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Quantifiers and Partiality 
JAN VAN EIJCK 

1 Varieties of Partiality 
Quantification can involve partiality in several ways. Quantifiers loaded 
with presuppositions give rise to partiality by introducing truth value gaps 
(if there are no A, and the quantifier an+ carries an existence presupposi
tion, then an+ A are B will lack a truth value). The study of quantifiers in 
contexts of incomplete information involves a quite different kind of partial
ity. This paper investigates the behaviour of binary quantifiers in settings 
of incomplete information, i.e., in partial models. 

The framework to handle informational partiality that is presented in 
this paper is relevant for the behaviour of quantifiers in the natural lan
guage semantics of propositional attitudes and perception reports, for the
ories of vagueness in natural language and for semantic accounts of natural 
language fragments containing a truth predicate. 

First, the constraints on binary relations on a universe that make these 
relations qualify for the honorific title quantificational are generalized to 
the partial case. Special consideration is given to quantifiers defined via 
supervaluation from quantifiers on total models. Next, properties of par
tial quantifiers are studied, with particular emphasis on behaviour under 
growth of information and growth of domain. 

Quantifier interpretations for natural language determiners like all, 
some, most, exactly two, at least three and at most five, pick out binary re
lations on sets of individuals, on arbitrary universes E. Notation: QEAB. 
We call A the restriction of the quantifier and B its body. Many quantifier 
relations satisfy the familiar constraints EXT, CONS and ISOM ( cf. the 
introduction to this volume). 

We will put generalized quantifiers in a three valued setting. In such a 
setting, quantifiers themselves can introduce truth value gaps, but they can 
also have 'three valued sets' as arguments. Our framework deals with both 
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these kinds of partiality. Below, in Section 2, new versions of EXT, CONS 
and ISOM will be proposed that also cover the cases where only partial 
information concerning the extensions of the body and the restriction of a 
quantifier is available. 

The definite description the n A are B can be viewed as a partial quan
tifier that is undefined if the number of As is not equal to n, and that 
behaves like the universal quantifier otherwise (see Barwise and Cooper 
1981). Consider the partial quantifier in ( 1) . 

(1) The four A are B. 

In the numerical tree for this quantifier, *abbreviates the value 'undefined'. 

#A=O * 
#A=l * * 
#A=2 * * * 
#A=3 * * * * 
#A=4 + 
#A=5 * * * * * * 

In the example case, the presupposition has the form of a unary quan
tifier, 'there are exactly four A'. Splitting out between truth and falsity 
conditions, the quantifier 'then' is defined as follows: 

• the n A are B = 1 iff there are exactly n A and all A are B; 
• the n A are B = 0 iff there are exactly n A and not all A are B. 

Similarly, we can express the 'existential import' of quantifiers. For in
stance, we can define an+ as follows: 

• an+ A are B = 1 iff there are A and all A are B; 
• an+ A are B = 0 iff there are A and not all A are B. 

This gives the following numerical tree for an+: 

#A=O * 
#A=l 0 + 
#A=2 0 0 + 
#A=3 0 0 0 + 
#A=4 0 0 0 0 + 
#A=5 0 0 0 0 0 + 

If we use au+ to paraphrase the sentence (2) then the paraphrase entails 
that John does have grandchildren. 

(2) All John's grandchildren are boys. 
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The general pattern for describing the truth conditions of a quantifier 
Q pAB 'loaded' with a presupposition P is: 

• QpAB is true iff P and QAB. 

• QpAB is false iff P and not QAB. 

Interestingly, in the case of quantifiers with presupposition, the presuppo

sition itself generally seems to have the form of a quantitative statement. 

The following partitive noun phrases provide some more examples. 

(3) At most two of John's ten grandchildren are boys. 

( 4) At least five of John's many grandchildren are boys. 

(5) Less than half of the boys in Mary's class came to the party. 

We can succinctly express the meaning of quantifiers with presupposition 

with a three valued connective for interjunction, as defined in Blarney 1986: 

0 1 * 0 

1 1 * * 
* * 
D * 

* 
* 

* 
D 

It is easy to check that the presuppositional quantifier QpAB is defined by 
the following schema: 

(6) (P /\ QAB) 0 •(P /\ •QAB). 

Three valued truth tables for /\ and -, will be given below, but if one 

assumes that P and Q AB are two valued, these are not needed to grasp 

the meaning of (6). It is obvious from the truth table for 0 that quantifiers 

defined by schema (6) do introduce truth value gaps. We will call such 

quantifiers open. Quantifiers that do not introduce truth value gaps wil be 
called closed. Formally: 

CL-T For all A, B ~ E, either Q EAB = 1 or Q EAB = 0. 

Partiality can also arise in connection with closed quantifiers. Consider 

cases where the extensions of certain predicates are only partially known. 

Assume we know how big the universe E is but have only partial informa

tion about the predicates A, B ~ E. Certain objects are known to be As, 
certain other objects are known to be non-As, but there can also be objects 
that are in neither class, and even objects that are in both classes (in this 

case our information is incoherent). Similarly with B. We call this kind of 

partiality informational partiality. Although informational and presuppo

sitional partiality may co-occur, we have for simplicity assumed that the 

presuppositions themselves are two valued. 
The importance of studying quantifiers in a three valued setting stems 

from the fact that the semantics of propositional attitudes-example (7) 

-and the semantics of perception reports-example (8) -need be stated 

in terms of partial models (Barwise and Perry 1983, Muskens 1989). 
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(7) John believes that all grandparents are happy. 

(8) John saw three children enter. 

In examples (7) and (8), a propositional attitude or perception complement 
does contain a quantifier, so these quantifiers are to be evaluated in partial 
models. Note for instance that sentence (8) does not imply (9). 

(9) John saw three children enter and smile or not smile. 

A situation where John looks at the children from behind is most plausibly 
described as one where the predicate 'enter' does have a truth value for 
every individual in the scene, but 'enter and smile or not smile' does not. 
Still, by merely turning around the three children (so that John can view 
their faces), this situation can be changed into one where 'enter and smile 
or not smile' does have a truth value. See Barwise 1981 and Does 1992 for 
further details. 

Another area where the theory of partial quantification is relevant is the 
account of vagueness in natural language. Here we have a kind of partiality 
that cannot directly be resolved by growth of information, because the 
vagueness is inherent in the truth and falsity conditions. 

(10) There are many rich people in California. 

When I assert (10), the truth value of this assertion may be impossible to 
specify because it is unclear what counts as 'being rich' (or what counts 
as 'many', for that matter). However, assuming that the truth of (10) 
becomes a topic of discussion, I may be asked to further specify my criteria 
for the satisfaction of the predicate 'rich' in this context. The further I 
specify these criteria, the more elements of the domain of discussion can 
be classified. One can view the situation as one in which a vague predicate 
(P+,P-) is first replaced by (P1+,P1-) with p+ ~pt+, p- ~pt-, then 
upon further questioning by (P"+, P"-) with pt+ ~ p 11+, pi- ~ p 11-, 

and so on. It is clear that this gradual replacement of partial predicates by 
more precise versions can be studied within a framework that accounts for 
growth of information about partial predicates. 

Finally, partial quantifiers are relevant for the definition of natural 
language fragments containing their own truth predicate. In the wake 
of Kripke 1975 various proposals have been worked out for avoiding the 
semantic paradoxes that scared Tarski away from natural language, by 
starting out with truth value gaps for statements involving truth, and then 
gradually closing these gaps for the non paradoxical statements (see the ac
counts in Visser 1989 and Barwise and Etchemendy 1987). In this context, 
'quantified liars' and 'quantified samesayers' merit attention. 

An example of a quantified samesayer is given in Figure 9. Note that 
the example still works if the statement is replaced by All statements in 
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FIGURE 9 Quantified Samesayer. 

l. At least one statement in this box is true. 

this box are true, Not all statements in this box are false, or No statements 
in this box are false. 

FIGURE 10 Quantified Liar. 

l. At least one statement in this box is true. 
2. At least one statement in this box is false. 

A very simple example of a quantified liar is given in Figure 10. To see 
that this example is indeed paradoxical, assume that statement 1 is true. 
Then the additional assumption that 2 is also true leads to a contradiction 
with what 2 says. From the assumption that 2 is false, on the other hand, 
it follows that all statements are true, i.e. both 1 and 2 are true, and con
tradiction with the assumption of 2's falsity. Now assume that statement 
1 is false. Then none of the statements in the box is true, so it follows that 
2 is false. But then both 1 and 2 are true, and contradiction. Note that 
replacement of both quantifiers by all, by no, or by not all, preserves the 
paradox. 

FIGURE 11 Liar with Non Standard Quantifier. 

1. Two plus two equals four. 
2. Two plus two equals five. 
3. More than half of the statements in this box are false. 

An example of a quantified liar involving a non standard quantifier is 
given in Figure 11. Essentially the same example was given in Kripke 1975. 

FIGURE 12 Liar Involving Infinitely Many Different Quantifiers. 

1. Not all statements in this box are true. 
2. At least one statement in this box is true. 
3. At least two statements in this box are true. 

n. At least n - I statements in this box are true. 

A final example of a liar situation involving infinitely many different 
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quantified statements is given in Figure 12. In this case the reasoning to 
establish the paradoxical nature of the example is slightly more involved. 
First assume that statement 1 in the box is false. Then, because of what 
1 says, all statements in the box are true. This contradicts the falsity of 
statement 1. Now assume that statement 1 is true. Then at least one 
statement in the box is true. It follows that statement 2 is true as well, 
for this is what 2 states. From the truth of 1 and 2 it follows that at least 
two statements in the box are true. This is what statement 3 says, so 3 is 
true as well. In general, from the truth of statements 1 through n it follows 
that statement n + 1 is true. Thus all statements in the box are true. But 
this situation is what statement 1 denied, so the assumption that 1 is true 
also leads to a contradiction. 

We will leave the detailed study of these 'paradoxes of quantification' 
for another occasion. The examples cited above merely serve to illustrate 
one more case where the positive and negative extension of a predicate
'is true' and 'is false', respectively-do not, indeed cannot, exhaust the 
domain of quantification. 

2 General Framework 
What is known about quantifier relations in situations of partial informa
tion can be expressed by describing both the states of affairs that verify 
the quantifier relation and the states of affairs that falsify it. For instance, 
a state of affairs in which A+ n B- ¥- 0 falsifies 'all A are B' (in its most 
natural reading), for finding a thing which is A and not B refutes the uni
versal statement. Similarly, a state of affairs in which E -A - ~ B+ (where 
E is the domain of quantification) verifies 'all A are B' (again, under the 
most natural reading of 'all' in partial situations, which will be made more 
precise below). Note that these conditions are precise in that they describe 
the complete set of situations that verify or falsify a quantifier Q. As an 
example of an imprecise condition, A- = E verifies the quantifier all all 
right, but it describes a proper subset of the set of all situations that ver
ify the quantifier. Verifying and falsifying conditions that are precise are 
formulated as biconditionals. 

