area through the work of LINDQUIST and 

PICCI [11,12,13,14,15] and of RUCKEBUSCH [16,17,18,19] which has culminated 

in a solution of what we will call the 'strong' or the 'output-induced' 

stochastic realization problem. In addition, the neat geometric approach 

followed by these authors has provided a very important and useful approach 

to this problem. In closing this introduction, we would like to point out 

some related work by AKAIKE [20] which fits rather well in the approach 

which we take in our paper. For a discussion of the relevance of stochastic 

realization theory in Kalman filtering, see [g and 21]. 

ACKNOWLEDGEMENT. The authors would like to acknowledge the help of 

Cees van Putten. 

2. SPLITTING RELATIONS AND SPLITTING RANDOM VARIABLES 

It turns out that many of the problems which one encounters in sto­

chastic realization theory are already apparent in the seemingly trivial 

case of a time index set T = {1,2}. The idea of 'state' then becomes that 

of a splitting random variable and the basic problem is to find an efficient 

way for constructing splitting random variables. Moreover, as far as we are 

aware of, it is not known that these concepts and problems also have very 

natural analogues in the context of deterministic systems. We will introduce 

the problems from this point of view since we believe that it gives one a 

very clear and sharp introduction to this area. 
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2.1. Relations 

A relation is simply a subset of a product set. In our context it is 

best to think of the two components of this product set as representing the 

'past' and the 'future' of some dynamical phenomenon. In a splitting rela­

tion one should think of the splitting variable as the state which contains 

the information in the past which is relevant for the future {and vice-versa!). 

With this intuitive picture in mind, we now proceed with the formal develop­

ment: 

A relation Ron the product space z := z 1xz 2x ••• xzn is simply a subset 

R c z. The subset of z. defined by 
1. 

{ z . E Z . I 3z 1 , ••• , z . 1 , z . 1 , .•• , z such that 
i i i- i+ n 

(z1 , ••. ,z. 1 ,z. ,z. 1 , .•. ,z) ER} 
i- i i+ n 

is called the projection of Ron Z. and will be denoted by Pz_R. The relation 
1. 1. 

on z 1x ••• xz. 1xz. 1x ••• xz defined by 
i- 1.+ n 

:= { (zl' · • • ,zi-1 'zi+l' • • • ,zn) 

(z 1 , ••• ,zi+l'ai,zi+l'"··,zn) ER} 

is called th.e relation R conditioned by { z. =a.}. Obvious generalization to 
1. 1. 

the case z. EA. c Z., or conditioning to more than one of the z. 's presents 
1. 1. 1. 1. 

no difficulties. The following notions are the deterministic analogues of 

'white noise' and of a 'Markov process'. The relation Ron Z is said to be 

a product relation if R= TT Pz,R. We will say that z. splits R if 
i 1. 1. 

If z. is splitting for all i then we will call R Markovian. Using these 
1. . 

notions one can develop a systematic and novel approach to deterministic 

system theo:i:y and its realization problems which is a bit more general and 

in some applications much more appropriate than the existing input/output 

approach. However in the present paper we will only pursue the realization 

problem for T = {1,2}. Then we have the following definitions: 

Let Re be a given relation on Y1-xY2• If Risa relation on Y1xxxY2 
such that 
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{i) x splits {for simplicity we call R then splitting), and 

{ii) R P R e = Y1XY2, 
then we will call Ra {splitting) realization of R. 

Many of the qualitative notions of classical deterministic and stochastic 

realization theory admit very natural generalizations to this framework: 

Let R1 and R2 be two realizations of the same Re with respective splitting 

spaces x1 and x2• Consider now the pre-ordering R1 > R2 defined by 

{R1>R2}: .,... {3 a partial surjective set to point map f: x1 -+ x2 
-1 such that {(y1 ,x2,y2) € R2} => {3x1 € f {x2) 

such that {y1,x1,y2) € R1}}. 

Two realizations will be called equivalent if there exists a bijection 

f: x1 ➔ x2 such that {(y1 ,x1,y2) € R1}.,... {(y1,f{x1) ,y2) € R2}. 

A realization R of R is said to be irreducible if any other realization 
e 

R' < R is necessarily equivalent to R'. It is said to be attainable if for 

all x € X there is {y1 ,y2) € Re such that {y1,x,y2) €Rand such that 

{(y1,x•,y2) € R} => {x'=x}. It is said to be observable if at+ Py2R{x=a} is 

injective as a map from X to 2Y2. It is said to be reconstructible if 

a>+ Py1R{x=a} i.s injective. It is easy to show that irreducibility implies 

attainability, observability and reconstructibility, but as we shall see 

shortly, the converse is not necessarily true. 

Let R be a realization of Re. Then it is said to be output i'nduced if 

there exists f: Y1xY2 ➔ X such that {(y1 ,x,y2) ER}_. {x = f(y 1,y2)}; it 

is said to be past (future) output induced if f: Y1 ➔ X {f: Y2 -+ X). {Actual­

ly output induced realizations have multiplicity one. The multiplicity of a 

point {y1 ,y2) € R2 in the realization R is the cardinality of the set 

{a€ X I (y1 ,y2l € R{x=a}}. In output induced realizations every point of Re 

is thus cover~d exactly once.) 

2 Geo~etric Illustration: Let R be a subset of lR. A realization of R is e e 
simply a family {parametrized by elements of Xl of rectangles which together 

cover R exactly. If every point is covered once then .this realization is 
e 

output induced. It is irreducible if no non-trivial recombinations or dele-

tion of these rectangles results in a new realization. Thus the problem of 

finding an irreducible realization is the problem of filling up a given set 



by an (in this sense) minimal number of (non-overlapping) rectangles. We 

can also view the realization R as a relation on IR x X x IR which has 

rectangular x-level sets and which projected down along X yields R. This 
e 2 

realization is output induced if Risa 'surface' with 'global chart' IR. 

The following proposition links some of the concepts introduced above: 

PROPOSITION. Let R be a realization of R. Then 
e 

5 

(i) {R is irreducible}~ {R is attainable, observable, and reconstructible}; 

(ii) {R is irreducible}.,,,,. {R is attainable} and 

{{R{x€A} is rectangular}.,,,,. {A consists of at most one point}}. 

