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The weak finite stochastic realization problem is given a stationary finite 

valued stochastic process to show existence of and to classify all minimal finite 

stochastic systems whose output equals the given process in distribution. In this 

paper the characterization of minimal realizations is investigated and reduced 

to a factorization problem for positive matrices. The latter problem is discussed 

and solved in a rather special case. 

I . INTRODUCTION 

The purpose of this paper is to present a problem ·formulation of the weak 

finite stochastic realization problem and to indicate the major current question 

for. this problem: the positive factorization problem. 

The weak finite stochastic realization problem is given a finite valued 

stationary stochastic process to show existence of and to classify all minimal 

finite stochastic systems whose output equals the given process in distribution. 

In contrast with this, the strong finite stochastic realization problem is to 

answer the same question but under the condition that the output process equals 

the given process almost surely. 

The motivation of this problem is the area of control and prediction for 

systems with point process observations. Examples of practical problems in this 

area are the control of queues, the prediction of traffic intensities, the estima­

tion of software reliability, and the estimation of certain biomedical signals. 

These practical problems may be modelled by finite stochastic systems. The predic­

tion and control problems for this class of systems, under the assumption that 

the parameter values are known, have been considered. Practical application of 

these results demands the solution of the system identification problem and the 

stochastic realization problem for finite stochastic systems. 

A brief description of the content of the paper follows. A problem formula­

tion and a definition of a finite stochastic system is given in section 2. The 

characterization of minimal realizations, and the problem of positive factoriza­

tion is discussed in section 3. 
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2. PROBLEM FORMULATION 

Below a definition is given of a finite stochastic system and the weak finite 

stochastic realization problem is formulated. 

Let (n,F,P) be a complete probability space and T = Z be the time index set. 

The conditional independence relation for a triple of a-algebra's F1 ,F2 ,G is 

defined to satisfy 

E[x 1x21GJ = E[x 11GJE[x21 G] a.s. 

for all x 1 € L+(F 1), x2 E L+(F2), notation (F 1G,F2) € CI. 

Here L+(F 1) is the set of all positive F1 measurable random variables. The smallest 

a-algebra with respect to which a random variable x is measurable is denoted Fx, 

and that containing the a-algebra's G,H by G v H. 

2.1. DEFINITION. A finite stochastic system is a collection 

a = {n,F,P,T,Y,B ,X,B ,y,x} where {n,F,P} is a complete probability space, 
y x 

T = Z, Y,X are finite sets called respectively the output space and the 

state space, By,Bx are the a-algebra's on Y,X generated by all subsets of 

Y,X, y: I! x T..,. Y, x: Q x T -+ X are stochastic processes called respectively 

the output process and the state process, such that for all t E T 

where Fy+ 
t 

x­
a ( { y s, Vs ~ t}), Ft 

Notation: a E FSE. 

a({xs, Vs ~ t}). 

In a stochastic system one exhibits, besides the externally available output 

process, the underlying state process. The above defined system is called finite 

because Y,X are finite sets. The definition stated above has been first given in 

[7]. In the stochastic automata literature a finite stochastic system is called 

a stochastic automaton of Mealey-type [6]. 

2.2. PROBLEM. The weak finite stochastic realization problem (WFSRP) is given a 

stationary stochastic process on T = Z, with values in a finite set Y, and 

the class of finite stochastic systems, to solve the following subproblems: 

a. does there exist a finite stochastic system 

a= {n,F,P,T,Y,B ,X,B ,y,x} € FSE 
y x 

such that the output process y equals the given process in distribution?; 

if such a system exists, it is called a weak finite stochastic realization 

of the given process; 

b. classify all minimal weak finite stochastic realizations, where minimal 

refers to the number of elements in the state space; this involves: 
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I. the characterization of minimal realizations; 

2. the classification as such; 

3. the relation between minimal realizations; 

4. the construction of an algorithm that constructs all minimal realizations. 

The above problem has first been posed by D. Blackwell and L. Koopmans [2], 

although in a somewhat different form. During the 1960's several contributions to 

the problem have been given, see the book by A. Paz [6] for references. However, 

little progress has been made on the problem. 

The existence question of the weak finite stochastic realization problem has 

been solved. The solution is due to A. Heller [4]; see OJ for·an alternative proof. 

However, there is no algorithm that allows one to construct a stochastic realiza­

tion. 

Of the classification subproblem of 2.2 little is known. Let's consider the 

first question: what are necessary and sufficient conditions for a weak finite 

stochastic realization to be minimal? This question is unsolved and difficult. To 

discuss it in more detail attention is restricted to the static problem; this is 

done in section 3. 

3. THE POSITIVE FACTORIZATION PROBLEM 

A major questiqn in the weak finite stochastic realization problem is the 

characterization of minimal realizations. In this section a restricted case of 

this question is discussed, namely that in which there is only a past and a 

present and one is asked to construct a state. To be precise, one has the follow­

ing problem. 

3.1. PROBLEM. Assume given two finite sets y+,y-, and a frequency function 

Po: y+ x Y- + R+ (i.e. Iie:Y+,je:Y- Po(i,j) = I). 

a. Does there exist a collection cr {Y+,Y-,X,p} such that 

I. o = {Y+,Y-,X,p} e: FPE, where X is a finite set, 

p : y+ x X x y- + R+ is a frequency function, and with respect to 

the canonical variables one has (FY+,Fx,Fy-) e: CI; 

2. the restriction of p to y+ x y- equals p0 • 

Then o is called a probabilistic realization of {Y+,Y-,p0}. 

b. Classify all minimal probabilistic realizations of {Y+,Y-,p0 }. 