We will now introduce a language CQ for partial logic with binary quan
tifiers. More information about partial logic without quantifiers can be 
found in Langholm 1988 and Thijsse 1992 . .CQ will consist of predicate 
logic, plus a set of binary quantifiers Q. The non-logical vocabulary of the 
language .CQ consists of a set C = {ea, c1 , c2 , •.• } of individual constants, 
and for each n > 0 a set pn = { Pf:, P[", P2, ... } of n-place predicate con
stants. The language CQ is then given by the following BNF definition 
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(assume c ranges over C, v over a set of individual variables V, p E pn, 
and q E Q): 

t 
<p 

vjc 
t1 = tz I Pt1 ... tn I -icp I (ip1/\1;?2) I (rp1v1P2) I 
'r/vcp I 3vcp I Qv( 'P1, 'P2). 

For convenience, we will assume the sets of individual constants and predi
cate constants fixed. Also, we will often omit outer parentheses and paren
theses between conjuncts or disjuncts in cases where there is no danger of 
ambiguity. 

We will also consider several extensions of £Q that result from adding 
new sentential operators. £Q,"-' is the result of adding the unary sentential 
operator ,..., to the logical vocabulary of £Q, LQ,e; is the result of adding 
the binary sentential operator 0 to LQ, and £Q,"',® is the result of adding 
both these operators to LQ. 

For the semantics of LQ, we define partial models or situations for CQ. 

Definition 1 [Situations] A situation s for LQ is a triple (E, J+, J-) where 
Eis a non-empty set (called the domain of s), and J+,r- are functions 
satisfying the following: 

• ]+ maps every c E C to a member of E. 
• For every n > 0, J+, J- map each member of pn to a pair (R+, R-) 

of n-place relations on E, such that R+ n R- = 0. 

We will call s a situation on E. ]+, r- are the positive and negative 
interpretation functions of s. 

Our main concern in what follows will be the investigation of suitable 
constraints on the interpretation of the binary quantifiers in Q. These 
quantifier interpretations are not part of situations proper, for they do not 
depend on the interpretation functions of the situations, but only on their 
domains. 

For now, we only wish to stipulate that, given a domain E, every binary 
quantifier Q is interpreted as a partial binary relation on partial subsets of 

E. We use P[E] for the set of partial subsets of domain E, i.e., P[E] ~f 
{ (X, Y) I X, Y ~ E and X n Y = 0}. The most convenient view on 
partial quantifiers will turn out to be to picture them as functions of pairs 
of partial sets given by their positive and gap parts, rather than their 
positive and negative parts. Note that if (X, Y) is a partial subset of 
E, then (X, E - (X U Y)) is also a partial subset of E. Thus, binary 
quantifiers defined in terms of the positive and gap parts of their arguments 
are functions that take two partial sets and deliver a value in {O, 1}. Partial 
binary quantifiers can be pictured as pairs Q~, Q'E of such functions. 
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Definition 2 A coherent quantifier interpretation on E is a pair Qi, Q£ 
such that 

• Qk E (P[E])2 -+ {O, l}, 
• QE: E (P[E])2 -+ {O, l}, 
• Qi(X, X*, Y, Y*) = 1 implies QE:(X, X*, Y, Y*) = l. 

If Qi, Q'E form a coherent quantifier interpretation on E, then Q+ is 
its positive part or interior; Q0 its non-negative part or exterior. Proper 
constraints will be imposed on these quantifier interpretations later on. 

To ensure that quantifiers are uniform over situations with the same 
domains, it is convenient to introduce the notion of an information system. 

Definition 3 [Information Systems) An information system S is a tuple 
(S, E, 1+, 1-, J+, J 0 ), where S is a set of situations with domains ~ E, and 
1+, 1-, J+, J 0 are given by: 

• For every s E S, J+(s) = 17 (the positive interpretation function of 
s), and 1-(s) = l; (the negative interpretation function of s). 

• For every Q E Q and every E ~ E, J+(Q, E) and J 0 (Q, E) form a 
coherent quantifier interpretation on E. 

From now on, we consider a fixed information system S, and we will use Qi, 
Q'E for the positive and non-negative parts of the quantifier interpretation 
that get assigned to Q in S. Later on, our discussion of constraints on 
quantifiers will give rise to further conditions on J+ and J 0 • 

As usual, sentences involving quantification generally do not have sen
tences as parts but (open) formulae. As it is impossible to define truth for 
open formulae without making a decision about the interpretations of the 
free variables occurring in them, we employ infinite assignments of values 
to the variables of CQ, that is to say functions with domain V and range 
~ E. As in the case of ordinary predicate logic, only the finite parts of the 
assignments that provide values for the free variables in a given formula 
are relevant. 

The assignment function g enables us to define a function that assigns 
values in E to all terms of the language. Let s = (E, l+, 1-) be a model 
for LQ and g an assignment for £Q in E. The function Ws,g from the set 
of .CQ terms to E is given by the following clauses: 

• If t EC, then w 8 ,9 (t) = l+(t). 
• If t E V, then W 8 ,9 (t) = g(t). 

We explain what it means for an arbitrary formula c.p of .CQ to be true, 
false or undefined in s relative to an assignment g, by recursively defining 
functions [·]t,9 and [-]~,9 from CQ to {O, l}. [·];,9 and [·]~,9 , the positive 
and non-negative interpretation function respectively, are two valued, but 
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they will later on be combined in the definition of a three valued function 
[·]s,g· First we handle the basic case where <p is an atomic formula. 

1. If r.p has the form t 1 ='= t2 , then 
[r.p]t,9 = 1 iff [r.p]~,g = 1 iff W8 ,9(t1) = W8 ,9(t2). 

2. If r.p has the form Pt1 · • • tn, then 
[r.p]t,9 = 1 iff (ws,9 (t1), ... ,W8 ,g(tn)) E /+(P), and [cp]~,g = 1 iff 
(ws, 9 (t1), · • ·, Ws,9(tn)) <f. J-(P). 

Note that the clause for t 1 ::: t 2 reflects the choice to treat identity as a 
total relation, for we have: [t1 = t 2]t,9 = 1 iff [ti ::: t2 )~,9 = 1. 

A more radical perspective would partialize identity as well; this would 
involve a shift from individuals to proto-individuals. Proto-individuals are 
things that we have a handle on by means of a name ('Mr. Jones') or 
a functional relation ('Bobby's father'), but that may still fuse together 
with other proto-individuals as we learn more ('I had not realized that 
Mr. Jones is Bobby's father!'). Although this more radical approach to 
partiality seems necessary for getting to grips with famous identity puzzles 
of the Hesperus Phosphorus kind, we prefer a step by step approach and 
abstain from this further move in the present investigation. 

The rules for the logical connectives run as follows: 

3. If r.p has the form --i'lj;, then [r.p]t,9 = 1 iff ['l/JJ~,9 = 0, and [r.p]~,9 = 0 
iff [1/J]t,g = 1. 

4. If r.p has the form i/J /\ x, then 
[r.p]t,9 = 1 iff [1/J]t,9 = 1 and [x]t,9 = 1, and [r.p]~,9 = 1 iff [tli)~,9 = 1 
and [x]~,9 = 1. 

5. If r.p has the form tP V x, then 
[ip]t,9 = 1 iff [1/J]t,9 = 1 or [x]t,9 = 1, and [cp]~,9 = 1 iff [1/J]~,9 = 1 
or [x]~,9 = 1. 

To treat the Fregean quantifiers V, 3 and the binary quantifier Q we need 
the notion of an assignment g' that agrees with assignment g but for the 
fact that variable v gets value d. Formally: 

g(vld)(w) = { gd(w) ~ff w: v 
1 W-V. 

This allows us to dispose of the quantifier cases. We assume that s has 
domain E. 

6. If r.p has the form Vvl/J, then 
[ip]t,9 = 1 iff [1/J];,g(vld) = 1 for every d E E, and [<p]~,9 = 1 iff 

[1/1]~,g(vld) = 1 for every d E E. 
7. If r.p has the form 3v1/J, then 
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[r.p]d,9 = 1 iff [t,b];,g(vld) = 1 for some d E E, and [cp]~,g = 1 iff 

[1/Jt,g(vld) = 1 for some d E E. 
8. Suppose cp has the form Qv(1/!, x). 

Let A+ be {d EE I ['l/J]t,g(v!d) = l}, 
let A* be {d EE I ['l/i];,9(vld) = 0, [ift,g(vld) = 1}, 

let B+ be {d EE I [x]t,g(vld) = l}, 

let B" be { d E E I [x]t,g(vld) = 0, [x]~,g(vld) = 1 }. 

Then [cp]T,9 = 1 iff Q~(A+,A•,B+,B*) = 1 and [<t']~,9 = 1 iff 
Qf;(A+,A*,B+,B*) = 1. 

Note the recursion in terms of positive and non-negative conditions in the 
cases for the connectives A, V, the quantifiers V, 3 and the binary quantifiers. 
This shift from [-]+, [-]- to [-]+, [·] 0 will turn out to have some advantages 
for the conceptualization of partial binary quantifiers. 

We still have to prove that the interpretation functions for the binary 
quantifier cases are well defined. The clause for binary quantifiers uses 
functions from ('P[E])2 to {O, 1}, so this clause presupposes that the first 
and second arguments of the quantifier together represent a partial set, and 
similarly for the third and fourth arguments. This presupposition hinges 
on the coherence lemma, which will be stated shortly. 

For the extended languages that also contain one or both of ,...., and QSI, 

one or both of the following clauses should be added. 

9. If c.p has the form "'tP, then [cp]:t,9 = 0 iff [1/J]d,9 == 1, and [cp]~.9 = 0 
iff ['l/i];,g = 0. 

10. If c.p has the form 1/J 0 x, then 
[cp];,9 = 1 iff [1/J]T,9 = 1 and [x];,9 = 1, and [c.p]~, 9 = 0 iff [t,b]~, 9 = 0 
and [x]~,9 = 0. 

The reader is referred to Blarney 1986 or Thijsse 1992 for a proof that 
every three valued truth function is expressible in £,....,,0 . It is useful to 
introduce some sentential operators by abbreviation. We will use T as an 
abbreviation of -<3x (Ax /\ •Ax), cp -+ t,b as an abbreviation for ( •c.p) V 1/J, 
and cp ++ t,b as an abbreviation for ( c.p -t '!/;) /\ ( t,b -t cp). It is easy to see 
that T always evaluates to l. 

In languages containing ,...., , we will use cp ,....._. t,b for "''P V t,b, cp :::::} '!/; for 
( cp "-' 1/!) /\ ( -.1j; "-' -ic.p), cp = '!/; for ( cp ,.,.,. '!/;) /\ ( 'lj; ,.,.,. <p), and cp {:} 'l/J for 
( c.p = '!/;) (\ (--icp = -i'lj;). 

Finally, in languages containing 0 we will use * as an abbreviation for 
T@ -, T. The reader should convince her- or himself that 0 does indeed get 
the truth table of Blarney's interjunction, and that the formula * always 
evaluates to the value *· 
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A simple induction argument establishes the following: 

Lemma 1 (Coherence) If r.p is a formula of LQ {or one of its extensions), 

s a situation, and g an assignment for LQ (or one of its extensions) in s, 
then 

1. [r.p]t,g = 1 entails [r.p]~, 9 = l; 
2. [r.p]~,g = 0 entails [ip]t,9 = 0. 