It would be of much interest to give this last property in (ii) a satis­

factory system theoretic interpretation. Actually the above proposition falls 

considerably short from the results of the classical literature on determin­

istic realization theory. This is due to the fact that the realizations con­

sidered there are all past output induced (actually in that context it is 

better to speak of 'past input induced'). 

PROPOSITION. Let R be a past output induced realization of R. Then 
e 

{R is irreducible}.,,,,. 

(i) {R is attainable} (which in this case means that for all 

x € X there exists (y1 ,y2) € Re such that (y1 ,x,y2) € Re' 

i.e., reachability), and 

(ii) {R is observable}. 

An analogous proposition holds for future induced realizations. It 

would be of interest to discuss the cases in which {irreducibility}<=> 

{readability, observability, and reconstructibility}, a situation which we 

shall have in the case of gaussian random variables. In general however 

(~) does not hold, not even for output induced realizations, as the fol­

lowing picture decisively illustrates: 
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yl = y2 = {1,~,3} 

X = {1,2,3,4,5} 

Re= ylxy2 

R: see picture: 

(3,1,1) € R, (3,1,2) € R, etc. 

In trying to construct realizations there are three constructions which 

appear natural: 

(i) by defining an equivalence relation E1 on Y1 defined by 

{yiE1y1}: <=> {{Cyi,Y2) €Re}<=> {(y1,y2) € Re}} and taking for 

X = Y1/E1 and defining a (past output induced) realization from 
+ 

there in the obvious way as R = (y1,12)€Re(y1,y1 (mod E1) ,y2). 

This realization will be called the forward canonical realization; 
-(ii) using the same idea on the set Y2 , thus obtaining R, the (future 

output induced) backward canonical realization; 

(iii) defining an equivalence relation E12 defined as the coarsest refine­

ment of E1 and E2 , i.e., the equivalence relation on Y1xY2 defined by 

{ (y' y' )E (y" y") }· <=> {y'E y" and y'E y"} and proceeding in a simil-1' 2 12 1' 2 • 1 1 1 2 2 2 : 
ar fashion. The ensuring realization will be denoted by R. 

The idea behind constructing R+ is thus to view R as a map, f, from y 
e 1 

into 2Y1 and to define the equivalence relation as the kernel off. Hence 

every splitting element in R+ can either be identified by a subset of Y1 

(the elements of the partition induced by f) or a subset of Y2 (the elements 

of the range off). The family of subsets of Y1 form a partition and are thus 

non-overlapping while the family of subsets of Y2 need not have such struc­

ture. 
+ It is easy to see that R and R are refinements of the realization in 

(iii), and thus in general this realization will not be irreducible. We have 

the following result which is a rather nice generalization of what can be 

obtained in the classical case: 



PROPOSITION. 

(i) The forward canonical realization R+ is minimal in the class of past 

output induced realizations (in the sense that every other past out­
+ put induced realization R satisfies R < R) and thus irreducible. 

(ii) All irreducible past output induced realizations are equivalent to R+ 

and thus minimal and pairwise equivalent. 

(iii) (see the previous proposition) A past output induced realization is 

irreducible iff it is reachable and observable. 
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Needless to say that a similar proposition holds for R. Unfortunately 

general statements regarding the structure of the other (output induced) ir­

reducible realizations appear hard to come by. We pose the following 

Research Problem. Investigate whether every irreducible (output induced) 
+ 

realization R may be obtained from R- in the sense that R < R and describe 

an effective procedure by which all irreducible realizations may be obtained 
+ 

from R-. 

2.2. Splitting Random Variables 

The situation with random variables in much like the one with relations 

as explained in the previous section but where instead of having a yes-no 

situation on the elements in the relation one has a probability measure on 

the product space which expresses how likely two elements will be related. 

Of course, all notions such as independence then need to be interpreted in 

a measure theoretic sense. However, in the context of realization theory 

problems, a new dimension is added in the problem. This is akin to the prob­

lem of output induced versus not output induced realizations as discussed in 

the previous sections, but is also related to the connnon dichotomy in prob­

ability theory which is concerned with the question whether the probability 

space {n,A,P} is given (an impression which one gets from studying modern 

mathematical probability theory) or whether it is to be constructed (a point 

of view which appears much closer to what one needs in applications). In 

this section we will describe the random variable approach and the next sec­

tion is devoted to the measure approach. 

For a brief review of some relevant notions from probability theory, 
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the reader is referred to the Appendix. 

Let {n,A,P} be a probability space, (Y1,Y1), {Y2,Y2}, and {x,X} be 

measurable space, and y 1,y2,x: Q ➔ Y1,Y2,x random variables on n. We say 

that x splits Yt and y 2 if y 1 and y 2 are independent given x, in which 

case we say that (y1,x,y2) realizes (y1 ,y2). A realization is said to be 

irreducible if 

(i) {x,X} is Borel and xis surjective (see Appendix) (in which case we 

call rhe realization attainable), and 

(ii) if {x 1 ,X 1 ,x'} is any other realization for which there exists a sur­

jection f: X ➔ X' such that the scheme 
X 

0/f 
~ 

X' 
commutes, then f is injective (see Appendix). 

Two realizations with respective splitting spaces x1 and x2 are said to be 

equivalent if there exists a bijection f: x1 ➔ x2 such that x2 = f(x 1). 

A realization is said to be observable if x * P(y2 1x> is injective and 

reconstructible if x ~ P(y1 1x> is injective. It is easy to see that irreduc­

ibility implies attainability, observability, and reconstructibility, but 

the converse is in general not true, unless the random variables involved 

are all gaussian random vectors. 

A realization is called (past, future) output induced if there exists 

(f: Y1 ➔ X, f: Y2 ➔ X) f: Y1xY2 ➔ X such that (f(y1) = x, f(y2) = x) 

f (y 1 ,y 2) = x. In an output induced realization the subset of y 1 xxxY 2 defined by 

is a surface parametrised by w or by the 'global chart' Y1xY2 • 

REMARK. The problem of finding a past output induced splitter is very akin 

to the Bayesian idea of sufficient statistic [22]. Formally: Let y 1,y2 be 

random variables and assume that f: Y1 ➔ Xis measurable. Then x := f(y 1) 

is said to be a sufficient statistic for the estimation of y 2 through y 1 if 



x splits y 1 and y 2• Thus the problem of finding a sufficient statistic is 

the same as finding a past output based realization. 

