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Abstract
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1. Introduction
Let X be a Poisson point process on the Borel measurable space (Rd,Bd), d ∈ N,

with unknown locally integrable intensity function

λ ∈ L1
loc(R

d), (1.1)

that is, λ is an integrable function on every compact subset of Rd. For mathematical
foundations of point processes theory we refer, for example, to Daley and Vere-Jones
(1972, 1988), Ripley (1976), Kallenberg (1983), Kingman (1993), Reiss (1993).

Motivated by Helmers (1995), we assume throughout that only one realization
of the process X is available. Furthermore, we assume that X is observed only in
a bounded Borel set (called window) W ⊂ Rd that depends on a parameter N and
expands when N →∞. We also assume throughout that∫

Rd

λ(x)dx (= EX(Rd)) =∞ (1.2)

(cf., for example, subsection 6.3 on pp. 136-137 of Rathbun and Cressie (1994) for
a discussion concerning the necessity of assumption (1.2) in this context).

Using the Maximum Likelihood Estimation (MLE) method, Krickeberg (1982),
Kutoyants (1984), Rathbun and Cressie (1994), among others, made profound con-
tributions in estimating the intensity function λ under the presence of only one
realization of X.

In this paper we consider an alternative route for constructing estimators for λ
under the presence of only one realization of X. To illustrate the main idea of our
investigation, as well as to justify it, we use the following example.

Let X0 be a Poisson process on [0,∞) with the intensity function

λ0(s) := exp{α + βs + γs2 + K1 sin(ω0s) + K2 cos(ω0s)}, s ≥ 0,

where α, β, γ, K1, K2 are unknown parameters, and ω0 is a known ‘frequency’.
This model is of importance in diverse fields of applied mathematics such as, for
example, geophysics, optics, reliability, biostatistics, meteorology (cf., for example,
Lewis (1970, 1972), Cox (1972), Cox and Lewis (1978), Cox and Isham (1980), Vere-
Jones and Ozaki (1982), Diggle (1983), Karr (1986), Ogata and Katsura (1986),
Cressie (1991), Ripley (1991), Zheng and Vere-Jones (1994), Vere-Jones (1995), as
well as references therein).

In particular, Lewis (1972) notes on pp. 42-43 in Section 5.4 therein that re-
searchers encounters mathematical difficulties when constructing the MLE estima-
tor for λ0(s). Indeed, as far as we are aware of, there are no explicit mathematical
expressions for the MLE-based estimators of the parameters α, β, γ, K1 and K2,
whence for the estimator of λ0(s) either. We recognize, of course, that in practi-
cal situations this fact may not be a real problem since, using the MLE method,
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the parameters can nevertheless be estimated numerically. However, when investi-
gating more complex intensity functions (cf., for example, Cox (1972)), it becomes
difficult to obtain even numerical estimators because of, for example, stability prob-
lems in solutions of the MLE-based algebraic equations. When intensity functions
are defined on Rd for d ≥ 2, then the MLE method becomes even more difficult to
implement (cf., for example, Helmers (1995)). On the other hand, we also note that
when constructing confidence intervals for λ0(s), or even confidence bands for λ0

over a certain region of Rd, numerical estimators may not be satisfactory from the
probabilistic point of view, and thus explicit empirical estimators may be required
in such situations.

When facing all these difficulties with the MLE method, one may naturally ask
whether it is really necessary to estimate unknown parameters (say, α, β, γ, K1 and
K2 of λ0(s)) when the original goal is to estimate the intensity function (say, λ0(s))
and not the parameters themselves. (The latter problem, of course, implies the first
one but is definitely much more difficult to tackle.) This reasoning has motivated
us to have a closer look at the following idea:

Let us choose a countable number of distinct points s1, . . . , sN , . . . ∈ Rd such
that

s1, . . . , sN ∈ the interior of the window W, (1.3)

and construct a sequence of functions fN : [0,∞)N → [0,∞) such that

fN (λ(s1), . . . , λ(sN))→ λ(s), N →∞. (1.4)