Proof. First note that 2. follows from 1. by contraposition, because [-]+ 
and [-] 0 are two valued. 

For 1, all induction cases except for the binary quantifier case are left 

to the reader. For the case where r.p has the form Qv('ljl,x_), note that 

{d EE I [1/i]:::g(v\d) = l} n {d EE I [1/J]:::g(v\d) = 0,[1/1]~,g(v\d) = l} = 0, 

and { d E E \ [x];,g(v\d) = 1} n { d E E \ [x];,g(v\d) = 0, [xJ~.g(•·\d) = l} = 0, 
This guarantees that the first and second arguments A+, A•, respectively 

the third and fourth arguments B+, B*, of the quantifier interpretations 

Q'j;; and QE; are partial sets, so [-]+ and [·] 0 are indeed well defined for 

the binary quantifier case. 

Assume [Qv('lfl,x)]t,9 = l. Then the fact that [Qv(l/i,x)]~,g = l fol

lows from the semantic clause for binary quantifiers and the fact that 

Qk(X,X*,Y,Y*) = l entails QE(X,X*,Y,Y*) = 1. • 

The lemma justifies the lumping together of[·]+ and [-)0 in a definition of 
an interpretation function[·] which takes values in {l, 0, *},and guarante€s 

that the three cases in the definition of [-] are the only cases that can occur: 

Definition 4 [Interpretation in a Situation] 

• [r.p]s,g = 1 if [ip]t,9 = 1. 

• [r.p]s,g = 0 if [ip]~,g = 0. 
• ['P]s,g =*if [ip]t,9 = 0 and [rp]~,g = 1. 

Note that it follows from the clauses for\:/, 3 and ..., that: 

[Vvip]t,9 = 1 

iff for all d E E: [ip];g(v\d) = l 
iff for all d EE: [•ip]~,g(v\d) = 0 

iff [3v•ip]~,g = 0 
iff [ ...,3v...,ip]t,9 = 1. 

Also: 

[\:/vip]~,g = 1 
iff for all d E E: [ip]~,g(v\d) = l 
iff for all d E E: [-iip];,g(v\d) = 0 
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iff for no d E E: [...,cp];,9 (vld) = 1 

iff [3v...,<.p] t,9 = 0 
iff [-i3v-icp]~.9 = 1. 

This means that V and 3 are duals. It is convenient to also have a notion 
of duality for binary quantifiers. 

Definition 5 QE and QE are dual quantifier interpretations if the follow
ing holds: 

Qk;(X,X*, Y, Y*) = 1 iff QE(X,X*, E - (Yu Y*), Y*) = 0. 

The next proposition shows that this definition does indeed have the desired 
effect. 

Proposition 2 If Q, Q are interpreted as dual quantifiers, then for all 
formulae <.p, '!/l, for every situation s, and for every g for s: 

[Qv(cp,.,P) <:=> -iQv(cp,-i?ji)]s,g = 1. 

Proof. The reader is invited to check that it follows from the definition of 
the sentential operator{:> given above that the statement of the proposition 
is equivalent to the conjunction of the following: 

1. [Qv(cp, .,P)];,9 = 1 iff [--iQv(cp, --iifl)];,9 = 1, 

2. [Qv(cp,.,P)]~,g = 1 iff [--.Qv(..;. -it·)]~ 9 = 1. 

Supposes has domain E. 

Let A+ be 

let A* be 

let B+ be 

let B* be 

let c+ be 

let c· be 

{dEE I [cp]:.g(vldl = l}. 
{d EE I [cp]:,g{vid) = 0, [.,;t,g{vid) = 1}, 
{d EE I [1/J]:,g{vid) = l}, 
{d EE I [?ji];,g(vid) = 0, [?jit,g(vid) = l}, 
{d EE I [--i1/J];,9 {vld) = l}, 
{d EE I [--i1/J];,g(vid) = 0, [•1/J]~,g(vld) = l}. 

To be able to use the fact that QE and Qe are duals, we have to establish 
that B* = C* and that c+ = E - (B+ u B*). The first of these follows 
from the fact that 

[•1/J];,g{vid) = 0 and [•1/J]~,g(vld) = 1 

iff (clause for•) [.,Pt,g(vld) = 1 and [1j1];,g(vid) = 0. 

The second of these follows from the fact that 

[ •ifl] ;,g( vld) = l 
iff (clause for•) [1"]~,g(vld) = O 

iff (coherence) [1/i];,g(vld) = 0 and [?jit,g(vld) = 0. 

Now from the fact that QE and Qe are duals: 
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Q:k(A+,A*,B+,B*) = 1iffQE;(A+,A•,c+,c•)=0, 

so by the semantic clause for binary quantifiers, 

[Qv(c.p,1/J)]t,9 = 1 iff (Qv(c.p,-,1ji)]~,9 = 0. 

By the semantic clause for -i: 

[Qv(c.p,l/i)]t,9 = 1 iff [-iQv(c.p,...,'l/i)]t,9 =1. 

Similarly: [Qv(c.p, '1/1)]~,9 = 1 iff [-iQv(c.p, -i1/J)]~,g = 1. • 
The preceding text illustrates that in discussing the behaviour of a formula 
Qv( c.p, 'I/I) in a situation s on domain E under an assignment g in E, it is 
often convenient to abbreviate 

and 

{d EE I [c.pJ;,9 (vld) =I} as A+, 

{ d E E I [c.p]~,g(vld) = O} as A-, 

{ d E E I [c.p];,g(vld) = 0, [c.p]~,g(vjd) = 1} as A*, 

{d EE I ['l/IJ;,9 (vld) = l} as B+, 

{d EE I [1/i]~,g(vld) = O} as B-, 

{ d E E I ['l/IJ;,g(vjd) = 0, [1/i]~,g(vld) = 1} as B*. 

Thus, from now on we adopt the convention that once we have fixed the 
situation and assignment parameters, we represent the positive, negative, 
and gap extensions of the first argument of a quantifier (the restriction 
argument) by A+, A - , A*, respectively, and the positive, negative and gap 
extensions of the second argument (the body argument) by B+, B-, B*, 
respectively. By the coherence lemma, we have for any domain E, any 
situations on E, any assignment gin E and any Qv(c.p,'1/1) that A+ nA- = 
A+ nA* =A- nA* = 0, and B+ nB- = B+ nB* = B- nB* = 0. For 
convenience we will tacitly assume from now on that in all cases where a 
partial set is introduced in terms of its positive and negative extensions 
c+, c- or, relative to some universe E, in terms of its positive and gap 
extensions c+, C*, then c+ n c- = 0, respectively c+ n C* = 0. 

If we consider a quantified formula Qv( c.p, l/i) in a situation s with domain 
E, given an assignment g, then the amount of available information about 
the extension of c.p is reflected in the gap A*. As long as A* f. 0, only partial 
information is available about the extension of c.p. Growth of information 
about the extension of c.p means that elements of A* get inspected and 
classified. An x E A* can turn out to be an A+ or an A-, which means 
that each new act of classification makes A+ increase or A- increase, thus 
narrowing the gap between A+ and E - A - . In the limit case of A+ U A- = 
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E, i.e., A* = 0, full information about the extension of r.p is available. 
Similarly for the extension of the second argument 1/J. 

Definition 6 A situations = (E, J+, 1-) is total if for every n > 0, J+, 1-
map each member of pn to n-place relations R+ and R- on E for which 
R+ U R- = En. Otherwise s is partial. 

Note that the definition of the quantifier relations on a total situation 
need not be total. It is convenient to keep the notions of totality for the 
interpretation of the nonlogical vocabulary and for the interpretation of 
the quantifiers separate. 

Lemma 3 (Totality) If 'P E £Q,"' does not contain occurrences of quanti

fiers from Q, then for any totals and any g for s, [r.p]t9 = l iff [r.p]~,g = 1. 

Proof. Use induction on the complexity of r.p. 

Note that this result does not hold for the languages .CQ,© or .CQ,"',®· In 
Section 5, total situations will be used to define supervaluation quantifier 
relations. 

A quantifier interpretation Q+, Q0 on a universe E can equivalently be 
viewed as a function Q with domain (P[E])2 and range~ {l, 0, * }. In other 
words, a quantifier interpretation takes four set-arguments and ranges over 
the values true, false and undefined (neither true nor false). Relative to a 
situation s and an assignment g, the three valued quantifier function that 
interprets Qv(r.p, 'lf;) on a universe E is defined as follows. 

Definition 7 [Quantifier Interpretations as Functions of A+, A*, B+, B*] 

• Qe(A+,A*,B+,B*) = l if Q~(A+,A*,B+,B*) = 1. 

• Qe(A+,A•,s+,B*) = 0 if Q'E(A+,A*,B+,B*) = 0. 

• Qe(A+,A•,B+,B*) =*if 
Q"k(A+, A*, B+, B*) = 0 and QE(A+, A*, B+, B*) = 1. 

Again, it follows from the coherence lemma that if A+, A*, B+, B* interpret 
r.p, 1/J relative to some s and g, then the case with Qi;:.(A+, A*, B+, B*) = 1 
and Q£(A+,A*,B+,B*) = 0 cannot occur. 

The relation of consequence f= for language £Q (and its extensions) of 
partial logic with binary quantifiers is defined as follows (let r and .6.. be 
sets of sentences of .CQ or one of its extensions): 

Definition 8 [Logical Consequence] 

• r f=+ A if for all situations s: if [r.p]t = 1 for all r.p Er, then [1/J]t = 1 
for some if; E A. 

• r f=- A if for all situations s: if [1/J]; = 1 for all 'l/; E A, then 
['P]_; = 1 for some 'P E r. 

• r f= A if r f=+ A and r f=- A. 
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This notion of logical consequence is the so-called double-barrelled conse
quence from Blarney 1986. Recall the definitions of t.p""' 'I/; as "'i.p V '!/;, of 
t.p :::} 'I/; as ( t.p '"'-" 'I/;) /\ ( --i'lj; '"'-" --it.p), of t.p = 'ljJ as ( t.p '"'-" '!/;) /\ ( 'ljJ '"'-" t.p), and of 
t.p {:::} 'I/; as ( t.p = 'I/;)/\ (--it.p = --i'lj;). It is easy to see that we have the following 
(set brackets for premisses and conclusion are omitted for readability): 

( 11 ) t.p I=+ 1/J iff I= t.p '"'-" 'lj; . 

(12) t.p 1=- 1/J iff F= --i'</J"" --ic.p. 

( 13) t.p I= 'I/; iff I= t.p :::} 'I/;. 

(14) Both cp 1=+ 'I/; and 'I/; f=+ cp iff I= cp = 'ljJ. 

(15) Both cp f= 'I/; and 'ljJ I= t.p iff I= r..p {:::} 7/;. 

Note that at the meta level three valued equivalence (the counterpart of {:::}) 
is expressed by the identity symbol. We will use Q~(A+,A*,B+,B*) = 
Q~,(c+,c•,D+,D*) to express that the values of Q~(A+,A*,B+,B*) 
and Q~, (C+, C*, D+, D*) are the same: both 1, both 0 or both*· 

3 Constraints on Partial Quantifiers 
After these preliminaries we are ready to focus on the quantifier interpreta
tions. We need versions of EXT, CONS and ISOM tailored to our partial 
perspective. We assume an information system S, a situation s E S, and 
an assignment g for s fixed, so we can talk about the positive and gap ex
tensions of the first and second arguments of a quantifier as A+, A*, s+, B* 
without ambiguity. 