PROPOSITION. Let (y1,x,y2) be a past (future) output induced realization of 

(y1 ,y2). Then 
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{irreducibility}~ {attainability and observability (reconstructibility)}. 

In general no such proposition is true, not even for output induced 

realizations. However for gaussian random variables we will show that 

{irreducibility}~ {attainability, observability, and reconstructibility}. 

An example which shows where things can go wrong is the following: 

y2 

3 . 1 . 
2 •5 

4 
1 . 

... - ~ .. 

1 2 

m 
3 . I 

3 yl 

n = ylxy2 

Y1 = Y2 = {1,2,3} 
1 

p(y1,y2) = g for all y 1,y2 
X = {1,2,3,4,5} 

The realization is the output induced realization defined by f: Y 1xY2 + X 

:={1,3} ~ 1, {2,3} ~ 1, {3,3} ~ 2, {3,2} ~ 2, {3,1} ~ 3, 

{2,1} ~ 3, {1,1} ~ 4, {1,2} ~ 4, {2,2} ~ 5. 

It is easily shown that it is attainable, observable, and reconstructible. 

However the realization is not irreducible since X' = {1} and f: X + X', 

defined by f: x .+ {1}, yields a reduced realization. 

Similarly as in the deterministic case with relations one may construct 

the canonical past output induced realization R+, the canonical future out­
+ 

put induced realization R-, and the join of both, R-. 

+ In constructing the forward canonical realization R, one considers 

the equivalence realation E1 on Y1 , defined by 

Defining now 
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and 

leads to a past output induced realization of (y1,y2). Note that one may 

identify elements of X with subsets of Y1 (those given by the partition of 

X induced by E1) or with 'random' probability measures on Y2 (given by 

P(y2 1y1)). Note however that in the second parametrization it is a bit more 

difficult to give the exact nature of the subset of probability measures on 

Y2 which are thus obtained. It is possible to formulate a proposition which 

reads idenLical to the last proposition in Section 2.1. Its proof presents 

no difficulties, at least in countable or smooth finite dimensional case. 

The technical details however still need to be worked out. We formulate 

this as a 

Research Problem. Prove the stochastic analogon of the last proposition of 

Section 2.1 in the case that Y1 and Y2 are arbitrary measurable spaces. 

Investigate whether every irreducible (output induced) realization may be 
+ 

obtained from R- in a similar manner (a surjective set to point mapping on 

the splitting spaces) as will be the case for (deterministic) relations. 

2.3. Splitting measures 

Much of what has been said in Section 2.2 may be repeated for the 

case in which a probability measure is given on Y1xY2 or on Y1xxxY2 directly. 

We will not give all the relevant definitions in detail but restrict our­

selves to the definition of a realization. 

Let {Y1 ,Y1 } and {Y2,Y2} be measurable spaces and let Pe be a probabil­

ity measure on Y1xY2• A realization of Pe is defined by a measurable space 

{x,X} and a probability measure on Y1xxxy2 which induces Pe on Y1xY2 and 

which is such that x splits y1 and y 2 • 

The problem of realizing two given random variables (y1 ,y2) may hence 

be interpreted in the sense of the notions defined in Section 2.2 or in the 

sense of the above definition where we take the given measure on Y1xY2 which 

is to be realized to be the one induced on Y1xY2 by the probability measure 

on n. We now formalize these two possible type of realization of given 

random variables. 



Let {n1 ,A1,P1} and {n2 ,A2 ,P2} be two probability spaces, {Y,Y} a 

measurable space, and z 1: n 1 + Y and z 2: n2 + Y be two random variables on 

n1 and n2 respectively. We will say that z 1 and z 2 are equivalent if the 

measure induced by z 1 on Y is the same as the one induced by z 2 on Y. 

PROBLEM 1 (the strong realization problem). Let (y1,y2) be given random 

variables defined on a probability space {n,A,P}. 'l'b.e strong realization 

problem consists in finding the measurable spaces {x,X} and the random 

variable x: n + X such that (y1,x,y2) is a realization of (y1,y2). 

PROBLEM 2 (the weak realization problem). Let (y1,y2) be given random 

variables defined on a probability space {n,A,P}. The weak realization 

problem consists in finding a probability space {n 1 ,A 1 ,P 1 }, the measurable 

space {x,X}, and the random variables Yi,x,y2: n• + Y1 ,x,Y2 such that x 

splits Yi and y2 and such that (yi,y2) is equivalent to (y1 ,y2). 

It is clear from these problem statements that Problem 2 is actually 

a problem which involves finding a splitting measure and it is best to 

think about it in these terms, without involving Q at all, but starting 
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from the measures induced on Y1xY2• In considering Problem 1 it is unclear 

what n should be and usually one would taken= Y1xY2• The problem then 

becomes precisely the problem of finding output induced realizations as 

discussed in Section 2.2. A possible and meaningful generalization on which 

very little work has been done so far is to start with three random variables 

y1 , y 2 , and z, defined on Y1 , Y2 , and z respectively, taking n = Y1xY2xz 

and finding strong realizations of (y1 ,y2). One could also ask the question 

if there are z-induced realizations. In this context z would thus be the 

random variable which carries the information on which the splitter x has 

to be based. 

As we already see in the next section there is very much of a difference 

in the specific solutions of the strong and the weak realization problems. 

2.4. The gaussian case 

In this section we will give a rather complete picture of the problems 

formulated in the previous sections in an important particular case, namely 

when all the random variables are jointly gaussian. We will thus assume that 
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(y 1 ,y 2) is a real zero mean gaussian random vector with y 1 € :nt1 and 

y 2 € lR.n2 • Also, we will be looking for realizations (y1 ,x,y2) which are real 

zero mean gaussian random vectors with x € lR.n. The measure of (y1,x,y2) is 

hence completely specified by 

[
r11 : r1x ! E12] 

E= r 2 1E 1E 2 , 
X I XX I X 

E21 : E2x : E22 

T T 
where r 11 = E{y1y 1}, r 1x = E{y1x }, etc. 

