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Abstract Control and coordination are important aspects of the development of
complex machines due to an ever increasing demand for better functionality, qual-
ity, and performance. In WP6 of the C4C project we developed a synthesis-centric
systems engineering framework suitable for supervisory coordination of complex
systems. The framework was employed to synthesize and validate a supervisory co-
ordinator for maintenance procedures for a prototype of a high-tech Océ printer,
showing proof of concept and viability of the proposed framework. The supervisor
eliminates undesired behavior that could occur as a result of undesired interaction
of the distributed printer components. In this chapter, we discuss the model-based
systems engineering framework that was employed for synthesis of the supervisor
and we illustrate the modeling process.

49.1 Background and Motivation

In the last few decades, control software development has taken a more central role
due to the ever increasing complexity of the machines, demands for higher quality
and performance, and improved safety and ease of use [5]. Traditionally, the control
software requirements are formulated informally in some sort of specification doc-
uments by domain engineers, to be translated into control software by software en-
gineers. This is a time-consuming and an error prone process, since control require-
ments are often ambiguous and change frequently, so the produced software needs
to be validated against the machine. If validation fails, the code must be rewritten
leading to a define-validate-redefine loop.
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This issue in control software design gave rise to supervisory control the-
ory [11, 2, 3, 6], where models of high-level supervisory controllers, referred to as
supervisors, are synthesized automatically based upon a formal model of the uncon-
trolled system, known as plant, and a model of the control requirements. Supervi-
sory controllers observe the discrete-event behavior of the system and make control
decisions based on the observed information. The supervisory controller synthesis
problem is to achieve the greatest possible allowed behavior, which is specified by
the control requirements, based on a given observable behavior.

By applying automated control software generation based upon formal behav-
ioral models, we aim to:

1. Shift the focus of software engineers from writing and debugging code to mod-
eling the plant and the control requirements.

2. Increase the use of models. Software engineers need not think in terms of code,
since it is generated automatically. Instead, they make the formal models in terms
of behavior, thus improving their communication with the domain engineers and
other involved parties.

3. Shorten the design loop. Adjustments in the control specifications result in model
changes, followed by automated synthesis of control software, which is likely to
be less time consuming than directly adapting control code.

4. Use the formal behavioral models for simulation. We can validate the supervi-
sor before expensive prototypes are built increasing confidence in the design. It
also provides opportunity for verification, performance analysis, and reliability
analysis.

5. Reuse of models and improved evolvability of the process. When developing
a new product, models can be reused more easily than specific code since small
adjustments are incorporated more easily. Furthermore, the changes in the control
requirements are more easily managed as we directly synthesize provably correct
models.

Reflecting on the points above we aim to: increase product quality by dealing
with increased machine complexity more easily; reduce costs by validating con-
trollers before expensive prototypes are in place; reduce time-to-market by improv-
ing communication between the engineers and shortening the design loop.

49.2 Model-Based Systems Engineering Framework

To structure the process of supervisory control synthesis we employ the framework
depicted in Fig. 49.1 [12, 9], which is a refinement and extension of the framework
defined in [1]. Domain engineers define the desired overall system specification
(Specification Controlled System in Fig. 49.1), that is later elaborated into a design
document (Design Controlled System) by domain and software engineers together.
The design defines the architecture of the system, and its composition into subsys-
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Fig. 49.1 Model-based systems engineering framework for supervisory control synthesis.

tems. In this case, we consider as subsystems the controller and uncontrolled system,
the latter also referred to as ‘plant’.

The subsystems are likewise (informally) specified, resulting in the documents
Specification Control Requirements and Specification Plant, in Fig. 49.1. The su-
pervisory control synthesis framework then facilitates formal specification of con-
trol requirements (Model Control Requirements), instead of specification of a con-
troller. Supervisory control synthesis also requires a discrete-event model of the
uncontrolled system (plant).

Plants typically contain hybrid (continuous and discrete-event) behavior suitable
for simulation. For synthesis purposes [11, 2], continuous behavior is abstracted
from, i.e., a pure high-level discrete-event model is derived. Alternatively, a discrete-
event model can be made and subsequently refined to a hybrid model.