For extension, we want to say that adding individuals known to be nei
ther A nor B to the universe does not matter. Suppose A+, A*, B+, B* c;;; 
E. Suppose we add a set X of individuals which are neither A nor B to 
the universe E of a situation. Then A+, A*, s+, B* remain unchanged, 
and the truth or falsity of the quantifier is not affected. In other words, 
extension says that there is no need to look outside A+ u A* U s+ U B *. 

A formal rendering of EXT runs like this. 

EXT Foral!E,E'2A+uA*UB+uB*, 

QE(A+, A*, s+, B*) = QE'(A+, A*, B+, B*). 

Note that the constraint is very easy to state, thanks to the fact that we 
have chosen to define partial quantifiers in terms of positive extensions and 
gaps rather than positive and negative extensions. If one views a binary 
quantifier on partial sets as a function on two partial sets given in terms 
positive and negative extensions, then the EXT constraint would have 
to relate a quantifier on domain E with given arguments to a quantifier 
on domain E' with different arguments, because if E f=. E' and E, E' 2 
A+ u A* u B+ U B*, the sets E - (A+ u A*) and E' - (A+ U A*) will be 
different, and similarly for the negative part of the second argument. 
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FIGURE 13 The Effect of EXT. 

-
FIGURE 14 The Effect of W-CONS. 

-
EXT allows us to restrict any domain E ;;:? A+ U A* U s+ U B* for QE 

to A+ u A* u s+ u B*: 

(16) QE(A+,A*,B+,B*) = QA+uA•uB+uB·(A+,A*,B+,B*). 
It follows that for quantifier interpretations satisfying EXT the parameter 
E can be dropped altogether. This hinges on the fact that quantifiers are 
defined as functions of four arguments A+, A*, B+, B*. 

It is convenient to use pictures to illustrate the effects of the various 
quantifier constraints. The pictures show which of the subsets of the do
main are relevant for the interpretation QE(A+' A*' s+' B*) of Qv(r.p, 'lf;) in 
s, given g. The boxes D in the first parts of the pictures indicate on which 
sets the quantifier interpretation depends when the relevant constraints are 
not imposed, the boxes 0 in the part of the picture following the --+ in
dicate on which sets the quantifier interpretation depends when they are 
imposed. A pictorial representation of the effect of EXT is given in Figure 
13. The picture shows that Qs observing EXT do not depend on the set 
A- ns-. 

For conservativity the situation is less straighforward. Prima facie there 
are several options. The weakest possible variant seems to be to demand 
that the quantifier is only sensitive to the effect of those entities in the 
domain that may end up in the positive extension of the first argument. 
In other words: the set A+ U A* sets the stage. We will call this weak 
conservativity, abbreviation W-CONS. Here is the formal version. 

W-CONS Qe(A+ ,A*,B+ ,B*) = QE(A+,A*,B+n(A+uA*),B*n(A+u 
A*)). 

The effect of W-CONS is pictured in Figure 14. The picture shows that 
quantifiers observing W-CONS are invariant under borderline crossings 
between A- n B-, A- n B*, and A- n s+. Figure 15 pictures the corn-
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FIGURE 15 The Combined Effect of EXT and W-CONS. 

-
FIGURE 16 The Combined Effect of EXT and VS-CONS. 

-
bined effect of EXT and W-CONS. This picture shows that quantifiers 
observing these constraints are insensitive to changes in A - . 

Several strenghtenings of weak conservativity can be considered. A 
strong requirement is the following. The set of entities that definitely are 
in the positive extension of the first argument sets the stage. In other 
words: the quantifier is only sensitive in its B+, B* arguments to what 
happens inside A+. There are two variants of this: in the first variant 
(very strong conservativity), the A+ set also sets the stage for the first 
argument, so the quantifier is completely insensitive to the contents of A*. 
In the second variant (strong conservativity), A+ only sets the stage for 
the B argument. Formally: 

VS-CONS Qe(A+,A*,B+,B*) = Qe(A+,0,B+ nA+,B* nA+). 
S-CONS Qe(A+,A*,B+,B*) = Qe(A+,A*,B+ nA+,B* nA+). 

Note that VS-CONS implies S-CONS, and S-CONS in its turn implies 
W-CONS. The combined effect of EXT and VS-CONS is pictured in 
Figure 16. The combined effect of EXT and S-CONS is pictured in Figure 
17. We will see in the next section that the constraint VS-CONS can be 
ruled out immediately as being too strong. 

Another version of conservativity is considered in Benthem 1988. Van 
Benthem discusses the merits of the version of conservativity that re-

FIGURE 17 The Combined Effect of EXT and S-CONS. 

-
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FIGURE 18 The Combined Effect of EXT and M-CONS. 

B+ 
B* 
B-

--
sults from generalizing 'total intersection' An B to 'partial intersection' 
A+ n n+, A- u n-. This version of conservativity holds if the quantifier 
is indifferent to a substitution of A+ n B+ for B+ and a substitution of 
A- u n- for B-. Van Benthem's version of conservativity can be formu
lated as the following principle of mixed conservativity. The constraint is 
easy to state for quantifiers defined in terms of positive and negative exten
sions, but it becomes awkward for quantifiers defined in terms of positive 
extensions and gaps. We give both formulations, using Q for the quantifier 
corresponding to Q but defined in terms of positive and negative extensions 
rather than positive extensions and gaps. 

M-CONS (in terms of A+,A*,B+,B*) 

QE(A+,A*, B+, B*) = QE(A+ ,A* ,B+nA+, (A+nB*)U(A*nB+)u 
(A* n B*)). 

M-CONS (in terms of A+,A-,B+,B-) 

QE(A+,A-,B+,n-) = QE(A+,A-,B+ n A+, n- u A-). 

The combined effect of EXT and M-CONS is pictured in Figure 18. 

Looking at the pictural effects of the various conservativity restrictions, we 
see that there must be a fourth possibility, namely the constraint that blurs 
the distinction between A* n B- and A* n B*, while leaving the borderline 
between A* n B+ and A• n B* intact. This turns out to be the following 
principle (again we use Q for the quantifier corresponding to Q but defined 
in terms of positive and negative extensions rather than positive extensions 
and gaps): 

M'-CONS (in terms of A+,A*,B+,B*) 

QE(A+ ,A*, n+, B*) = QE(A+, A*' n+ n (A+ u A*), B* n A+). 
M'-CONS (in terms of A+,A-,B+,n-) 

QE(A+,A-,B+,n-) = QE(A+,A-,B+n(A+uA*),B-uA-uA*). 

The combined effect of EXT and M'-CONS is shown in Figure 19. Note 
that S-CONS implies both M-CONS and M'-CONS. The choice be
tween W-CONS, S-CONS, M-CONS and M'-CONS will not be made 
until later. The following table shows that all these versions of conserva-
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FIGURE 19 The Combined Effect of EXT and M'-CONS. 

--
tivity are systematically related, and that the list of possibilities that we 
have given is exhaustive. The relationships are clearest if the principles are 
formulated in term~ of positive and negative extensions. In the arguments 
of the quantifiers, S is used for the complement of S with respect to the 
domain of the quantifier. 

VS CONS 
S CONS 
MCONS 
M' CONS 
WCONS 

QE(A+,A-,B+,B-) 
QE(A+,A-,B+,B-) 
QE(A+,A-,B+,B-) 
Qe(A+,A-, B+,B-) 
QE(A+,A-,B+,B-) 

iff Qe(A+,A+,B+ n A+,B- uA+). 
iff QE(A+,A-,B+nA+,B-uA+). 
iff QE(A+,A- ,B+ n A+, B- U A-). 
iff Qe(A+,A-,B+nA-,B-uA+). 
iff Qe(A+,A-,B+nA-,B-uA-). 

The new version of isomorphy says that only the sizes of the sets A+, A*, 
s+, B* matter: 

ISOM If f is a bijection from E to E', then: Q e(A+, A*, s+, B*) = 
Qe1(J[A+], f[A'"], J[B+], f[B*]). 

Note that EXT, ISOM and the various versions of CONS state both 
verification and falsification conditions. The statements used to formulate 
these principles say that two truth values are equal: both 1, both 0, or 
both * (undefined). 

In what follows, we restrict attention to quantifier interpretations that 
observe EXT and ISOM, so that we can drop the parameters for the 
universes that the quantifier relations range over. 

4 Further Properties 
In this section we will look at three basic properties that partial quantifiers 
can have, namely closedness, persistence under growth of information and 
predictiveness. It will turn out that if one knows that the quantifiers that 
interpret the binary quantifier symbols Q in a language have one or more 
of these properties, one can say quite a lot about the expressive power of 
the language. 

In Section 1 a property of quantifiers called closedness was mentioned. 
In a total setting, a quantifier is closed if it does not itself introduce truth 
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FIGURE 20 Situations Where Closed Quantifiers Yield 1 or 0. 

value gaps. In the present partial setting this requirement takes the follow
ing natural shape. 

CL For all X, Y ~ E, Qt(X, 0, Y, 0) = 1 iff QE;(X, 0, Y, 0) = 1. 

We can also consider the property of closedness for certain given arguments 
A+, B+. A quantifier QE is closed for those arguments if Qk(A+, 0, B+, 0) = 
QE(A+, 0, B+, 0). Quantifiers not satisfying CL (for arguments A+, B+) 
are open (for arguments A+, B+). For a pictorial rendering of CL, ob
serve that a closed quantifier must yield either true or false in all situations 
satisfying Figure 20. 

We can now relate the CL property of quantifier interpretations to the 
following property of formulae. 

Definition 9 A formula cp is determinable if for any total situation s and 
any g for s, [cp]~9 = 1 iff [cp]~,9 = 1. 

If we know that all quantifiers in LQ are closed, then we can strengthen 
the totality lemma. 

Theorem 4 (Determinability) If all quantifiers in Q are interpreted as 
closed quantifiers, then any cp E CQ,"" is determinable. 

Proof. Induction on the complexity of cp. For the case where cp has the form 
Qv('l/J, x), the induction hypothesis yields that for total s and arbitrary 
g(v\d) it holds that [1/J];,9 (vld) = [1/J]~,g(vld) and [x]~g(vld) = [x]~,g(vld)' 
and therefore A* = B* = 0. But then it follows from the fact that 
Qk(A+,0,n+,0) = 1 iff Q'.E(A+,0,B+,0) = 1 that [Qv(cp,1/J)]~9 = 1 
iff [Qv(cp,tji)]~,9 = 1. • 

It follows immediately from the theorem that all quantifiers definable in 
CQ,"-' in terms of closed quantifiers will be closed. Also, we have the fol
lowing corollary. 

Corollary 5 All quantifiers definable in£,,..., observe CL. 