The conditional independence condition is specified in the following: 

PROPOSITION. The following conditions are equivalent: 

(i) x splits y1 and y 2; 

(ii) y 1 - E{y1 1x} and y 2 - E{y2lx} are independent; 

(iii) (if E > 0) E = r 1 E-l E 2 • 
XX 12 X XX X 

Also the connitions for the irreducibility, attainability, etc., of a 

realization are easily established: 

PROPOSITION. Assume that (y1,x,y2) is a realization of (y1,y2). Then 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

dim x =: n ~ Rank r 12 =: n12 ; 

n = n12 iff the realization is irreducible; 

E > 0 iff the realization is attainable; xx 
Rank E2x = n12 iff the realization is observable; 

Rank E1x = n12 iff the realization is reconstructible; 

n = n12 iff Exx > 0 and Rank E2x = Rank E1x = n12· 

As a consequence of property (ii) it is natural to call irreducible 

realizations minimal. Notice that for .thisgaussian case, even for realiza­

tions which are~ output induced, we obtain the equivalence 

{irreducibility}~ {attainability, observability, and reconstructibility}. 

Note also that here irreducibility means that whenever a surjective matrix S 

is such that {y1,sx,y2} is also a realization of (y1,y2), then Sis neces­

sarily square and invertible. 

In most of the problems of realization theory the choice of the bases 

is immaterial and we may thus choose them to our convenience. The choice of 



the bases of the vector spaces in which y 1 and y 2 lie will be choosen so as 

give us the canonical variable representation, as introduced by HOTELLING 

[23]. 

LEMMA. There exist nonsingular matrices s 1 and s 2 such that the covariance 

matrix of yl := s 1y 1 and y 2 := s2y 2 , defined by 

with E11 

form 

I 0 0 OII 0 0 0 
I 

0 I 0 0 10 A 0 0 
I 

0 0 I 010 0 0 0 
I 

0 0 0 010 0 0 0 ---------------
I 0 0 O'I 0 

I 
0 0 

0 A 0 
I 

0 10·1 0 0 
I 

0 0 0 o•o 
I 

0 I 0 
I 

0 0 0 O•O 0 0 0 

identical components 

correlated components 

independent components 

zero components 

- -We will denote the various components of y 1 and y 2 in this basis by 
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y 11 , y 12 , etc. and their dimension by n11 , n 12 , etc. Moreover, since we will 

assume that this basis transformation has been carried out we will drop the 

bars on the y's. 

The components of y 1 and y 2 in this representation are called canonical 

variables. They are very useful in statistical analyses. They are unique 

modulo the following transformation: an orthogonal transformation on y 11 and 

y 21 , one on y 13 , one on y 23 , one on y 14 , and one on y 24 • Moreover, if in the 

sequence of A. 's there is equality: 
1 

then one can also apply an orthogonal transformation on the component of y 21 

and y 22 corresponding to these equal Ai's. 
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The above lemma shows how the basis for y 1 and y 2 is choosen. We choose 

the basis of x as follows: 

PROPOSITION. Assume that the (y1,x,y2) is irreducible. Then we may always 

choose the basis for x such that E{y2 1x} = x. This implies together with 

conditional independence that E2x = Exx and Elx = E12 . 

The following two theorems are the main results of this section. The 

first theorem solves the 'weak' realization problem for gaussian random 

vectors, while the second theorem solves the 'strong' realization problem. 

The interpretation of the output induced irreducible realizations in terms 

of canonical variables in rather striking. 

THEOREM. In the bases given, (y1,x,y2) will be a minimal weak realization of 

(y1,y2) iff the correlation matrix of (y1 ,x,y2 ) takes the form 

I 0 0 01I 0 1 I 0 0 0 
I I 

0 I 0 010 AIO A 0 0 
I I 

0 0 I 010 o,o 0 0 0 
I I 

0 0 0 0,0 o,o 0 0 0 -------------------
Io o o:I o:I o o o 

I I 
0 AO 0,0 E10 E O 0 -------------------

0 1 I 
I 

I 0 0 0 1 I 0 0 0 
I I 

0 A 0 o:o E 10 I 0 0 
I I 

0 0 0 o:o o:o 0 I 0 
I I 

0 0 0 o,o o,o 0 0 0 

with E any matrix satisfying IA2 ~ E ~ II 

The above theorem seems more complicated than it is because we have 

taken a completely general case for (y1,y2). The point however is that in 

this choice of the bases it is exceedingly simple to see how the correla­

tion matrix of (y1,x,y2) can look like. Note that the components which are 

common to y 1 and y 2 will appear in every realization as components of x. 

The uncorrelated components on the other hand donot influence x. 



THEOREM. Assume that (y1 ,x,y2) is a minimal output induced realization of 

(y1 ,y2). Then there exists a choice of canonical variables for y 1 and y 2 

such that in a suitable basis xis given by x = (y11=y21 ,z1 ,z2) with z 1 a 

vector consisting of some components of y 21 and z 2 a vector consisting of 

the other components of y 22 • Conversely, for every choice of the canonical 

variables and. every such choice of z 1 and z 2 , x will be an output induced 

minimal reaL[zation of (y1 ,y2). 
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Let -us call two gaussian realizations (y 1 ,x1 ,y2) and (y1 ,x2 ,y2) equiv­

alent if there exists a non-singular matrix S such that x 2 = sx1 . Otherwise 

they will be called distinct. From the above theorems the following corol­

lary is immediate: 

COROLLARY. The number of distinct weak realizations is one in the case 

n21 = n22 = 0 and non-denumerably infinite otherwise. The number of distinct 

output induced minimal realizations is 2n21 = 2n22 if 1 > ;\ > ;\ > > ;\ 
1 2 · • · n21 

> O, and non--denumerabl y infinite otherwise. 

We close this section with some remarks: 

1. Much of the structure of the realizations shown in the above theorem may 

by found in one form or another in the work of RUCKEBUSH [see e.g. 

16,17,18,19]. 

2. In order to generate x in a weak realization, one has to add a source of 

randomness which is external to (y1 ,y2). In fact, one needs exactly 

rank(t:-1\ 2) + rank(I-2::) - n 12 additional independent random variables to 

achieve minimal a weak realization. 

J. It is of interest to develop the above theory for given gaussian vectors 

(y 1 ,y2 ,z) and requiring x to be z-induced in the realization (y1 ,x,y2) of 

(y1,y2). 

3. STOCHASTIC DYNAMICAL SYSTEMS 

We will in this paper exclusively be concerned with stochastic systems 

without external inputs (with this we mean that the dynamics are influenced 

by a chance variable but not by other 'external' inputs). We will therefore 
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introduce the relevant concepts on this level of generality. Properly speak­

ing we are concerned with autonomous stochastic systems. These are described 

by a stochastic process. 