(We note that s1, . . . , sN , . . . ∈ Rd are chosen points and not points of the point
process X, and that the functions fN can depend on points s, s1, . . . , sN .) Fur-
thermore, let B1(0) ⊂ Rd denote the unit ball centred at 0, and let

An := (hB1(0) + sn) ∩W, (1.5)

n = 1, . . . , N, where h > 0 is a certain parameter that may depend on n and/or N
and converges to 0 when n and/or N converges to ∞. With these notations, and
with ‘≈’ standing for ‘loosely speaking, asymptotically behaves like’, we get

λ(sn) ≈ 1
V ol(An)

∫
An

λ(x)dx =
1

V ol(An)
EX(An) ≈ 1

V ol(An)
X(An), (1.6)

when h > 0 converges to 0. Denote

ξn(h) :=
1

V ol(An)
X(An).

Consequently, replacing λ(sn) by ξn(h) in (1.4), we get the empirical estimator

λ̂(s) := fN (ξ1(h1), . . . , ξN(hN )) (1.7)
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that converges (in a certain sense and under certain assumptions) to λ(s) when
h → 0 and N → ∞. In this paper, however, for the sake of simplicity we restrict
ourselves to the convergence in the mean of order 2 only, i.e. we shall aim at
assumptions under which the statement

E{λ̂(s)− λ(s)}2 → 0 (1.8)

holds true for any fixed s, and when h→ 0 and N →∞.
The intuition behind the idea given in (1.3)–(1.7) is fairly clear: Since the point

process X always places only a finite number of points into any compact subset
of Rd, due to (1.1), in order to obtain a consistent estimator of λ(s) one must
accumulate the necessary empirical information about λ(s) from different places of
the window W where X is observed. (This implies, in particular, that the window
W should necessarily depend on N , and V ol(W ) → ∞ when N → ∞; on p. 480
of Cressie (1991) such a framework is called ‘increasing domain asymptotics’.) At
this point one naturally faces the necessity of making assumptions either on the
point process X itself (like stationarity, ergodicity, etc.) or on the corresponding
intensity function λ (like some knowledge of its shape, that is very clearly reflected
in parametric models like that of λ0(s) given above). Due to the practical problem
we originally faced (cf. Helmers (1995)), we have found it more natural to start our
work with assumptions on the intensity function λ, rather than making structural
assumptions (like stationarity, ergodicity, etc.) on the point process X. And this
our inclination is, of course, reflected in the idea (1.3)–(1.7) described above.

2. Algorithm
When investigating a number of Poisson intensity functions using the idea de-

scribed in (1.3)-(1.7), we singled out several steps that were common in each exam-
ple, and we shall now write them down. (An application of these steps in the case
of Poisson process X0 will be discussed in detail in next Section 3.)

Step 2.1. Let N, κ ∈ N, and let us construct:
i) points s1, s2, . . . ∈ Rd;
ii) bounded Borel sets W0 := W0,N ⊂ Rd such that W0 expands when N ↑ ∞;
iii) a function L : (0,∞)κ × (Rd)κ+1 → [0,∞);
iv) subsequences (kj(n), n ∈ N), j = 1, . . . , κ, of the sequence of natural num-

bers,
such that

skj(n) ∈W0 (2.1)

for all n = 1, . . . , N and j = 1, . . . , κ, and the following statement

1
N

N∑
n=1

L(λ(sk1(n)), . . . , λ(skκ(n)), sk1(n), . . . , skκ(n), s)→ λ(s) (2.2)
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holds true when N →∞.

In order to construct a function L required in (2.2), one naturally has to have
some information about the shape of intensity function λ. Parametric models
(like that described by λ0) are particularly convenient in such instances, but non-
parametric intensity functions can also be successfully treated. For example, if we
knew that a (non-parametric or parametric) intensity function λ were, say, purely
cyclic with fixed frequency, then, having appropriately chosen points sn, we would
have λ(sn) = λ(s) and thus N−1

∑N
n=1 λ(sn) = λ(s). This immediately shows, for

example, that L(x) = x is a good candidate for L required in (2.2). However, we
have to note immediately that even a slightest discrepancy from the purely cyclic
case may result in far less trivial Step 2.1.