Note that Theorem 4 does not generalize to the languages LQ,® or 
LQ,"-',®· If Q and Q1 are interpreted as two different closed quantifiers, then 
Qx(Ax,Bx) l8l Q'x(Ax,Bx) does not define a closed quantifier, as can be 
easily seen, as follows. From the fact that Q, Q' are interpreted as different 
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FIGURE 21 Climbing Up on the::=; Ladder in a Three Valued Truth Table 

1 * 0 

;[g 
closed quantifiers we have that there are interpretations for A, B for which 

there is a total situation t with [Qx(Ax, Bx)]t = 1 and [Q'x(Ax, Bx)]t = 
0. By the semantic clause for 0, [Qx(Ax, Bx) Q9 Q'x(Ax, Bx)]t = *, so 

Qv( cp, '!/;) 0 Q' v( cp, '!/;) is not determinable, i.e., the sentence does not define 
a closed quantifier. 

The second property we are interested in is persistence under growth of 

information about the positive and/ or negative extensions of the quantifier 

arguments. First we define a relation :::; between situations. 

Definition 10 s :::; u if the following hold: 

• Es= Eu, 
• for all predicate symbols P in the language: I; (P) C I~ (P) and 

I;(P) <;;; I;:(P). 

It is easily checked that :::; is a partial order. 

Definition 11 [:::;-persistence] A formula cp is :::; persistent if for any s ::; u 

and for any assignment g for s, u the following hold: 

• ['P]s,g = 1 implies [cp]u,g = l. 

• [cp] 8 , 9 = 0 implies ['P]u,g = 0. 

This notion carries over to truth functions, as follows. Call a three valued 

truth function J (x1, ... , Xn) :::; persistent if it interprets a :::; persistent 

formula cp(p1 , ... , Pn), where the p1 , . •• , Pn are the atomic parts of i.p. Then 

it is not difficult to see that f (x 1 , ... , xn) is :::; persistent iff for no argument 

sequences yielding the function value 1 or 0 is it possible to change that 

value to something else by a series of changes of arguments x; from * to 0 

or l. 
We can simply inspect the truth tables of the sentential connectives for 

this property. Just checking if none of the steps in Figure 21 get one from a 

1 position to a non 1 position or from a 0 position to a non 0 position is all 

there is to it. This truth table inspection (see Figure 4) yields immediately 

that -., /\, V and 0 are :::; persistent, but that ,...., is not. 
It is useful to be able to impose :S persistence directly as a constraint 

on quantifier interpretations. 
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FIGURE 22 Three-valued Truth Tables. 
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::;-PERSIST If A+ £;;; c+ £;;; E, A- £;;; c- ~ E and B+ ~ D+ £;;; E, 
B- £;;; n- ~ E then: 

• Qk(A+,A•,B+,B*) = 1 implies Qk(c+,c•,D+,D*) = 1. 
• QE(A+,A*,B+,B*) = 0 implies Q'E(C+,c•,D+,D*) = 0. 

We now turn to some expressibility issues for languages with ::; persistent 
quantifiers. 

Theorem 6 If all quantifier symbols in Q are interpreted as quantifiers 
satisfying =:;-PERSIST, then any tp E LQ,® is =:;-persistent. 

Proof. Induction on the complexity of tp. The atomic formulae are ::;
persistent by the definition of of the evaluation function. Formulae of the 
forms ..,1/;, 'ljJ /\ x, 1f; V x, and 1f; ® x are :::; persistent if their components 
are, by the preceding truth table argument. The cases of \:/v'lf; and 3v'ljJ are 
left to the reader. For the binary quantifier case, suppose 'P has the form 
Qv('ljJ, x) and let s, u be situations with s :::; u. 

Let A+ be 
let A* be 
let B+ be 
let B* be 
let c+ be 
let c· be 
let n+ be 
let D* be 

{d EE I [1/;];,g(vjd) = 1}, 
{d EE I [1/>];,g(vjd) = 0, [1/l]~,g(vjd) = 1}, 
{d EE I [x];,g(vld) = l}, 
{ d E EI [x];,g(vld) = 0, [x]~,g(vjd) = 1 }, 
{d EE I [1/;]~,g(vjd) = 1}, 
{d EE I [1/J]!,g(vjd) = 0, [1/l]~,g(vjd) = l}, 
{d EE I [x]!,g(vld) = l}, 
{ d E EI [x]!,g(vld) = 0, [x]~.g(vjd) = 1 }. 

In order to be able to use the fact that QE satisfies =:;-PERSIST, we have 
to establish that A+£;;; c+ £;;; E, A-£;;; c- £;;; E, and that B+ £;;; D+ £;;; E, 
B- £;;; n- £;;;E. 

The induction hypothesis yields that [1/l]+ ( Jd) = 1 implies that [·'·]+ = 
s,g v 'f' u,g(vld) 
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FIGURE 23 1,0-Preserving Transitions for :5-Persistent Quantifiers 

1, and therefore A+ i; c+ c E. The induction hypothesis also yields 
that ['1/1]~,g(vid) = 0 implies that ['1/1]~,g(vid) = 0, and therefore that 
A- i; c- i; E. Similarly, the induction hypothesis that B+ i; D+ i; E 
and B- i; n- i; E. 

Assume [Qv(rp, '1/IHs,g = 1. 
Then [Qv(rp,'1/1)]~9 = 1, i.e., Q~(A+,A*,B+,B*) =I. 
By ::;-PERSIST of QE, it follows that Q~(c+, C*, D+, D*) = l. 
Assume [Qv(rp, .,P)]s,g = 0. 
Then [Qv(rp,'1/1)]~.9 = 0, i.e., Q£(A+,A*,B+,B*) = 0. 
By :::;-PERSIST of QE, it follows that Q£(C+, C*, v+, D*) = 0. • 

The theorem shows that provided all quantifier symbols in Q are interpreted 
as quantifiers satisfying :::;-PERSIST, any quantifier definable in .CQ,® will 
satisfy :5-PERSIST as well. Also, we have the following corollary. 

Corollary 7 All quantifiers definable in .C® satisfy :::;-PERSIST. 

The pictorial effect of :::;-persistence for binary quantifiers is given in Figure 
23. We can look at the process of finding out more about a situation s as 
a shift from s to a situation u with s :::; u. Moreover, we can picture this 
process of information growth in a step-by-step way. Finding out that an 
object in A* n B* is in fact in A+ can be pictured as a transition :::} from 
the A* n B* region to the A+ n B* region in the diagram. It is clear that 
in the case of two partial predicates there are twelve possible transitions 
of information growth. Thus, for :::;-persistent quantifiers, all twelve => 
transitions in Figure 23 must preserve truth as well as falsity. 

The third property we are interested in is predictiveness. We first define 
this property for formulae. 

Definition 12 A formula <p is predictive if for any pair of situations s, u 
with s < u and any assignment g for s and u the following holds: 

If [l.f']s,g = *and [<f']u,g = 1(0), then there is a w with s < w and [rp]w,g = 
0(1). 

What predictiveness of <p says is that if there are situations where <p is still 
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neither true nor false, and it is possible by acquiring more information to 
arrive at a situation where c.p is true (false), then things might have turned 
out differently, and we might have ended up in a situation where c.p was 
false (true). 

This notion carries over to truth functions, as follows. Call a three 
valued truth function J(x1 , ... , Xn) predictive if it interprets a predictive 
formula c.p(p1, ... , Pn), where the P1, . .. , Pn are the atomic parts of c.p. It is 
not difficult to see that J(x1, •.. , xn) is predictive iff for any change of an 
input argument x; from * to 1 that results in a function value change from 
*to 1(0), it is the case that after a change of x; from* to 0 there exists a 
number of zero or more changes of other input arguments from * to 1 or 0 
with a function value of 0(1) as a result. 

To check whether a given sentential connective expresses a predictive 
truth function we can again simply inspect the truth table for this property. 
To see if a truth table pictures a predictive truth function, simply refer to 
Figure 21 and check whether for any => step from a * position to a 1(0) 
position there also is a path of=> steps to a 0(1) position. It is easily seen 
from the truth tables that ....,, "', /\, and V are predictive, but that ® is not. 

Again, there is a corresponding notion for quantifier interpretations 
(this notion was defined already in Benthem 1988). A quantifier inter
pretation observes prediction in its first argument if the following holds. 
If, in a given situation s, the discovery about some set of objects X that 
X ~ A+ makes the quantifier true (false), and the discovery that X ~ A -
also makes the quantifier true (false), then the quantifier is already true 
(false) in s. Similarly, a quantifier observes prediction in its second argu
ment if the same holds for the B predicate. In the formal version of these 
prediction properties we lump prediction for the first and second argument 
together. 

PREDICT For all A+,A-,B+,B- ~ E,X ~A*, Y ~ B*: 

if QE(A+,A*,B+,B*) = *, 

then QE(A + U X, A* - X, B+ U Y, B* - Y) = 1 (0) 

iff QE(A+,A* -X,B+,B* - Y) = 0 (1). 

The first thing to be noted is that PREDICT does not follow from :::;
persistence: the quantifier which is true in all situations which are total 
with respect to A, B and undefined otherwise is :S-persistent, but does not 
observe PREDICT. This quantifier is defined by the following formula of 
£0: 

(17) \lx((Ax V ....,Ax)/\ (Bx V ....,Bx)) V *· 

Note, by the way, that the quantifier of (17) does satisfy VS-CONS. 

Also, $-PERSIST does not follow from PREDICT, witness the quan-
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tifier that is true in all partial situations (with respect to either A or B) 
and false in all situations which are total with respect to these predicates. 
This quantifier observes PREDICT without satisfying ~-PERSIST. It 
is defined by the following formula of [,,.._,: 

(18) 3x((,...,Ax /\,-..,-.Ax) V (,..,_,Bx/\ ,..,_,..,Bx)). 

Theorem 8 If all quantifier symbols in Q are interpreted as quantifiers 
observing PREDICT, then any formula ip of LQ,"' is predictive. 

Proof. Induction on the complexity of ip. Atomic formulae of LQ,"' are 
surely predictive. To see that predictiveness is preserved for ip of the form 
•1/J, "''If;, 1/J/\x, 1/JVx, check the truth tables in the manner explained above. 

Suppose ip has the form Vv'lj; and assume 1f; is predictive. Assume there 
is ans, g with [1/J]s,g =*,and there is ans' > s with [V1/J]s•,g = 1(0). For 
definiteness, let us assume [V7/J]s•,g = 1. Let Ebe the universe of sands'. 
We have to show that there is a w > s with [VvVi]w,g = 0. Let D be {d E 

EI [1/J]s,g(v[d) = * }. By the semantic clause for V, this set is nonempty. If 
d ED, then by the fact that [[\11/J]s• ,g = 1, we have [Vi]s• ,g(v[d) = 1, so by the 
predictiveness of 'lj; there is some situation u for which [1/l]u,g(v[d) = 0. Let U 
be the set of all such u and let ud be the situation (E, nuEU J;t, nuEU J;;). 
Let w be the situation (E,LJdEDJ;td,LJdEDJ;;d). It is then easy to check 
that w > s and [Vv'l/J]w,g = 0, so ip is predictive. 