3.1. Basic definitions 

DEFINITION. A stochastic system (in output form), E , is defined by 
e 

(i) a probability space {n,A,P}, 

(ii) a time index set T c JR, 

(iii) a measurable space {Y,Y} called the output space, and 

(iv) a stochastic process y: Txn + Y. 

It is said to be time-invariant if Tis an interval in JR of z, and 

(v) y is stationary. 

Many of our comments are in the first place relevant to the time­

invariant case. 

Let z: 

past and by 

nxT 
+ 

zt 

+ 

:= 

z be a process. We will denote by zt := {z(,) ,,<t} the 

{z(,),,>t} the future of z. Let z,r: nxT + Z,R be two 

processes. We will say that r splits z if r(t) splits z~ and (z:,z(t)) for 

all t. Notice that this definition is not symmetric in time. 

DEFINITION. Let Ebe a stochastic system on xxY. Then it will be said to be 

in state space form with state space Xandoutput space Y if x splits (x,y). 

The external behaviour of Eis simply the process y which we may of course 

consider to be a stochastic system in its own right. We will denote it by 

E and say that E realizes E , denoted by E ~ E . 
e e e 

REMARKS. 

1. It is obvious from the above definition that x will itself be a Markov 

process. Let R denote the time-reversal operator, i.e., Rz(t) := z(-t). 

Note that RE will in general_!!£! be a system in state space form. Thus, 

contrary to Markov processes, a state space system forward in time need 

not be a state space system backwards in time. However, in the continuous 

time case there is a weak condition under which we will have this time­

reversibility, i.e., when the a-algebras induced by {y(T),,<t} and 

{y(,) ,,~t} are equal for all t. This will be the case whenever the sample 

paths of y are smooth in some appropriate sense. Actually, in that case 



there exists a map f: xxT ➔ Y such that y(t) = f(x(t),t). 

2. It is likely that there are many applications (e.g. in recursive signal 

processinc;J and in stochastic control) where the relevant property is 

that the process x splits y, and that the state property expressed in 

the fact that x splits (x,y) is not as crucial as we have learned to 

think. 
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The problem of (state space) realization is then simply the following: 

Given I , find I such that I~ I . This problem is the strong realization 
e e 

problem. The alternative approach to stochastic systems where one starts 

with measures leads to the following 

DEFINITION. i~ stochastic system (in output form) in terms of its measures 

is defined by giving for all t 1 ,t2 , •.. ,tn ET a probability measure on Yn 

satisfying ~~e usual compatibility conditions. Such a system defined on 

xxy is said to be in state space form if for all t 1 ::; t 2 ::; ... ::; tn::; t and 

for every bounded real measurable function f there holds 

E{f(x(t) ,y(t)) (x(t.) ,y(t.)), i 
l. l. 

1,2, •.. ,n} = E{f(x(t),y(t)) lx(t>L n 

Instead of specifying the measures directly as in the above definition 

one can do ~~is in terms of appropriate kernels which express how a given 

state x(t0 ) will result in a state/output pair (x(t1) ,y(t1)) at t 1 ~ t 0 • 

This construction requires only a slight extension from the usual construc­

tion of Markov kernels and we will not give them in detail here. 

From the above definition it should be clear what one means by the ex­

ternel behaviour of a system defined in terms of its measures and hence by 

the weak version of the state space realization problem. If we also con­

sider the fact that for every process defined in terms of its marginal prob­

ability laws _one can construct a probability space and an equivalent stochas­

tic process on it, then we see that this weak version of the realization 

problem may be expressed in the following, albeit somewhat indirect, way: 

DEFINITION. •rwo stochastic systems I' and I with the same time index set 
e e 

and output space are said to be equivalent if the defining processes are 

equivalent in the sense that they have the same marginal measures. We will 

call I' a weak realization of I if I' is in state space form and if I' is 
e e 

equivalent to I . 
e 
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All of the definitions (irreducibility, attainability, equivalence, 

observability, and reconstructibility) have obvious generalizations to the 

problem at hand. We will not give them explicitely. Instead we turn to a 

topic which we will only touch on very briefly but which fits very well in 

an exposition on the representation of stochastic systems. 

3.2. White noise representation 

Often, particularly in the engineering literature, one starts with a 

stochastic system which is actually defined in terms of a deterministic 

system driven by "white noise". This starting point may be introduced in 

our framework as follows: 

DEFINITION. Let T be a (possibly infinite) interval in Zl. A discrete time 

white noise driven stochastic system (denoted by E : r stands for 'recursive') 
r 

is defined by 

(i) 

(ii) 

three processes, w,x,y: T ➔ W,X,Y with w white noise and (x,y) a 

stochastic system in state space form, such that 
- + xt and (w(t),wt) are independent for all t, and 

(iii) two maps f,r: xxwxT ➔ X,Y called respectively the next state map and 

the read-out map, such that 

x(t+l) = f(x(t) ,w(t),t) 

y(t) = r(x(t) ,w(t),t). 

There is clearly an analogue of this definition for systems defined in 

terms of their measures. We will denote the system E in state space form in­

duced in the obvious way by E by E ~ E. The white noise representation 
r r 

problem is the problem of finding for a given stochastic system in state 

space form Ea white noice driven system E such that E ~ E. Thus in this 
r r 

problem one is asked to construct the white noise process wand maps f and 

g. There is also an obvious 'weak' version of this problem. 

The following definition gives a limited continuous time version of the 

above: 
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DEFINITION. Let T be a (possibly infinite) interval in JR. A continuous time 

gaussian white noise driven stochastic system (denoted by Ed: d stands for 

'differential') is defined by 

(i) three processes w,x,y: T + W,X,Y with wan m-dimensional Wiener 

process on T, X a subset of m.n, and (x,y) a stochastic system in 

state space form, such that 

(ii) x~ and (w - w(t)): are independent for all t, and 

(iii) three maps f ,h,r: xxT ➔ ]Rn, JR.nxm, Y respectively called the 

local drift, the local diffusion, and the read-out map, such that 

dx(t) = f(x(t),t)dt + h(x(t),t)dw(t); 

y(t) = r(x(t) ,t). 

There are obvious generalizations of these notions to independent in­

crement processes and, more to the point, to more general stochastic dif­

ferential equations admittinq, for example, also iump processes. 