A probabilistic realization is called minimal if X has the smallest 

number of elements of all probabilistic realizations. 

The existence problem in 3.1 is trivial. The major question is the characteri­

zation of minimal realization and their classification. 
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An equivalent condition for a probabilistic realization is needed and will 

be given below. First some notation is introduced. The set of the integers is 

denoted by Z, and for n E Z+, Zn = {1,2,3, .•. ,n}. Furthennore, fork E Z+, ~ 
h . . R kxm h f .. denotes t e vector space with components in +• and R+ t e set o positive 

. F k Z . T (I I I) Rk matrices. or E +• with ek = • • . E +' 

sk {x E R! I e~ x = I} 

will be called the set of stochastic vectors. The set of stochastic matrices, 

column wise, is defined by 

skxm = {Q E R~xm I e~ Q = e!}. 

Given a finite set Y, #(Y) denotes the number of elements in Y. If y+,y- are 

finite sets, k = #(Y-), p: y+ x y- -+ R+ is a frequency function, then define the 

conditional probability matrix Q +I _ E Skxm by 
y y 

Q~i,y- = p(i,j)/p(j) 

if this is well defined, and zero otherwise. 

3.2. PROPOSITION. Assume given two finite sets y+,y- with #(Y+) = k, #(Y-) = m, 

and a frequency function Po: y+ x y- + R+. The following statements are then 

equivalent: 

a. there exists a probabilistic realization {Y+,Y-,X,p} E FPl: with #(X) =n; 
kxn ' nxm 

b. there exist n E Z+, Q1 ES , Q2 ES such that Qy+[y- = Q1 .Q2; 

c. there exist n e Z+, ~ E sn, and for all i E Zn there exist pi E sk, 

ri E sm, such that 

Proof. The elementary proof is omitted. D 

The characterization 3.2.b., of a factorization of a stochastic matrix into 

the product of two stochastic matrices, will be used in the sequel. The proof of 

3.2 shows that then Q1 = Qy+[x' Q2 = ~[y-· 
In the following attention will be restricted to the factorization of positive 

matrices. It is easily proven that if one has a factorization of a stochastic 

matrix in a product of two positive matrices, then one can modify the factorization 

into one with two stochastic matrices. 

. kxm 
3.3. DEFINITION. Given Q e R+ . 

a. A positive factorization of Q is a factorization of the form 

Q =A. B 

kxn Rnxm where A E R+ , B E + for some n E Z+; 
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b. A minimal positive factorization of Q is 

I. a positive factorization of Q, say 

Q = A. B . kxn nxm 
, with A E R+ , B c R · 

+ ' 

2. if Q =C. D, C E R~xnl,D E R~1xm, 

is any other positive factorization of Q, then n 1 ? n. 

One then calls n the positive rank of Q, notation n = pas - rank(Q). 

3.4. PROBLEM. The minimal positive factorization problem is, given Q E R~xm. 

a. to give necessary and sufficient conditions for a positive factorization 

of Q to be minimal; 

b. to classify all minimal positive factorizations of Q; 

c. to construct an algorithm that produces all minimal positive factoriza­

tions of Q. 

3.5. REMARKS. 

I. The minimal positive factorization problem is seen to be the restriction 

of the characterization of minimal weak finite stochastic realizations. This 

problem is therefore of interest. 

2. The problem is also of interest to the area of positive systems, see CS, 

Chap.6]. The realization problem for positive systems reduces in the static 

case to the minimal positive factorization problem. 

3. In the literature on linear algebra, see [I,3] for some references, the 

above defined problem is not mentioned. However it is known that the positive 

rank of a matrix differs in gene<al from the linear rank. In the literature 

the problem had been posed to give necessary and sufficient conditions for 

these two rank concepts to be the same. In our opinion this question is 

uninteresting, the interesting problem being the minimal positive factoriza­

tion problem. 

4. A geometric interpretation of a positive factorization can be given as 

follows. One has a positive factorization Q = A. B iff c1 is contained in 

c2 , where 

conv.(columns of Q) c Rk 
+ 

conv.(columns of A), 

and the right hand side denotes the convex hull generated by the denoted set. 

Further a positive factorization is minimal iff c2 is spanned by as few ver­

tices as possible. The minimal positive factorization problem may then be 

interpreted as the search for a polyhedral cone that contains c1, lies in R~ 
and has as few vertices as possible. 

kxk 
Let Q E R+ • Fork= 1,2, and 3 it is easily shown that the positive rank 

of Q equals the linear rank of Q. However this is not true for k = 4. 
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3.6. Example. Let 

Q 

Then lin- rank(Q) 3 < 4 = pos- rank(Q). 

That in example 3.6 the positive rank of Q is indeed four follows from the 

following result. 

3.7. PROPOSITION. Let Q E R:xk, and denote the columns of Q by qi' i E Zk. 

Assume that 

1. k ;;: 4; 
kxk 

2. {qi' i E Zk} lie on different faces of R+ . 

Then pos - rank(Q) = k. 

The proof is deferred to a future publication. The investigation of the 

minimal positive factorization problem is being continued. 

4. CONCLUDING REMARKS 

In this paper the weak finite stochastic realization has been posed. The 

current open problem is the characterization of minimal realizations. Through 

reduction it has been shown that this problem is equivalent to the minimal posi­

tive factorization problem. The latter problem is currently under investigation. 

At the meeting at which this paper has been presented the strong finite 

stochastic realization problem has also been discussed; see [3] for an exposition. 
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