Finally, the binary quantifier case. Suppose i.p has the form Qv(7J!, x), 
where Vi and x are predictive, and Q is interpreted as a quantifier Q which 
observes PREDICT. Assume there is some situations and assignment g 

where [Qv('lf;, x)]s,g = *· Then by the semantic clause for binary quanti
fiers, Q(A+, A*, B+, B*) = * (here the sets A+, A*, B+, B* depend on the 
parameters s, g). Assume that for some u > s, [Qv(ip, 1/;)]u,g = 1(0). Then 
by the semantic clause for binary quantifiers, Q(C+, C*, D+, D*) = 1(0) 
(here the sets c+, C*, D+, D* depend on the parameters u, g). For the 
sake of definiteness we assume Q( c+, C*, D+, D*) = 1. It is not difficult 
to see that the sets are related as follows: there are X <:;;; Y <:;;; A* and 
U <:;;; V <:;;; B* such that c+ = A+ u X, C* = A* - Y, D+ = B+ u U, 
D* = B* - V. Thus, Q(C+,c•,D+,D*) = 1 can be rewritten as (19). 

(19) Q(A+uX,A*-Y,B+uu,B*-V)=l. 

Now consider the value of Q(A+ U X, A* - X, B+ U U, B* - U). There are 
three possibilities. 

Suppose the value is 0. This gives a w > s with [cp]w,g = 0, so ip is 
predictive, and we are done. 

Suppose the value is 1. Then use the PREDICT property of Q to derive 
that Q(A+,A* - X,B+,B* - U) = 0. So again we have a w > s with 
[ip]w,g = 0, which shows ip is predictive. 
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Finally, suppose the value is *· Using Z for Y - X and W for V - U, we 
see that (19) can be rewritten as (20). 

(20) Q(A+ u X, (A* - X) - Z, B+ u U, (B* - U) - W) = 1. 

Now use the PREDICT property of Q in the other direction to see that 
(21). 

(21) Q(A+ u Y, A* - X, B+ u V, B* - U) = 0. 

So in this case as well there is a w > s with [rp]w,g = 0, and again cp is 
predictive. • 

It follows from the theorem that all quantifiers built from predictive quan
tifiers in the language .Co_,"' will themselves be predictive. Finally, we have 
the usual corollary: 

Corollary 9 All quantifiers definable in .C,.,, satisfy PREDICT. 

5 Supervaluation Quantifiers 
Supervaluation quantifiers are the ordinary generalized quantifiers, trans
posed in a three valued setting via a 'supervaluation' definition. There is 
good reason of being interested in supervaluation quantifiers, for by virtue 
of their respectable origins they can be expected to be well-behaved. By 
studying them we can find out more about how well-established intuitions 
for total quantifiers generalize in the present partial setting. 

Supervaluation quantifiers are defined in terms of quantifiers for total 
situations. However, these quantifiers for total situations need not them
selves be two valued. We therefore represent a binary quantifier on to
tal situations over a domain E as a pair of functions q+, Q0 , both in 
(P E)2 -t {O, 1}, and satisfying the condition that q+(x, Y) = 1 implies 
Q0 (X, Y) = 1. 

Definition 13 A quantifier interpretation Q is a supervaluation inter
pretation if its truth and falsity conditions are given in terms of binary 
quantifiers Q for total situations, as follows: 

• Q:k(A+, A*,B+, B*) = 1 if for all X, Y with A+ ~ X ~A+ UA* and 
B+ ~ Y ~ B+ U B*, it holds that Q~(X, Y) = 1. 

• Q£(A+,A*,B+,B*) = 0 if for all X, Y with A+~ X ~ A+uA* and 
B+ ~ Y ~ B+ u B*, it holds that Q£(X, Y) = 0. 

It is instructive to look at some examples of supervaluation quantifiers. 
Consider the supervaluation quantifier all based on the total binary quan
tifier X ~ Y. Its truth conditions are given by: 

all+(A+,A*,B+,B*) = 1 ifffor all X,Y with A+ c X c A+ UA* and 
B+ ~ Y ~ B+ u B*: X ~ Y. - -

Equivalently: 
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aH+(A.+, A*, s+, B*) = l iff A+ u .4* Cs+. 

Its falsity conditions are given by: 

all0 (.4+,A.*,B+,B•) = 0 iff for all X, Y with A+ C X CA+ UA.* and 
s+ i;:; }" i;:; s+ u B*: x ~ Y. - -

Equivalently: 

all0 (A+,A*,B+,B•) = 0 iff A.+\?; B+ U B*. 

The reader is invited to check that this quantifier is defined in C. the 
following formula. 

(22) \fx(Ax -t Bx). 

Next, consider the supervaluation quantifier at least 2 based on the total 
binary quantifier #(X n Y) 2:: 2. Its truth conditions are given by: 

atleast2+(A+, A*, B+, B*) = l iff for all X, Y with A+ c X C A+uA* 
and s+ i;:; Y i;:; B+ U B*: #(X n Y) 2:: 2. - -

Equivalently: 

atleast2+(A.+, A*, B+, B*) = l iff #(A+ n B+) 2:: 2. 

Its falsity conditions are given by: 

atleast2°(A.+, A*, B+, B*) = 0 iff for all X, Y with A.+ i;:; X i;:; A+ uA.· 
and s+ <;: Y <;: B+ UB*: #(X nY) < 2. 

Equivalently: 

atleast2°(A+, A*, s+, B*) = 0 iff #((A+ u A*) n (B+ u B*)) < 2. 

The reader is invited to check that the following £ formula defines this 
quantifier: 

(23) 3x3y((-ix ='= y) /\ A.x /\ Ay /\Bx/\ By). 

Consider supervaluation most, based on the total binary quantifier #(X n 
1") > #(X - Y). Its truth conditions are given by: 

most+(A+,A.•,B+,B*) = 1 iff for all X, Y with A+<;: X <;:A+ U A" 

and s+ <;: Y <;: s+ U B*: #(X n Y) > #(X - Y). 

Equivalently: 

most+(A.+, .4*, B+, B*) = l iff #(A+ n B+) 2:: #((A+ U A*) - B+). 

Its falsity conditions are given by: 

most 0 (A+,A*,B+,B•) = 0 ifffor all X,Y with A+<;: X <;: A+u.4* 
and s+ <;: Y ~ s+ UB*: #(XnY) ~ #(X -Y). 

Equivalently: 

most0 (A+, A*, s+, B*) = 0 iff #((A.+ u A*) n (B+ u B*)) :S #(A.+ -
(B+ u B*)). 
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In order to express this in our partial language we will have to inter
pret some binary quantifier symbol M as the quantifier most with pre
cisely the behaviour described above. Under these conditions, the formula 
M x (Ax, Bx) of £, M defines this quantifier. 

We conclude with an example of an open quantifier, the supervaluation 
quantifier the 2 based on the total quantifier X ~ Y with presupposition 
#(X) = 2. Its truth conditions are given by: 

the2+(A+,A*,B+,B*) = 1 ifffor all X,Y with A+~ X ~A+ UA* 
and B+ ~ Y ~ B+ U B*: #(X) = 2 and X ~ Y. 

Equivalently: 

the2+(A+, A*, B+, B*) = 1 iff #(A+)= 2, A*= 0, and A+ ~ B+. 

Its falsity conditions are given by: 

the2°(A+ ,A*, B+, B*) = 0 iff for all X, Y with A+ ~ X ~ A+ U A* 
and B+ ~ Y ~ B+ u B*: #(X) = 2 and X g Y. 

Equivalently: 

the2°(A+, A*, B+, B*) = 0 iff #(A+)= 2, A* = 0, and A+ g B+ UB*. 

The reader is invited to check that this quantifier is defined in £,0 by the 
following formula. 

3x3y'v'z(Az +-t (z:::: x V z:::: y)) A 'v'x(Ax--+ Bx) 
(24) ® 

3x3y'v'z(Az +-t (z:::: x V z ='= y)) A -.'v'x(Ax--+ Bx). 
To demonstrate that supervaluation quantifiers in a partial setting provide 
a litmus test for extensions of notions defined for quantifiers in a total set
ting, we will now look at the generalisations of the notions of extension, 
isomorphy and conservativity. First we show that the notions of exten
sion and isomorphy that were given in Section 2 are indeed the correct 
generalizations from the total to the partial case for the supervaluation 
quantifiers. 

Proposition 10 The supervaluation quantifier Q based on the total quan
tifier Q satisfies EXT ifj Q satisfies EXT-T. 

Proof. Suppose Q satisfies EXT. Then: 
·+ QE(X,Y) = 1 

iff (definition of Q) Qk(X, 0, Y, 0) = 1 
iff (QE satisfies EXT) Qk, (X, 0, Y, 0) = 1 for all E' ~ XU Y 
iff (definition of Q) Qt,(X, Y) = 1 for all E' ~XU Y. 

Similarly: Q£(X, Y) = 0 iff Q£, (X, Y) = 0 for all E' ~Xu Y. 

Conversely, suppose Q satisfies EXT-T. Then: 
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Qk(A+,A*,B+,B*) = 1 
iff (definition of Q) Qk(X, Y) = 1 for all X, Y with 

A+ C X C A+ u A* and s+ c Y c B+ u B* 
iff (Q satisfi~s EXT-T) Qk,(X, Y);; 1 fo-; all X, Y with 

A+ C X C A+ U A* c E' and n+ c Y c B+ u B* c E' 
iff (set theo~tic ~asoning) Qk,(X, Y) = 1-for itl1 X, Y with 

A+ ~ X ~ A+ U A* and s+ ~ Y ~ B+ u B* 
and all E' with E' 2 A+ U A* U s+ u B* 

iff (definition ofsupervaluation quantifiers) Qk,(A+,A*,B+,B*) = 1 
for all E' with E' 2 A+ u A* u n+ u B*. 

Similarly: QE;(A+,A*,B+,n•) = 0 iff Q£.,(A+,A•,B+,B*) = O 
for all E' with E' 2 A+ u A* u n+ u B*. • 

Proposition 11 The supervaluation quantifier Q based on the total quan
tifier Q satisfies ISOM iff Q satisfies ISOM-T. 

Proof Assume QE satisfies ISOM and let f be a bijection of E to E'. 
Then: 

·+ QE(X,Y) = 1 
iff (definition of Q) Qk(X, 0, Y, 0) = 1 
iff (Q satisfies ISOM) Qk,(f[X],0,J[Y],0) = 1 
iff (definition of Q) Qk, (J[X], f[Y]) = lfor all E' ~XU Y. 

Similarly: QE(X, Y) = 0 iff Q'g(f[X], f[Y]) = 0. 

Conversely, assume Q satisfies ISOM-T, and let f be a bijection of E to 
E'. Then: 

Qk(A+,A•,n+,B*) = 1 
iff (definition of Q) Qk(X, Y) = 1 for all X, Y with 

A+ ~ X ~ A+ U A* and n+ ~ Y ~ n+ U B* 
iff (ISOM-T of Q) Qk, (J[X], f[Y]) = 1 for all J[X], J[Y] with 

J[A+] ~ J[X] ~ J[A+ u A*] and f[B+] ~ J[Y] ~ f[B+ u B*] 
iff (definition of Q) Qk,(f[A+], f[A*], f[B+], J[B*]) = 1. 