Note that if in the discrete time (or the continuous time) case T has 

a lower bound, say t = 0, then x(O) ,w,f and r (resp. f,h and r) determine 

completely x and y. A similar property occurs when T has no lower bound but 

when the differential equation for x has certain asymptotic stability prop­

erties. In such case a white noise representation of a realization of a 

given dynamical system in output form will yield maps by which y(t) is 

expressed, in a non-anticipating manner, as a function of the independent 

random variables x(O) ,w(O),w(l), ••• ,w(t). 

3.3. Research problems 

In this section we will indicate the sort of questions one asks in 

realization theory and, as far as this is known, how one expects the answers 

to look like. In Section 4 it will be shown how some of these questions may 

be answered for time-invariant finite-dimensional gaussian processes. The 

claims made in the various questions will all require certain regularity 

conditions which we will not be concerned with here. 

1. Let.I be a given stochastic system. 
e 

The basic problem is to construct a state space representation of it. 
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Actually, if no other properties are asked then this problem is somewhat 

trivial. The following question however is much more useful and interest­

ing: Find all (weak and strong) irreducible realizations of re. Give con­

ditions under which L admits a finite state realization or a finite 
e 

dimensional realization. Give algorithms for going from a numerical 

specification of r to a numerical specification of an irreducible 
e 

realization. 

2. Describe the construction of the canonical past output and future output 

induced realizations. Show in what sense they are unique. Prove (or dis­

prove) that all irreducible realizations may be derived from the join of 

the past and the future induced realizations, and describe how all irre­

ducible realizations could this way be constructed. 

3. Let r be given and assume that z splits y. It is easily seen how to 
e 

define irreducibility of z as a splitting process. It is not unreasonable 

to expect that an irreducible splitting process z would yield an (irre­

ducible) realization (z,y) of y. It would appear from [15] that this will 

not always be true. It is of interest to settle this problem and give the 

additional conditions which z needs to satisfy. 

4. When does a discrete time system admit a white noise representation? 

The expectation is that for weak representations this will always be pos­

sible but that strong white noise representability is rather special. An 

appropriately general concept of white noise representability must undoubt­

ly allow the space W where the white noise takes its values to be x-depen­

dent, pretty much like the situation with vector fields and bundles as a 

description of flows on manifolds. It is of much interest to clarify the 

probabilistic versions of such recursive stochastic models. 

5. When does ·a continuous time system admit a white noise representation? 

The expectation here is that for weak representations this ought to 

require only some smoothness of the random process x as a function of 

t while for strong realizations it will also involve some sort of con­

stant rank condition on the local covariance of x. What sort of unique­

ness results can here be gotten? Some partial results for scalar equa­

tions are available in [5,24]. Extend these representation problems to 
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differential equations involving jump processes. 

6. Clarify ~he relations between ilie stochastic realization problem and ilie 

problem o:f white noise representation with the problem of representing a 

given stochastic process as a non-anticipating function of a sequence of 

independent random variables. To be more specific, assume iliat a stochastic 

system has a state space realization which admits a white noise represen­

tation. This representation will often lead, as explained before, to a 

representation y (t) = Gt (w (t) ,w (t-1) , ••• ,w (0) ,x (0)) when T has a lower 

bound or y(t) = Gt(w(t) ,w(t-1) , .•. ) when T has no lower bound. Clearly 

iliis last representation is not always possible. The question is to prove 

when and how it is possible: e.g., is it possible for ergodic processes? 

In what s,ense are such representations unique? 

7. Show ilie relation and the interaction between forward time and backward 

time realizations and white noise representations. Investigate possible 

applications to filtering, prediction, smooiliing, and stochastic control. 

8. Generalize the concepts given here to stochastic systems which are in­

fluenced not only by a chance variable w, but also by deterministic ex­

ternal inputs. 

4. REALIZATION OF GAUSSIAN PROCESSES 

In this section we will treat gaussian processes. Most of ilie results 

which we present have been known since the work of FAURRE [7,8,9]. We will 

briefly touch on the output induced realizations which have been discovered 

rather recently by LINDQUIST & PICCI [12] and RUCKEBUSH [16]. Actually, 

this whole area is still in a lot of motion and it is difficult to do justice 

to all the ideas which have recently been put forward. The importance of these 

results in recursive signal processing and filtering are discussed in [9,21]. 

For simplicity and in view of ilie space limitation, we will only consider 

the continuous time case. 

Let y: QxJR + JRP be a zero mean stationary gaussian process, defined on a 

probability space {Q,A,P}. We assume y to be mean square continuous (since, 

as we shall see later, we are really interested in the case iliat y has a 

rational spectral density, this implies no real loss of generality). As we 
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have already argued in Section 3, this assumption allows us to concentrate 

on state space realizations of the form y(t) = f(x(t)) with x a Markov pro­

cess. In particular, forward time realizations are thus automatically back­

ward time realizations, a situation which is no longer valid in the discrete 

time case. The main problems which one considers in this area are the fol­

lowing: 

PROBLEM 1 (the weak realization problem). Under what conditions does there 

exist a zero mean stationary ]Rn-valued Gauss-Markov process x and a matrix 

C: lRn ➔ mP such that y is equivalent to CX (which in this case simply 

means that y and Cx should have the same autocorrelation function)? What is 

the minimum dimension of x for which this is possible? Develop algorithms 

for deriving C and the parameters of the Markov process x. 

PROBLEM 2 (the strong realization problem). If Problem 1 is solvable, will 

there also exist such Gauss-Markov processes x which are output induced 

(i.e., for which there exists a map y >:r x)? Develop alqorithms for 

deriving the parameters of the Gauss-Markov process in this case. 

PROBLEM 3 (the white noise representation problem). Under what conditions 

does there exist an m-dimensional Wiener process w, an n-dimensional Gauss­

Markov process x, both defined on JR, and appropriately sized matrices 

A,B,C such that 

(i) xt is independent of (w - w(t)):, 

(ii) dx(t) = Ax(t)dt + Bdw(t), y(t) = Cx(t). 

Develop algorithms for computing the matrices A,B,C. 

The marginal probability measures of y (and thus all processes which 

are equivalent to it) are completely specified by its autocorrelation func­

tion R: lR ➔ ·mPxP, defined by 

R(t} 
. T 

:= E{y(tly (Ol}. 