The synthesis algorithm generates a minimally-restrictive supervisor, based on
the models of the control requirements and plant. Such a supervisor, by construc-
tion satisfies the control requirements and is nonblocking, which means that from
any reachable state, always a marked state can be reached. Many different kinds of
supervisory control synthesis algorithms exist, see for example [11, 2, 7, 13].

The model of the generated supervisor can then be combined with the (hybrid)
model of the plant, synchronizing on events and location names, for early, model-
based validation of the controlled system. Such a coupling is possible as the supervi-
sor only considers the discrete-event behavior of the system, which is orthogonal to
the continuous dynamics. This validation should ensure that the observed controlled
system behavior satisfies the system behavior and control requirements as specified
in the informal documents of Fig. 49.1. If validation fails, remodeling the control
requirements or even complete revision proves necessary.

As a last step, the control software is generated automatically from the validated
models. Our framework also supports other options for early integration, such as
hardware-in-the-loop-simulation, by coupling of the realization of the supervisor
with the hybrid real-time simulation model of the plant.

The tooling used for supervisory control synthesis was based on the first version
of the Compositional Interchange Format, CIF 1 [15]. For simulation-based valida-
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tion, CIF 2 [10] was used. CIF is an expressive formalism, with a formal semantics,
based on hybrid automata. CIF interfaces with many different tools by means of
model transformations. Recently, the formal semantics and modeling concepts have
been considerably simplified, resulting in CIF 3 [14]. The CIF toolset is now im-
plemented in Eclipse [4], using Java as implementation language, and SVG (Scal-
able Vector Graphics) [16] for interactive, simulation based visualization. Recent
improvements to the CIF 3 development environment are an Eclipse editor with
integrated real-time background parsing and type checking. Furthermore, the CIF
3 simulator has been redesigned for fast simulation by employing run-time code
generation.

49.3 Case Study: High-Tech Printers

We illustrate the modeling process on a case study involving coordination of main-
tenance procedures of a printing process of a high-end Océ printer of [8]. Due to
confidentiality concerns, we can only present an obfuscated part of the case study.

We abstractly depict a printing process function in Fig. 49.2, where the control
architecture of the printer is given to the left. We coordinate the function responsible
for the maintenance of the printing process. The printer executes print jobs in run
mode of operation, whereas several maintenance operations to preserve print qual-
ity, have to be carried out in standby mode. Maintenance operations are scheduled
based on the amount of pages printed since the last maintenance. Soft deadlines de-
note that a maintenance can be scheduled and hard deadlines denote that the main-
tenance must be scheduled. Maintenance procedures with expired soft deadlines can
be postponed if there is an ongoing print job, but hard deadlines must be respected.

A printing process function comprising one maintenance operation is depicted in
Fig. 49.2. The supervisory control problem is to synthesize a model of the Status
Procedure, which is responsible for coordinating the other procedures given input
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Fig. 7. Plant model of the Printing Process Function.

considerable gain in the number and clarity of the spec-
ified requirements, e.g., for the use case 23 generalized
requirements produced more than 500 standard require-
ments. The increase is mainly due to the elimination
of the negation before state predicates by ‘semantically’
complementing it as residing in the remaining states of
the same component, see Theorem 3. In order to translate
the generalized control requirements to the standard ones,
one needs to transform the requirements first to disjunctive
normal form. The elimination of negated predicates in
this form introduces the extra requirements proportional
to the number of states in the corresponding automaton.
We note that if one would directly specify the standard
control requirements, then this might optimize the number
of requirements. However, in that case, the emphasis would
not be in the clear and intuitive modeling, but in fitting
the control requirements in the specific form.

We employed the generalized state-based control require-
ments to conveniently specify coordination rules. This
comes as no surprise as supervisory control sometimes
requires coordination when, e.g., using modular supervi-
sion, see Ramadge and Wonham (1986). The coordination
issues of Fig. 4 were resolved by correctly switching the
power modes and scheduling execution of the maintenance
operations. Finally, we extended the toolchain of supervi-
sory synthesis framework of Fig. 3 to support the proposed
generalized model of the requirements.