Similarly: QE(A+,A*,B+,B*) = 0 iff QE:,(J[A+],f[A*],f[B+],f[B*]) = 
0. • 

The following proposition tells us which of the varieties of conservativity 
that were distinguished in Section 2 is the proper generalization for the 
case of supervaluation quantifiers. 

Proposition 12 The supervaluation quantifier Q based on the total quan
tifier Q satisfies W-CONS iff Q satisfies CONS-T. 

Proof Assume Q satisfies CONS-T. Then: 

Qk(A+,A*,B+,B*) = 1 



134 I JAN VAN EIJCK 

iff (Q supervaluation quantifier based on Q) Q:k(X, Y) = 1 for all X, Y 
with 

A+ C X c A+ u A* and B+ C Y C B+ u B* 
iff (CONS-T ofQ) Q:k(X,X n Y),;;; 1 f~ all X, Y with 

A+ C X c A+ U A* and B+ C Y C B+ U B* 
iff (set theo~tic ~asoning) Q:k(X, X -n Y) = 1 for all X, Y with 

A+ S"; X S"; A+ U A* and A+ n B+ S"; X n Y S"; (B+ n (A+ u 
A*)) u (B* n (A+ u A*)) 
iff (Q supervaluation quantifier based on Q) Q:k(A+,A*,B+ n (A+ U 

A*), B* n (A+ U A*))= 1. 

Similarly: QE(A+,A*,B+,B*) = 0 iff Q'E(A+,A*,B+ n (A+ U A*),B* n 
(A+ U A*)) = 0. 

Conversely, assume Q is a supervaluation quantifier based on Q, and Q 
satisfies W-CONS. Then: 

·+ QE(X,Y) = 1 
iff (Q supervaluation quantifier based on Q) Qk(X, 0, Y, 0) = 1 
iff (Q satisfies W-CONS) Q:k(X, 0, X n Y, 0) = 1 
iff (Q supervaluation quantifier based on Q) Qk(X, X n Y) = 1. 

Similarly, QE(X, Y) = 0 iff Q'E(X, X n Y) = 0. • 

Finally, there is a simple result about closedness. 

Proposition 13 The supervaluation quantifier Q based on the total quan
tifier Q satisfies CL iff Q satisfies CL-T. 

Proof. Immediate from the definitions. • 
It is useful to define the supervaluation property for formulae in general: 

Definition 14 A formula r.p is a supervaluation formula if for any situation 
s and any assignment g for s: 

[r.p]s,g = 1 (0) iff for all total t ~ s, [r.p]t,g = 1 (0). 

Now the following useful theorem is easy to prove: 

Theorem 14 A formula cp is a supervaluation formula iff r.p is both pre
dictive and ~ persistent. 

Proof. Assume r.p is a supervaluation formula. Then it is easy to check that 
cp is both predictive and ~ persistent. 

Assume cp is not a supervaluation formula. Then for some situation s and 
assignment g for s, either of the following must be the case. 

1. [cp] 8 ,9 = 1(0) and for some total t ~ s, [r.p]t,g #- 1 (0). 
2. [r.p] 8 ,9 = * and for all total t ~ s, [cp]t,g = 1(0). 
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In case 1 c.p is not :::; persistent, in case 2 c.p is not predictive. • 
We can immediately derive the following: 

Theorem 15 Q is a supervaluation quantifier iff Q observes both :=:;
PERSIST and PREDICT. 

Theorem 16 If all quantifier symbols in Q are interpreted as supervalua
tion quantifiers, then every c.p in .CQ is a supervaluation formula. 

Theorem 17 If all quantifier symbols in Q are interpreted as closed super
valuation quantifiers, then every c.p in .CQ is a determinable supervaluation 
formula. 

Finally, the characterization of supervaluation quantifiers as quantifiers 
satisfying :::; PERSIST and PREDICT makes it possible to rule out 
some of the conservativity notions that were distinguished in Section 3. 

For a given universe E, Tk, T~ and TE are the quantifiers on E which 
are respectively always true, always false or always undefined on E. We 
call these quantifiers trivial on E. Also, we use T 1 , T 0 and T* for the 
quantifiers which are always true, always false or always undefined, on any 
universe. These are the trivial quantifiers. Note that a quantifier Q can 
be trivial on any universe without being identical to any of T 1 , T 0 or T* ( 
Q might equal Tk on E and Te, on E', say.) 

Theorem 18 The only supervaluation quantifiers satisfying VS-CONS 
are the quantifiers which are trivial on any universe E. 

Proof Let E be a universe, and let s be the situation on E with A* = 
B* =E. Let Q be a supervaluation quantifier satisfying VS-CONS. If Q 
is false on s, then because of:::; persistence, Q will always be false on E, 
so Q = T~, i.e.,Q is trivial on E. Similarly, if Q is true on s, Q = Tk. 

Assume Q has value * on s. The one step transitions from A* n B* in 
the directions B+ and B- cannot change this value because ofVS-CONS. 
Suppose some one step transition from A* n B+ to A+ n B+ changes the 
value * to 1 (0). Then by PREDICT, the transition from A* n B+ to 
A- n B+ changes the value * to 0 (1), thus leading to a contradiction 
with VS-CONS. Thus, no one step transition from A* n B+ to A+ n B+ 
does change the value *· It follows from :::; PERSIST that no one step 
transitions from A* n B* to A+ n B* and from A+ n B* to A+ n B+ 
can change the value *· For information growth in the direction towards 
A+ n B- the reasoning is similar. Thus, in this third case Q =TE:. • 

To also rule out the constraint of strong conservativity S-CONS we need 
the property of variety, well known from standard generalized quantifier 
theory: 
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VAR-T If A ::j::. 0 then there areB, B 1 ~ E with QEAB = 1 and QEAB' = 
0. 

Here is the variant we need for the present partial setting. 

VAR If A+ ::j::. 0 then there are B+, B'+ ~ E with QE(A+, 0, B+, 0) = 1 
and QE(A+,0,B1+,0) = 0. 

The following proposition is immediate. 

Proposition 19 The supervaluation quantifier Q based on the total quan
tifier Q satisfies VAR iff Q satisfies VAR-T. 

Theorem 20 If a supervaluation quantifier satisfies VAR then it will not 
satisfy S-CONS. 

Let Q be a supervaluation quantifier satisfying S-CONS. We show that 
Q will not satisfy VAR. Let Ebe a universe, and lets be the situation on 
E with A* = B* = E. If Q is false on s, then because of:'.:: persistence, 
Q will always be false on E, so Q = T~, i.e.,Q is trivial on E, and so Q 
does not satisfy VAR. Similarly, if Q is true on s, Q = T}j;, and Q does 
not satisfy VAR. 

Assume Q has value* ons. The one step transitions from A* n B* in 
the directions B+ and B- cannot change this value because of S-CONS. 
Suppose that some one step transition from A* n B+ to A+ n B+ changes 
the value* to 1 (0). Then by PREDICT, in that situation the transition 
from A* n B+ to A- n B+ changes the value* to 0 (1). But then by S
CONS, the transition from A* n B- to A- n B- also changes the value * 
to 0 (1), so, again by PREDICT, the transition from A* nB- to A+ nB
will change the value * to 1 (0). It follows from :'.:: PERSIST that in 
the same situation the two step transition from A* n B* to A+ n B+ via 
A+ n B* and the two step transition from A* n B* to A+ n B- via A+ n B* 
will also change the value * to 1 (0). This shows that in this case too, Q 
does not satisfy VAR. Proof end 

6 Domain Persistence and Information Persistence 

The inclusion relation ~ between models is defined in the usual way: 

Definition 15 s ~ u if Es ~ Eu and for all n, for all P E pn; 

• l;}"(P) n E; = 1:(P). 
• I;;(P)nE;=I;(P). 

The definition engenders the following notion of domain persistence. 

Definition 16 A sentence r.p is ~ persistent if for all s t; u the following 
holds: [ip]. = 1 implies ['P]u = 1 and ['P]u = 0 implies [ip]. = 0. 

Domain antipersistence is the converse of domain persistence. Truth do
main (anti)persistence (~+) and falsity domain (anti)persistence (c;-) are 



QUANTIFIERS AND PARTIALITY I 137 

the two halves of domain (anti)persistence. There are corresponding prop
erties for quantifier interpretations. 

~PERSIST If x+,x-, y+, y- ~ E', then: 

• Qe(A+, A*, B+, B*) = 1 implies 

Qe1(A+ U x+,A* u X*, B+ u y+,B* u Y*) = 1, 
• QE'(A+ u x+,A* u X*,B+ u Y+,B* u Y*) = O implies 

Qe(A+,A*,B+,B*) = 0. 

It is sometimes useful to exclude cases where a formula 1.p is :S persistent 
for the trivial reason that it is always undefined in partial situations. This 
can be accomplished by means of the following definition. 

Definition 17 A formula 1.p of LQ,"',® is informative if there is a partial 
situation s and an assignment g for s such that [1.p]. = 0 or [rp]. = 1. 

Again, there is a corresponding property for quantifier interpretations. 

INFORM There are X*, Y* with X* u Y* -:j:. 0, such that 

Qe(X, X*, Y, Y*) = 1 or Qe(X,X", Y, Y*) = 0. 

An example of a quantifier which is not informative is the supervaluation 
quantifier an even number of. It is easily seen that :S persistence is only 
an interesting notion for informative quantifiers: quantifiers that are not 
informative are always ::;-persistent. The following proposition is immedi
ate. 

Proposition 21 If Q satisfies CL and PREDICT, then Q satisfies IN
FORM. 

In what follows we will sometimes abbreviate Qe, (At, A;, Et, B;) = 1 as 
sf= Q and Qe,(At,A:,Bt,B;) =0 as s=jQ. 

Proposition 22 For all closed supervaluation quantifiers Q: 

Q is truth ~ ( anti)persistent iff Q is falsity ~ ( anti)persistent. 

Proof. Assume Q is a closed and truth ~-persistent supervaluation quanti
fier, and consider a situations with s =j Q. Assume for some u ~ s, u =lj Q. 
Now u f= Q would contradict the truth ~-persistence of Q, so we have 
u ~ Q and u ¥J Q. Because Q is a closed supervaluation quantifier there 
is a total t 2: u with t f= Q. Let w be the result of adding to t what must 
be added to u to get s. We then have t ~ w and s :S w, i.e., we have the 
situation in the following picture: 
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t w 

u s 
~ 

Because Q is truth i;;;-persistent, w f= Q. But this contradicts the fact 
that Q is a supervaluation quantifier: every situation ~ s must falsify Q. 
This proves that u ~ Q for all u ~ s, i.e., Q is falsity ~-persistent. The 
reasoning for the converse and for the case of antipersistence is similar. 11 

Proposition 23 Q is trivial iff Q is ~-persistent and ~ -antipersistent. 

Proof. It is easily checked that the trivial quantifiers T 1 , T 0 and T* (al
ways true, always false or always undefined, on any universe) are both 
i;;;-persistent and i;;;-antipersistent. 