The restriction of R to [O,m} will be denoted by R+. Of course, R+ specifies 

R completely since R(tl = RT (-tl. Let J: JR ➔ lRpxp denote the spectral den­

sity function of y. Very roughly speaking J is defined as the Fourier trans­

form of R. The following lemma is well-known: 



LEMMA. The following conditions are equivalent: 

(i) R+ is Bohl (i.e., every entry of R+ is a finite sum of products of a 

polynomial, an exponential, and a trigonometric function); 

(ii) ~ is rational; 

(iii) there exists matrices {F,G,H} such that R+(t) = HeFtG, with 

F E lRnxn, G E lRnxp, and H E mPxn. 

In addition: 

(iv) there is a minimal n, n. , for which the factorization in (iii) is 
nu.n 

possible, called the McMillan degree of R+ or~, and n = n. iff 
min 

(F,G) is controllable and (F,H) is observable. The triple (F,G,H) is 

then called minimal; 

23 

(v) all (F,G,H) 's with n = n. are obtainable from one by the transforma-
S nu.n -1 -1 

tion group (F,G,H) det s;o (SFS ,SG,HS ). 

Assume that xis an n-dimensional zero mean stationary Gauss-Markov 
T process with E{x(t)x (t)} =:I> 0. Then xis mean square continuous and 

I At hence E{x(t) x(0)} fort~ 0 is of the form e x(0) for some A. Moreover 

it is easily seen that I and A completely specify the marginal measures of 

this Markov process. Hence the marginal measures of the process ex are 

completely specified by (A,I,C) and it makes sense to talk about this triple 

as defining a weak realization of y. We will call a weak realization (x,y) 

with x n-dimensional and n as small as possible a minimal realization. 

PROPOSITION. Consider the stochastic system defined by (A,I,c). Then 

(i) it is a weak realization of y iff CeAtrcT = R(t} (t ~ 0); 

(ii) it is attainable iff L > O; 

(iii) it is observable iff (A,C) is observable; 

(iv) it is reconstructible iff (AT,CI) is observable; 

(v) it is i-rreducible iff (A,ICT,Cl is a minimal realization of R+; 

(vi) it is irreducible iff it is minimal and nmin = the McMillan degree 
+ of R • 

Part (i) of the proposition may be verified by direct calculation. The 

claim about reconstructibility may be seen from considering the stochastic 

system R(x,y) with R the time-reversal operator. It is easily calculated 

that this stochastic system has parameter matrices (IATI-l ,I,C). This yields, 
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after applying (iii), the condition in (iv). 

Two (gaussian) stochastic systems (x1 ,y) and (x2 ,y) will be called 

linearly equ:ivalent if there exists a nonsingular matrix S such that 

x2 (t) = sx1 (t). The following theorem classifies all minimal weak realiza­

tions of yup to linear equivalence: 

THEOREM. 

(i) There exists a finite dimensional weak realization of y iffy has 

rationa~l spectral density (for various equivalent conditions, see 

the previous lemma); 

(ii) all min:imal realizations (A,I:,C) can, up to linear equivalence, be ob­

tained Erom a minimal factorization triple (F,G,H) of R+ by taking 

A F, C = H, and solving the equations jFI:+I:FT ::;; 0, I:HT = G j for 

I:= ET. 

The problem thus becomes one of solving a set of inequalities. Actual­

ly, it may be shown [9,25,26] that there exist solutions I:_,I:+ such that 

every solution I: satisfies 0 < I: ::;; I:::;; I: < 00 • Moreover the solution set 
+ 

in convex and compact. A great deal of additional information on the struc­

ture of the solution set of these equations may be found in the above refer­

ences. 

Note that choosing A= F and C =Hin the above theorem corresponds to 

fixing the basis in state space. Indeed, since E{y(t) lx(O)}= CeAtx(O) for 

t 2: 0, this choice of the basis of the state space is very much alike the 

situation in Section 3.3 where we also fixed the basis for x this way. Once 

the basis has been picked, it is only the covariance of x, I:, which remains 

to be choosen. 

There seE=ms to be some applications, even in filtering, where any 

(also an indefinite) solution of the equality I:H T = G can be used. This point 

was raised in Faurre 's thesis [ 7 J but seems to have been ignored since. That 

may have been a pity, since it is the inequality part which makes these equa­

tions hard to solve. 

The strong realizations are covered in the following theorem: 
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THEOREM. 

(i) There exists a finite dimensional output induced realization of y iff 

y has rational spectral density (for various equivalent conditions, see 

the previous lemma); 

(ii) the parameter matrices (A,Q,C) of all minimal output induced realiza­

tions of y may, up to linear equivalence, be obtained from a minimal 

factorization triple (F,G,H) of R+ by taking A= F, c = H, and solving 

the equations I FE+EF T ::; 0; rank (FE+EF T) = minimum; EH T = G I for 

E = ET. 

- + The matrices E and E mentioned above actually correspond to output 

induced minimal realizations, and thus satisfy the equations at the above 

theorem. In fact, they correspond to the (up to linear equivalence) unique 

past output and future output induced minimal realizatioµs. Thus in the 

corresponding realizations (x_,y) and (x+,y), the state x~{t) may be viewed 

as the parametrization of the conditional probability measure P(y:IY~). 

Of course, x+(t) admits a similar interpretation. Actually, both the solu­

tion set of the E's of the above theorem and the corresponding output in­

duced realizations (x,y) have a great deal of very appealing structure. It 

would take us too for to explain all that here. The reader is referred to 

[12,26,27] for details. We just like to mention one item: namely if (x_,y) 

and (x+,Y) are the canonical past and future output induced realizations 

and (x,y) is any other output induced minimal realization, then there will 

exist a projection matrix P such that x = Px + (I-P)x+. In fact, 'gener­

ically', there are a finite number of such matrices possible and in a suit­

able basis this states that every output induced irreducible realization may 

be obtained from x_,x+ by picking certain components from x_ and the remain­

ing components from x+ (see [12,27] for a more precise statement to this 

ef£ect). These results show that the situation described in Section 2.3 is 

rather representative for the general case. 

REMARKS. 