Additionally, we can specify forms of state-based expres-
sions, which do not fit the above formats. One such class
is gMS ⇒→E, where E ⊆ E . One interpretation of these
expressions is that the events from the set E must be
enabled if the supervised plant resides in the combination
of states identified by gMS . As a control requirement this
is obsolete, as all events that are not explicitly disabled
are allowed. Alternatively, one can see the expression as
a liveness property for verification, requiring that the su-
pervisor does not restrict the plant too much, i.e., some
desired functionality is present in the supervised plant.
We aim to look further in combining supervisory control
synthesis with verification using the above expressions as
‘verification’ requirements.

Another interesting form is →E ⇒ 6→F for E,F ⊆ E .
It states that in order the events from the set E to be
enabled, all events from the set F must be disabled. This,
actually, amounts to prioritizing the events of the set F
over the events of the set E, which is useful as a control
requirements itself. We detected these requirements as

→E ⇒ g and g ⇒ 6→F , for g a gMS expression, which
implies→E⇒6→F . The requirements can also be employed
for implementation purposes, e.g., to prioritize execution
of multiple enabled controllable events.
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Fig. 49.3 Printing process function and the corresponding plant

from the controllers. The plant that models the printing process function is given in
Fig. 49.3. For modeling, we employ state-labeled finite automata. The state labels
are employed to keep track of the state of the plant, and can be referenced in the
control requirements. We employ two types of state-based control requirements [9]:
φ and e−→ =⇒ φ , for some some event e, and some Boolean formula φ over the
state labels, using the logical operators ∧, ∨, ¬, and =⇒ . The first requirement
type specifies an invariant φ that must hold for every state of the supervised system,
whereas the second type specifies necessary conditions, given by φ , for enabling
event e.

Uncontrollable events are underscored. Initial states have incoming arrows,
whereas marked states, which specify states in which the systems is considered
to have successfully completed some task [2], coincide with the initial states, as
we are dealing with a reactive system. The plant is formed by the synchronization
of the automata in Fig. 49.3. Current Power Mode sets the power mode to run or
standby, using Stb2Run or Run2Stb, respectively, and sends back feedback by em-
ploying InRun and InStb, respectively. Maintenance Operation either carries out a
maintenance operation, started by OperStart or it is idle. The confirmation is sent
back by the event OperFinished, which synchronizes with Maintenance Scheduling
and Page Counter. Page Counter announces when soft or hard deadlines are reached
using ToSoftDln and ToHardDln, respectively. The page counter is reset, triggered
by the synchronization on OperFinished, each time maintenance is finished. The
controller Target Power Mode sends signals regarding incoming print jobs to Sta-
tus Procedure. The event TargetRun should set the printing process to run mode for
printing. When the print job is finished, the event TargetStandby is activated. Main-
tenance Scheduling receives a request for maintenance with respect to expiration of
Page Counter from Status Procedure, by the event SchedOper, and forwards it to the
manager. The manager confirms the scheduling with the other functions and sends a
response back to the Status Procedure, using ExecOperNow. It also receives feed-
back from Maintenance Operation that the maintenance is finished in order to reset
the scheduling, again triggered by OperFinished.

The coordination is performed according to the following requirements: (1)
Maintenance operations can be performed only when Printing Process Function is
in standby; (2) Maintenance operations can be scheduled only if a soft deadline has
been reached and there are no print jobs in progress, or a hard deadline has passed;
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(3) Only scheduled maintenance operations can be started; (4) The power mode
of the printing process must follow the power mode dictated by the managers, un-
less overridden by a pending maintenance operation. For a detailed account of the
model-based systems engineering process and specification and formalization of the
control requirements, we refer to [8].

(1) To model this requirement, we consider the states from Current Power Mode
and Maintenance Operation and we require that it must always hold
(R1) OperInProg⇒ Standby.

(2) The states labeled by SoftDeadline and HardDeadline indicate when soft and
hard deadline is reached, respectively. State TargetRun of Target Power Mode states
that there is a print job in progress. The event SchedOper is responsible for schedul-
ing maintenance procedures. We specify the requirement as

(R2)
SchedOper−→ ⇒ (SoftDeadline∧¬TargetRun)∨HardDeadline.