Step 2.2. Let us construct κ sequences h1(n) ↓ 0, ..., hκ(n) ↓ 0, when n → ∞, of
positive real numbers such that the statement

1
N

N∑
n=1

{L
(
Eξk1(n)(h1(n)), . . . ,Eξkκ(n)(hκ(n)), sk1(n), . . . , skκ(n), s

)
− L

(
λ(sk1(n)), . . . , λ(skκ(n)), sk1(n), . . . , skκ(n), s

)
} → 0 (2.3)

holds true when N →∞.

In order to give some immediate insight into Step 2.2, we note that if sp is a
Lebesgue point of the (intensity) function λ, then

Eξp(h)→ λ(sp) (2.4)

when h ↓ 0. (Let us also note in passing that, since λ ∈ L1
loc(R

d) by assumption,
the set of all Lebesgue points of λ is dense in Rd.) In view of (2.4), statement (2.3)
is a kind of continuity assumption on L, though continuity (in the usual sense) of L
does not in general imply (2.3). Nevertheless, when investigating different examples
we have not found Step 2.2 to be difficult.

Step 2.3. Let us construct a function L∗ : [0,∞)κ × (Rd)κ+1 → [0,∞) such that
the statement

1
N

N∑
n=1

{EL∗
(
ξk1(n)(h1(n)), . . . , ξkκ(n)(hκ(n)), sk1(n), . . . , skκ(n), s

)
− L

(
Eξk1(n)(h1(n)), . . . ,Eξkκ(n)(hκ(n)), sk1(n), . . . , skκ(n), s

)
} → 0 (2.5)

holds true when N →∞.

If we deleted the asterisk ∗ from (2.5), then, loosely speaking, statement (2.5)
would mean the commutative relation EL = LE. In general, however, we cannot
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use L instead of L∗ because of the fact that the random variable ξkj(n)(hj(n)) can
take value zero, whereas the function L may not be defined on the set [0,∞)κ ×
(Rd)κ+1 (cf. part iii) of Step 2.1). We believe, however, that in most cases it will
suffice to take L∗ := L+, where

L+(x1, . . . , xκ, y1, . . . , yκ, z)

:=
{

L(x1, . . . , xκ, y1, . . . , yκ, z) if x1 > 0, . . . , xκ > 0,

0, otherwise.

With the function L∗ introduced in Step 2.3 we are now able to define the
(general) estimator λ̂(s) of λ(s) as follows:

λ̂(s) :=
1
N

N∑
n=1

L∗
(
ξk1(n)(h1(n)), . . . , ξkκ(n)(hκ(n)), sk1(n), . . . , skκ(n), s

)
. (2.6)

In view of Steps 2.1-2.3, it is trivial to see that if the Poisson point process X is
observed in the window

W := {x ∈ Rd : ‖W0 − x‖ ≤ h1(N) ∨ . . . ∨ hκ(N)}, (2.7)

and
V arλ̂(s)→ 0, (2.8)

then the statement
E{λ̂(s)− λ(s)}2 → 0 (2.9)

holds true when N →∞. We have thus arrived at a desired result (cf. (1.3)–(1.8)).
Let us note in passing that when investigating optimality questions related to

the estimator λ̂(s) of (2.6), one may find it necessary to use the following more
general considerations

λ(sn) ≈
{∫

W

K(
x− sn

h
)dx

}−1 ∫
W

K(
x− sn

h
)λ(x)dx

=
{∫

W

K(
x− sn

h
)dx

}−1 ∫
W

K(
x− sn

h
)(EX)(dx)

≈
{∫

W

K(
x− sn

h
)dx

}−1 ∫
W

K(
x− sn

h
)X(dx)

=: ρn(h)

instead of those given in (1.6), where K : Rd → R is a certain function. It is easy to
see that when K is the indicator of the unit ball B1(0), then ρn(h) = ξn(h). Without
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going into a deeper and more sophisticated discussion related to this generalization,
at this stage of investigation we only refer to the monographs of Devroye and
Györfi (1985) and Rosenblatt (1991), as well as to references therein, for necessary
probabilistic and statistical details concerning the subject.