1. It is clear from the above theorem that, contrary to what one sees hap­

pening for deterministic finite dimensional time-invariant linear sys­

tems, there is no unique (up to linear equivalence) minimal realization 

of stochastic finite dimensional stationary gaussian processes. 
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However, there is one thing which one can say, namely that if 

there exists a finite dimensional realization, then there will also exist 

a finite dimensional realization (z,y) having the property that all 

minimal realizations (x,y) may be deduced from it by a surjective matrix 

S: z 1+ x. Among the realizations having this property there are again 

irreducible (i.e., minimal) elements and it may be shown that such an 

irreducible realization is unique up to linear equivalence. In this case 

such realizations could be called universal. One such universal realiza­

tion may be deduced from (x_,x+) by defining 

z(t) := (x_(t),x+(t))/Ker Q 

with 

We expect that this type of universal realizations may have some as yet 

undiscovered applications for example in data processing. 

2. An interesting problem which has recently been investigated is how time­

reversibility of y may be reflected in its realization (x,y). The basic 

result obtained in L28] and, independently, in [29] states that if y is 

equivalent to Ry and if one chooses the weak realization (x,y) right, 

then in a suitable basis x = (x1 ,x2) with (x1 ,x2 ,y) equivalent to 

R(x1 ,-x2 ,y). The sign reversal of x2 is the striking element in this 

result. This type of time-reversibility has been referred to as 'dynamic 

reversibility' in the stochastic processes literature. 

3. There is a very interesting duality between the problems of realization 

of gaussian processes and that of passive electrical network synthesis. 

The basic synthesis with resistors, capacitors, inductors, transformers, 

and gyrators is dual to the weak realization problem with minimality 

referring to the minimality of the number of inductors plus the number 

of capacitors. The output induced realization problem turns out to be 

dual to the synthesis with a minimal number of resistors, and the time 

reversibility problem discussed in the previous paragraph turns out to 

be dual to the gyratorless synthesis problem. It would be nice to have 



a more fundamental understanding of this situation! 

We closE~ this section with an almost trivial theorem on white noise 

representability. 

THEOREM. Let (x,y) be a finite dimensional zero mean gaussian dynamical 

system. Then there exists a white noise representation of the form: 

dx = Axdt + Bdw; y = ex. 

T 
In fact, when E{x(0)x (0)} =: Q, then (A,Q,C) are precisely the parameter 
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matrices of i(x,y) as a realization of y and Bis a solution of the equation: 

AQ+ QAT = -BBTI . 

Moreover, if (x,y) is a minimal realization of y then 

{ (A,B) controllable}<=> {y is ergodic}. 

Note that the output induced realizations are precisely those which 

allow a white noise representation with a minimal dimensional driving 

Wiener process. 

5. CONCLUSION 

In this paper we have attempted to give an exposition of the problems 

of stochastic realization theory. We have been rather detailed on the 

abstract setting of the problem but somehwat scant on the realization of 

gaussian processes for which much more is available than we have covered 

here. Actually, we believe that the conceptual 'set theoretic level' defini­

tions for stochastic systems have been neglected and that putting these prob­

lems on a sound footing would provide an important pedagogical, theoretical, 

and practical contribution in stochastic system and control theory. 
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APPENDIX 

Let {n,A,P} be a probability space with n a set, A a a-algebra of 

subsets of n, and P: A+ [0,1] a probability measure on n. With a random 

variable we mean a measurable mapping f: n + F with {F,F} a measurable 

space, i.e., Fis a set and Fis a a-algebra on F. The measure µ(F') := 

P(f- 1 (F')) defined for all F' €Fis called the induced measure. Note that 

our random variables need not be real. If Fis a topological space and F 

is the smallest a-algebra containing all open sets, then {F,F} is called a 

Borel space. We will delete Fin the notation of a random variable whenever 

it is unimportant or clear what F exactly is. 

A random variable f on a Borel space {F,F} is said to be surjective if 

the complement of f(n) contains no open sets, i.e., if the closure of f(n) 

is F. Let f 1,f2 be random variables on {F1,F1} and {F2 ,F2} and h: F1 + F2 

a measurable map. Let µ1 and µ2 be the induced measures. In this context h 

is said to be injective if µ 1 ({a I 3b ~ a such that h(a) = h(b)}) = 0. 

Let f be a random variable on {F,F}. The sub a-algebra of A defined by 

f- 1 (F) will be called the sub a-algebra induced by f. We call two sub a­

alqebras A1 ,A2 of A independent if P(A1nA2) = P(A1)•P(A2) for all A1 € A1 

and A2 € A2• Two random variables are independent if their induced sub a­

algebras are independent. 

Let A1,A2 ,A3 be sub a-algebras of A. Then we will say that A1 and A3 
are conditionally independent given A2 if for all P-integrable real random 

variables f 1 ,f3 which are respectively A1 and A3-measurable, there holds 

The random variables f 1 and £3 are said to be conditionally independent 

given f 2 if the induced sub a-algebras are conditionally independent. We 

also say that A2 (resp. f 2) is split-ting. 

It is well-known how conditional expectation is defined and what one 

means with regular versions of conditional probabilities [30,p.139]. We will 

without explicit mention assume that these exist whenever needed, and denote 

by P(f2 jf1) the conditional measure of f 2 given f 1 , where f 1 and f 2 are two 

random variables. We will use a similar notation for conditional expectation. 
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Let T be a set and f(t) : Txn + F be a family of random variables. Then 
n the family of measures induced for all non F by the random variables 

(f(t1),f(t2), .••• ,f(tn)) are called the marginal probability measures off. 

If Tc lR then f is called a random process. The smallest a-algebra contain­

ing all the a-algebras induced by f(T) for T <tis called the a-algebra 

induced by the past at time t. Whenever we are conditioning or taking con­

ditional expectation with respect to the past this should be understood in 
- + this sense. We will denote the strict past (future) at t by ft (ft). 

A random process is said to be a white noise process if, for all t, ft and 
+ (f (t) ,ft) 
+ 

ft and ft 

are independent. It is said to be a Markov process if, for all t, 
n are conditionally independent given f(t). An JR -valued process 

is said to be gaussian if all its marginal measures are gaussian and a 

Gauss-Markov process if it is both Markov and gaussian. 

Finally, let {n1 ,A1,P1} and {n2 ,A2,P2} be two probability spaces and 

f 1,f2: n 1,n2 + F be two random variables defined on the same outcome space 

{F,F}. Then they are said to be equivalent if they induce the same measure 

on F. Similarly two random processes are said to be equivalent if they in­

duce the same marginal probability measures. 
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