(3) The maintenance operation can be started when the maintenance scheduling

is completed, which is modeled as (R3)
OperStart−→ ⇒ ExecuteNow.

(4) The last condition is modeled by two separate requirements for switching
from Run to Standby mode, and vice versa. We can change from run to standby
mode if this is required by the manager, i.e., identified by state TargetRun, and there
is no need to start a maintenance operation, identified by ¬ExecuteNow. The transi-
tions labeled by Stb2Run are enabled by (R4) Stb2Run−→ ⇒ TargetRun∧¬ExecuteNow.
In the other direction, we have (R5) Run2Stb−→ ⇒ TargetStandby∨ExecuteNow.

Finally, we synthesize a supervisor by employing the plant of Fig. 49.2 and the
control requirements (R1) – (R5).

49.4 Research Contributions

The study of the informal specification documents revealed that engineers use a
state-based approach, i.e., they give relations when a certain activity may be per-
formed with respect to the state of the machine. Unfortunately, the corresponding
synthesis tool [6] requires as input the exact opposite, i.e., the modeler has to specify
which behavior is undesired, in the form of a negation of a conjunction of automa-
ton locations. The latter leads to less intuitive specifications and results in a large
number of control requirements.

To improve the modeling process and support greater modeling convenience, we
generalize the control requirements to enable unrestricted use of propositional logic
that we found in the specification documents. Thereafter, we automatically trans-
late the generalized control requirements to an input suitable for the synthesis tool,
which is a structurally restricted conjunctive normal form of the control require-
ments. This enabled us to specify the complete set of coordination rules for the
printing process. For a detailed discussion of this transformation, including a for-
mal definition, proof of correctness, and details on the implementation, we refer the
interested reader to [9]. As an illustration of the effectiveness of our method, a part
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of the case study modeled by 23 generalized control requirements, resulted in 500+
requirements in the original form. Admittedly, if one were to model the system in
the original setting, a more optimal approach might have been possible, but then the
modeling process would be to cleverly specify coordination rules, in an unintuitive
form, which is both a time-consuming and an error-prone modeling process.

The issues of Fig. 49.2 were resolved by the supervisory controller, validated
by means of simulation, and tested via a prototype implementation of the control
software. Additionally, we could specify forms of state-based expressions which
do not fit the supervisory control format: instead of state-event exclusion expres-
sions of the form e−→ =⇒ φ , we also used state-event inclusion expressions of
the form φ =⇒ e−→. Since e−→ =⇒ φ is equivalent to ¬φ =⇒ eY−→, the state-
event exclusion predicate defines a state ¬φ where the event e is disabled, whereas
the state-event inclusion defines a state where the event is enabled. The state-event
inclusion predicates can be interpreted as verification properties of plant function-
alities, which enables us to combine synthesis and verification. Ongoing research
investigates the use of so-called reactive supervisor synthesis, that aims to verify
that desired behavior will be present in the supervised system during the synthesis
procedure. Namely, supervisor synthesis caters only for safety properties, whereas
we aim to guarantee progress properties of the supervised system, which ensure that
the desired functionality is preserved.

We find that employing formal models is a key element for successful applica-
tion of a synthesis-centric systems engineering process. Model-based specifications
are consistent and less ambiguous than informal specification documents, forcing
the engineers to clarify all aspects of the system. The proposed framework most im-
portantly affects the control software development process, switching the focus from
interpreting requirements, coding, and testing, to analyzing requirements, modeling,
and validating the behavior of the system.

49.5 Further Research

Despite being able to show a proof of concept and to generate control software for
a prototype of a future high-tech printer, the proposed approach needs further im-
provement, and we foresee the need for advancement in several important aspects.
Techniques are needed that can directly synthesize supervisors for plants incorpo-
rating data, somewhat mitigating the state explosion problem. The control require-
ments should be reinforced with specific efficiently-computable liveness or progress
properties, related to the aforementioned reactive supervisor synthesis. Finally, an
investigation is needed into suitable software and hardware architectures for auto-
matic control software synthesis (as existing implementations vary per case), fitting
the synthesized software in existing environments tailored for manual control soft-
ware development. By working on and answering the above challenges, we hope
to provide valuable model-based development techniques and tools for the software
engineers of the future.
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