The verification of assumption (2.8) can sometimes be rather involved. However,
if the following assumption is satisfied, then the task becomes easier.

Assumption 2.1. Let the sets {kj(n) : n ∈ N}, j = 1, . . . , κ, be pairwise disjoint,
and let

‖skj(m) − sk`(n)‖ > hj(m) + h`(n)

for all j, ` ∈ {1, . . . , κ} and m, n ∈ {1, . . . , N} such that kj(m) 6= k`(n).

Indeed, under Assumption 2.1 we get that (2.8) holds true provided that

1
N2

N∑
n=1

V ar L∗
(
ξk1(n)(h1(n)), . . . , ξkκ(n)(hκ(n)), sk1(n), . . . , skκ(n), s

)
→ 0, (2.10)

when N → ∞. Statement (2.10) is usually easy to prove. For example, this goal
can essentially be achieved following the lines of the proof of statement (2.2).

As an illustration of the algorithm described above, we now formulate following
Proposition 2.1 concerning the Poisson process X0.

Proposition 2.1. Let X0 be Poisson point process on [0,∞) with the intensity
function λ0, where ω0 > 0 is a fixed and apriori known frequency, and α, β, γ, K1

and K2 are unknown parameters from an apriori fixed compact interval of R. Fur-
thermore, let

sn := s + 2πn/ω0, (2.11)

and 
k1(n) := 16n4 − 8,

k2(n) := 4n2 − 2,

k3(n) := 8n3 − 4,

k4(n) := 2n− 1;

(2.12)


h1(n) := n−5,

h2(n) := n−3,

h3(n) := n−4,

h4(n) := n−2.

(2.13)

Assume that the process X is observed in the window

W := s + [−h1(N)∨ . . .∨h4(N), 2π(16N4− 8)/ω0 + h1(N)∨ . . .∨h4(N)]. (2.14)
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If the estimator λ̂0(s) is λ̂(s) of (2.6) with κ = 4, L∗ = L+, and

L(x1, . . . , x4, y1, . . . , y4, z) := {x−y2
2/y2

1
1 x2}(z−y4)/y2x

(z2−y2
4)/y2

3
3 x4, (2.15)

then the statement
E{λ̂0(s)− λ0(s)}2 → 0 (2.16)

holds true when N →∞.
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3. Proof of Proposition 2.1
3.0. On the intuition behind the construction of L in (2.15) (cf. also Section 4
below). A possible way towards (2.15) starts with the identity

Λm := exp{−β(sm − s)− γ(s2
m − s2)}λ0(sm) = λ0(s). (3.1)

Since the parameters β and γ are unknown, the right-hand side of (3.1) cannot be
considered as a definition of the function L required in Step 2.1, though it satisfies
the relation

1
N

N∑
m=1

Λm = λ0(s).

Therefore, we shall now ‘eliminate’ the unknown parameters β and γ from the
expression

exp{−β(sm − s)− γ(s2
m − s2)}

in (3.1), and this will ultimately lead us to a desired function L. Let us first
‘eliminate’ γ. We have that

λ0(sn)s2/s2
n = exp {

[
α + βsn + K1 sin(ω0sn) + K2 cos(ω0sn)]s2/s2

n} exp{γs2}
→ exp{γs2}, n→∞. (3.2)

If we now use (3.2) in (3.1), we shall get the following approximation ‘without’ γ:

exp{−β(sm − s)}λ0(sn)(s2−s2
m)/s2

nλ0(sm) ≈ λ0(s) (3.3)

when n is large. Let us now ‘eliminate’ β from (3.3). Before doing it we note that
if γ in the definition of λ0(s) were equal to 0, then the parameter β would be easily
eliminated as follows:

λ0(s`)(s−sm)/s` = exp {[α + γ|γ=0s
2
` + K1 sin(ω0s`) + K2 cos(ω0s`)]

s− sm

s`
}

→ exp{−β(sm − s)}, `→∞. (3.4)

However, we do not know whether γ in λ0 is zero or not. Therefore, the elimination
of β becomes more involved. We do it as follows: Using the idea given in (3.2), we
first eliminate γ from λ0(s). Then, having no explicit γ like in (3.3) (which actually
amounts to the case γ = 0), we use the idea given in (3.4) to eliminate the unknown
β. In more detail, after these two steps we get

{λ0(sk)−s2
`/s2

kλ0(s`)}(s−sm)/s` ≈ exp{−β(sm − s)} (3.5)
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when both k and ` are large. Now, using (3.5) in (3.3), we get the approximation

{λ0(sk)−s2
`/s2

kλ0(s`)}(s−sm)/s`λ0(sn)(s2−s2
m)/s2

nλ0(sm) ≈ λ0(s) (3.6)

when k, ` and n are large. We may now consider the right-hand side of (3.6) as a
definition of the function L needed in (2.2) of Step 2.1. However, we have not yet
found out how to choose the subsequences

k1(n) := k,

k2(n) := `,

k3(n) := n,

k4(n) := m

in order to have statement (2.2) satisfied. This will be done in our next subsection
3.1 below. �

3.1. Verification of statement (2.2). Let

Ln := L
(
λ(sk1(n)), . . . , λ(sk4(n)), sk1(n), . . . , sk4(n), s

)
(3.7)

for notational simplicity. Then the desired statement (2.2) follows from

1
N

N∑
n=1

(exp{log Ln − log λ(s)} − 1)→ 0,

which, in turn, is a consequence of the statement

1
N

N∑
n=1

|log Ln − log λ(s)| exp{| log Ln − log λ(s)|} → 0, (3.8)

when N → ∞. One can easily check that, with the notations z := sω0/(2π),
c0 := 2π/ω0, and C(s) := K1 sin(ω0s) + K2 cos(ω0s) ≡ the cyclic part of the
intensity function λ0(s), we have the following representation:

log Ln =− k4(n)
z + k2(n)

{α + c0β(z + k2(n)) + c2
0γ(z + k2(n))2 + C(s)}

+
k4(n)z + k4(n)k2(n)

z + k1(n)
{α + c0β(z + k1(n)) + c2

0γ(z + k1(n))2 + C(s)}

− k2
4(n)

(z + k3(n))2
{α + c0β(z + k3(n)) + c2

0γ(z + k3(n))2 + C(s)}

− 2zk4(n)
(z + k3(n))2

{α + c0β(z + k3(n)) + c2
0γ(z + k3(n))2 + C(s)}

+ log λ(s) + c0βk4(n) + 2c2
0γzk4(n) + c2

0γk2
4(n). (3.9)
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Under the assumptions of Proposition 2.1 on the parameters, representation (3.9)
immediately implies the following estimate of the distance between log Ln and
log λ(s):

|log Ln − log λ0(s)| ≤ cε(n) := c max
{

k4(n)
k2(n)

,
k4(n)k2(n)

k1(n)
,
k2

4(n)
k3(n)

}
, (3.10)

where c := c(ω0, α, β, γ, K1, K2) is a constant. We have chosen the sequences
k1(n), . . . , k4(n) in such a way that ε(n) ≤ 1 holds true. The latter fact implies, in
particular, that (3.8) follows from the statement

1
N

N∑
n=1

ε(n)→ 0, N →∞, (3.11)

the validity of which will soon be assured by a special choice of the sequences
k1(n), . . . , k4(n). namely, let, for a moment, the sequence k4(n) be arbitrary,
k2(n) ≈ k4(n)A(n) with some A(n) ↑ ∞ when n→∞, k1(n) ≈ k4(n)k2(n)A(n) ≈
(k4(n)A(n))2, and k3(n) ≈ k2

4(n)A(n). Taking now, for example, k4(n) ≈ n, we get
the following table: 

k1(n) ≈ n2A(n)2,

k2(n) ≈ nA(n),
k3(n) ≈ n2A(n),
k4(n) ≈ n.

(3.12)

We now see that statement (3.11) holds true provided that

1
N

N∑
n=1

1
A(n)

→ 0 (3.13)

when N → ∞. Taking A(n) ≈ n, we see that statement (3.13) holds true, and so
does (3.11). Tables (3.12) and (2.12), as it is easy to see, are asymptotically equiv-
alent. We have chosen (2.12) due to its simplicity and, mainly, to have Assumption
2.1 automatically satisfied (this problem will be discussed in subsection 3.4 below).
It is also important to notice from the above calculations that there is room for
more accurate choices of sequences k1(n), . . . , k4(n) and points skj(n), especially if
some additional information about the parameters α, β, γ, K1, K2 becomes avail-
able. This implies, in particular, that the window

W0 := s + [0, 2π(16N4 − 8)/ω0]

– that covers all the points skj(n), n = 1, ..., N, j = 1, ..., 4, defined by (2.11) and
(2.12) – can be made smaller. Consequently, the window

W = {x ∈ R : |W0 − x| ≤ h1(N) ∨ · · · ∨ h4(N)}
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defined in (2.14) will in turn become smaller as well. �

3.2. Verification of statement (2.3). In order to check (2.3), we firstly note that

Eξkj(n)(hj(n)) = λ0(skj(n)){1 + θ hj(n)skj(n)}, (3.14)

where |θ| ≤ c and c < ∞ is a constant that depends only on the (apriori known)
frequency ω0 and the boundary of the set of parameters α, β, γ, K1 and K2. Having
(3.14), we now easily see that statement (2.3) becomes a consequence of

1
N

N∑
n=1

{
hj(n)skj(n)

}
Ln → 0, N →∞, (3.15)

where the definition of Ln is given in (3.7). Due to the already verified statement
N−1

∑N
n=1 Ln → λ(s) when N → ∞ (cf. subsection 3.1), we see that (3.15) will

follow if we choose hj(n) so that

hj(n)skj(n) → 0, n→∞. (3.16)

Trying not to over complicate Proposition 2.1 with at this stage unnecessary details,
we have chosen hj(n) as in (2.13). This choice implies, of course, that hj(n)skj(n) =
O(n−1) – a much stronger result than we need in (3.16). We therefore see that there
is ample of space to reduce the size of hj(n), which will clearly result in a smaller
window W0, and thus W as well. �

3.3. Verification of statement (2.5). Let us show that statement (2.5) holds true
with L∗ = L+. To this end we firstly note that when n ≥ N0 for some (large)
number N0 ∈ N depending only on the (fixed) frequency ω0, then the random
variables ξk1(n)(h1(n)), ..., ξk4(n)(h4(n)) are independent. Having thus defined N0,
we decompose the sum

∑N
n=1 of (2.5) into the following two ones:

∑N0−1
n=1 and∑N

n=N0
. It is easy to check that (2.5) with

∑N0−1
n=1 instead of

∑N
n=1 holds true.

Consequently, Step 2.3 will be completed if we prove (2.5) with
∑N

n=N0
instead of∑N

n=1. In order to do that we need the following easy-to-prove result: If η is a
Poisson random variable with Eη = p ≥ 1, and α ∈ [−1/4, 1/4], then there exists
θ, |θ| ≤ 10, such that

E1{η > 0}ηα = pα(1 + θp−1/4). (3.17)

(Let us note in passing that the range of α in (3.17) can be increased, the exponent
−1/4 can also be made sharper. We do not, however, need such improvements at
this stage of investigation.) To continue the proof of Proposition 2.1, we denote

η := X
(
hj(n)[−1, 1] + skj(n)

)
. (3.18)
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Since η = 2hj(n)ξkj(n)(hj(n)), equality (3.14) immediately implies

Eη →∞, n→∞, (3.19)

provided that
hj(n) exp{ckj(n)} → ∞, n→∞, (3.20)

where c ∈ (0,∞) is a fixed constant. (If in (3.16) we definitely were able to choose
hj(n) = 0, for example, then we now see from (3.20) that too small hj(n)’s cannot
be used. This observation is not surprising since we have to somehow accumulate
the empirical information required for the estimation of λ0(s).) But statement
(3.20) holds true with kj(n) and hj(n) defined in (2.12) and (2.13), respectively.
Hence, Eη ≥ 1 by (3.19), and we may thus use (3.17) with η defined in (3.18) to
get the following statement

E1{ξkj(n)(hj(n)) > 0}ξkj(n)(hj(n))α

= {Eξkj(n)(hj(n))}α{1 + θ{2hj(n)Eξkj(n)(hj(n))}−1/4} (3.21)

that holds true for any α ∈ [−1/4, 1/4] and some |θ| ≤ 10. Consequently, statement
(3.21) holds true with α = αi, i = 1, . . . , 4, where

α1 := −(s− sk4(n))sk2(n)/s2
k1(n),

α2 := (s− sk4(n))/sk2(n),

α3 := (s2 − s2
k4(n))/s2

k3(n),

α4 := 1.

Indeed, all the three quantities α1, α2 and α3 converge to 0 when n→∞, and we
therefore have |α1|, |α2|, |α3| ≤ 1/4 when n ≥ const. In the case α4 = 1, statement
(3.21) is trivially true. The completion of Step 2.3 becomes very similar to that of
Step 2.2, and we therefore omit further details. �

3.4. Verification of Assuption 2.1. Assuption 2.1 is satisfied due to the trivial
bound

|skj(m) − sk`(n)| ≥ 2π/ω0 > 0,

that holds true provided that the points skj(m) and sk`(n) do not coincide. �

3.5. Verification of statement (2.10). In order to verify statement (2.10), we firstly
note that (2.10) is a consequence of

1
N2

N∑
n=1

EL∗2(ξk1(n)(h1(n)), . . . , ξk4(n)(h4(n)), sk1(n), . . . , sk4(n), s)→ 0, (3.22)
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when N → ∞. Following the lines of subsection 3.3, one can easily show that
statement (2.5) holds true with the functions L∗2 and L2 instead of L∗ and L,
respectively. Hence, (3.22) becomes a consequence of the following statement

1
N2

N∑
n=1

L2(Eξk1(n)(h1(n)), . . . ,Eξk4(n)(h4(n)), sk1(n), . . . , sk4(n), s)→ 0, (3.23)

when N → ∞. If we now follow the lines of subsection 2.2, we shall see that
statement (3.23) is a consequence of

1
N2

N∑
n=1

L2(λ(sk1(n)), . . . , λ(sk4(n)), sk1(n), . . . , sk4(n), s)→ 0, (3.24)

when N →∞. But (3.24) holds true because statement (2.2), as it is easy to check,
holds true with L2 and λ2

0(s) instead of L and λ0(s), respectively, and because of
the fact that λ2

0(s)/N → 0 when N →∞. In this way, the proof of (3.22) is finished.
This also completes the verification of statement (2.10). The proof of Proposition
2.1 is completed as well. �

4. Appendix: A discussion with Referee A
Let X1 be Poisson point process on [0,∞) with the intensity function

λ1(s) := exp{α + βs}, s ≥ 0,

where α and β are unknown parameters from an apriori fixed compact interval of
R. Using the idea of subsection 3.0, one directly arrives at the function

L(x1, x2, y1, y2, s) := x
s−y2
y1

1 x2 (4.1)

and then easily shows that Step 2.1 is valid, for example, with

sn := s + n,

and {
k1(n) := 4n2 − 2
k2(n) := 2n− 1,

for n ∈ N.
Referee A of the present paper, however, proposed that, instead of using the

somewhat cumbersome idea of subsection 3.0, one can arrive at the function of
(4.1) in the following way: Let us solve the equations{

log λ1(s1) = α + βs1,

log λ1(s2) = α + βs2.
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If we now put the just obtained solutions
α = log

{
λ1(s2)s1

λ1(s1)s2

} 1
s1−s2

,

β = log
{

λ1(s1)
λ1(s2)

} 1
s1−s2

into the definition of λ1(s), we shall arrive at the equality{
λ1(s2)s1

λ1(s1)s2

} 1
s1−s2

{
λ1(s1)
λ1(s2)

} s
s1−s2

= λ1(s) (4.2)

which is, of course, equivalent to

λ1(s1)
s−s2
s1−s2 λ1(s2)

s1−s
s1−s2 = λ1(s). (4.3)

Furthermore, assuming 
s1, s2 →∞,

s1/s2 →∞,

s is fixed ,

(4.4)

we immediately arrive at the approximation

λ1(s1)
s−s2
s1 λ1(s2) ≈ λ1(s). (4.5)

If we now compare the left-hand side of (4.5) with the definition of L in (4.1), the
desired insight into the derivation of (4.1) will be achieved.

Referee A also proposed the following general idea for a construction of function L
required by Step 2.1: Fix several values of s, say s1, ..., sk, if the unknown parameter
θ := (θ1, ..., θk) is k-dimensional, and solve the k equations

λ(θ; si) ≡ λ(θ1, ..., θk; si) = λ(si), i = 1, ..., k.

Then substitute the obtained values of θ into the initial formula for the intensity
function λ(s) ≡ λ(θ; s). Having this function of s, one organizes observations in
such a way which provides consistency, etc.

Let us start our reaction to the Referee A proposal by noting that our (heuristic)
approach given in subsection 3.0 leads us directly to (4.5) without first arriving
at (4.2). In order to appreciate this fact, one is advised to apply the Referee
A proposal to the intensity function λ0 – calculations will immediately become
quite involved. Moreover, if we decide to go further and complicate the task by
considering polynomial trends of higher than 2 order, then calculations may become
even impossible to write down, and the desired estimator either.
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Indeed, a real problem (in fact, the only problem as we can see) with the Referee
A proposal is that it involves exact solutions of algebraic equations, which (just
like when using the MLE method) are sometimes difficult to obtain. (We have
explained at the beginning of our manuscript why numerical solutions may not be
satisfactory.) Our approach of subsection 3.0 is designed to avoid such problems,
or at least to reduce them to a minimal level.

On the other hand, we ought to emphasize that if the Referee A proposal works
(just like in the case of λ1 described above), then we do recommend to use it
and not to follow the route described in subsection 3.0. Indeed, in the case of λ1,
for example, we shall likely do better in many respects when estimating λ1 if we
choose the left-hand side of (4.2), or (4.3), as the definition of L required in (2.2) of
Step 2.1. The reason is that equality (4.2), or (4.3), works without the assumption
s1/s2 →∞ spelled out in (4.4), and one may therefore use points s1 and s2 (both
→ ∞) that are asymptotically equivalent, i.e., s1 = O(s2) and s2 = O(s1). This
should result in a possibly smaller window W required to collect the necessary
information about X.

Consequently, we see that there are some seemingly minor though, nevertheless,
sometimes substantial differences between the Referee A and our approaches for
constructing the function L required in (2.2). Both approaches, therefore, comple-
ment each other – one occasionally working better then the other one and vice versa
– and thus worth of pursuing for the sake of manifold probabilistic and statistical
properties, optimality considerations, etc.

In order to conclude the discussion, we note that the Referee A proposal can
always serve as a very good clue for making a decision in what direction one has to
go in order to construct a function L required in Step 2.1.
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