Conversely, assume Q is both ~-persistent and i;;;-antipersistent. We show 
that if there is some s with s f= Q then u f= Q for any situation u. Take 
an arbitrary situation u and let u' be the result of deleting the part of u 
outside A;t U A~. Transform s into s' by adding (deleting) elements to 
(from) A+ n B+, A+ n B*, A+ n B-, A* n B+, A* n B* and A* n B-, 
until there is a one-one map from the domain of s' onto that of u'. Now 
s' I== Q, by i;;;-persistence and i;;;-antipersistence of Q. By ISOM, u' f= Q, 
and by conservativity it follows that u f= Q. Similarly, if there is some s 
with s ~ Q then Q is false in any situation. 11 

The precise connection between s-persistence and being a supervaluation 
quantifier was given in Theorem 15. We have seen some examples already 
of quantifiers lacking :$-persistence. Example (25) gives another such case: 

(25) All entities known to be A are B. 

The quantifier in (25) might be true in some situation s but become false 
at a later stage of knowledge acquisition, in a situation s' with s :$ s'. The 
non :$-persistent quantifier of this example is the result of 'relativising' a 
supervaluation quantifier to local knowledge. In fact, this localising process 
can take place in an 'existential' and a 'universal' sense, in both arguments. 
(25) gives a 'universal' local for all. 

There also is a kind of converse to localisation, namely globalisation: 
adding the information that all is known about the first and/ or second 
argument of a quantifier. A quantified formula Qv(r.p, 'lf;) is globalized in its 
first argument by taking the following interjunction: 

(26) ( Qv( r.p, i/;) A Vv( r.p V -ir.p)) @ ( Qv( r.p, 1/;) V -iVv( r.p V -ir.p)). 
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7 Monotonicity 

To extend the monotonicity properties from the total case to the case of 
partial information, verification and falsification must again be considered 
separately. For the verification part of MON in the left argument, t
direction, we want to say that if the quantifier holds for given A+, A*, 
then it will continue to hold in a situation in which things which were A -
or A* have changed into things which are A+. Formally: if X ~ E, and 
the quantifier holds for A+, A*, then it must also hold for A+ U X, A* - X. 
Conversely, if the quantifier yields falsity for given A+, A*, and things which 
were A+ or A• have changed into things which are A - , then the quantifier 
must again yield falsity. Here are the two parts of upward left monotonicity: 

tMON+ If X ~ E and Q]?(A+,A*,B+,B*) = 1 then 

Q:~(A+ u X, A* - X,B+, B*) = 1. 
tMON° If X ~ E and QE(A+,A*,B+,B*) = 0 then 

QE(A+ - X,A* -x,n+,B•) = 0. 

Note that there is a clear difference between upward monotonicity and 
~-persistence: all supervaluation quantifiers are ~-persistent, but not all 
supervaluation quantifiers are upward monotone in their first arguments. 

The formulation of left monotonicity in the downward direction is com
pletely analogous: 

.l.MON+ If X ~ E and Q~(A+,A*,B+,B*) = 1 then 

Q~(A+ - X, A* - X,B+,B*) = 1. 
.l.MON° If X ~ E and QE(A+,A*,B+,B*) = 0 then 

QE(A+ UX,A* -x,n+,B*) = 0. 

Similarly, principles MONt and MON..j.. for monotonicity in the second 
argument can be formulated. 

The first thing we must show is that these principles are the correct gener
alizations of the monotonicity principles for the total case. As before, we 
use the supervaluation quantifiers as a litmus test. 

Proposition 24 The supervaluation quantifier Q based on the total quan
tifier Q satisfiestMON (..j..MON, MONt, MON.j..) if!Q satisfiestMON
T {.l.MON-T, MONt-T, MON..j..-T). 

Proof. We will just prove the case of tMON. Suppose Q satisfies tMON. 
Then: 

·+ QE(X,Y) = 1 
iff (definition of QE) Q]?(X, 0, Y, 0) = 1 
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only if (QE satisfies tMON) Q'k(X U Z, 0, Y, 0) = 1 for all Z ~ E 
iff {definition of Q) Q"k(X', Y) = 1 for all X' with X ~ X' ~E. 

Similarly: if QE(X, Y) = 0 then Qf:,(X', Y) = 0 for all X' ~ X. 

Conversely, suppose Q satisfies tMON-T. Then: 

Qk(A+,A•,B+,B•) = 1 
iff (definition of Q) Qk(X, Y) = 1 for all X, Y with A+ ~ X ~A+ UA* 
and B+ c Y c B+ u B* 
only if (Q satisfies tMON-T) Qk,(X', Y) = I for all X' with X ~ 
X'~E 

and all X, Y with A+ ~ X ~ E' and B+ ~ Y ~ E' 
iff (definition ofsupervaluation quantifiers) Qk(A+uz, A*-Z, B+, B*) = 
1. 

Similarly: ifQE;(A+,A*,B+,B*) = 0 then QE(A+-Z,A* -z,B+,B*) = 
0. • 

Next, we chart the connection between monotonicity and persistence prop
erties. The first connection is immediate. 

Proposition 25 

1. If Q is tMON then Q is truth :$ persistent and falsity :::; antipersis
tent in its first argument. 

2. If Q is ..I.MON then Q is truth:$ antipersistent and falsity :$ persis
tent in its first argument. 

3. If Q is MONt then Q is truth :$ persistent and falsity :::; antipersis
tent in its second argument. 

4. If Q is MON..!. then Q is truth :$ antipersistent and falsity :$ persis
tent in its second argument. 

Proposition 26 

1. Quantifiers which are ~-persistent and :$-persistent are t MON. 
2. Quantifiers which are ~-antipersistent and :$-persistent are ..I.MON. 

Proof. 1. Suppose Q is ~-persistent and :$-persistent. Because of 

(E,A+,A-,B+,B-) ~ (Eux,A+ux,A-,B+,s- UX}. 

it follows from ~ persistence of Q that 

Q(A+,A*,B+,B*) =I::} Q(A+ UX,A*,B+,B*) = 1. 

Because of :::; persistence of Q: 

Q(A+ U X,A*,B+,B*) =I::} Q(A+ UX,A* - X, B+, B*) = 1. 

This establishes the positive part of the tMON property for Q. 
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Because of 

(E- X,A+-x,A-,B+,B- -X) ~ (E,A+,A-,B+,B-), 

it follows from ~ persistence of Q that: 

Q(A+,A*, B+ ,B*) = 0 => Q(A+ - X,A*,B+,B*) = 0. 

Because of :::; persistence of Q: 

Q(A+ - X,A*,B+,B*) = 0 => Q(A+ - X,A* -x,B+,B*) = 0. 

This establishes the negative part of the tMON property for Q. It follows 
that Q is tMON. The reasoning for 26.2 is similar. • 

Proposition 27 

l. tMON and 5,-persistent quantifiers are ~-persistent. 
2 . ..I.MON and 5,-persistent quantifiers are c;:;,-antipersistent. 

Proof. We only prove 1, the proof of 2 being analogous. Assume Q is 
tMON and ~-persistent, but not not c;;,-persistent. Then there are s, u 
with s ~ u and either QE. (At, A:, Bt, B;) = 1 and QE,. (At, A:, Bt, B:) '# 
1, or QEu(At,A~,B;!",B:) = 0 and QE.(At,A:,Bt,B;) '# 0. Suppose 
the former is the case. Let u' be the situation (Eu, At, A;, Bt, B;). Then 
u' 5: u, and because Q is 5,-persistent, (27) holds. 

(27) QEu (At' A;' Bt' Eu - (Bt u B;)) =Pl. 
Put X = A:t - At. Then (27) can be rewritten as (28). 

(28) QE.ux (At U X, A:, Bt, B; U X) '# 1. 

It follows from QE.(At,A;,Bt,B;) = 1 and EXT, W-CONS that 
QE.ux(At, A;, Bt, B; U X) = l. By tMON of Q, it follows from this 
that QE.ux(At U X, A;, Bt, B; U X) = 1, and contradiction with (28). 

The assumption of QEJA!, A:, B;!°, B:) = 0 and QE. (At, A;, B;l-, B;) -=f. 
0 leads to a contradiction with tMON in a similar way. • 

The next proposition combines the previous two. 

Proposition 28 For all~ persistent Q (and a fortiori for all supervalua
tion quantifiers Q): 

1. Q is tMON iff Q is ~-persistent. 
2. Q is ..I.MON iff Q is ~-antipersistent. 

The proposition is relevant for the semantics of perception reports. 

(29) I saw John prepare a sandwich. 

Perception verbs such as 'see' in (29) can be interpreted as relations R 
between individuals (perceivers) and situations (perceived scenes) for which 
principle S-INCL holds. 
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S-INCL For all R denoting relations between perceivers p and perceived 
situations s: if pRs holds in situation s' then s ~ s'. 

In other words: if in a given situation some scene is perceived by someone 
in that situation, then the scene is included in the situation. 

The fact that proper names, viewed as properties of properties, are ~ 
persistent explains the entailment relation between (29) and (30). 

(30) John prepared a sandwich. 

Similarly, Proposition 28 explains the entailment between (31) (from a 
Dutch children's song) and (32). 

(31) I saw two bears prepare a sandwich. 

(32) Two bears prepared a sandwich. 

Pace Alice's White King, (34) does not follow from (33). Again, this non
entailment is explained by Proposition 28. 

(33) I see nobody on the road. 

(34) Nobody is on the road. 

In case the reader wonders why the reasoning from Proposition 26 cannot be 
used to establish a connection between ~-persistence and monotonicity in 
the second argument, the answer is that in this case the connection is spoilt 
by (weak) conservativity. If X ~A-, then (B+ U X) n (A+ U A*)= B+, 
so adding a set X of individuals from A- to B+ does not change the truth 
or falsity conditions of a (weakly) conservative quantifier. 

There is a nice connection between monotonicity properties and a property 
attesting to the possibility of knowledge acquisition in the face of basic 
ignorance. We can ask ourselves which quantifiers remain true or false 
when individuals are added to the domain that are in the gap extensions of 
both the first and the second quantifier argument. Here is a formal version 
of this requirement. 

IGNOR (in terms of A+,A.,B+,B*) 

Q(A+,A*,B+,B*) = 1 (0) and X nA+ nB+ = 0 => 
Q(A+, A* u X, B+,B* U X) = 1 (0). 

IGNOR (in terms of A+,A-,B+,B-) 

QE(A+,A-,B+,B-) = 1 (0) and X n E = 0 => 
QEux(A+,A- ,B+,B-) = 1 (0). 

The converse of IGNOR follows immediately from ~ PERSIST. The 
connection with monotonicity is given by the next proposition. 

Proposition 29 tMON implies positive IGNOR. .J..MON implies neg
ative IGNOR. 
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Proof. 

Q+(A+,A•,B+,B*) = 1 
=> ( tMON} Q+(A+,A• ux,B+,B*) = 1 
{::} (W-CONS) Q+(A+,A* ux,B+,B* nX) = 1. 

The proof of the second claim is similar. • 
It is not difficult to show that tMON does not imply negative IGNOR, 
nor does .j.MON imply positive IGNOR. It follows from these facts and 
the above proposition that it is possible to verify Some A are B or Not all 
A are B in a world which is only partially known, but impossible to falsify 
such claims in such a world. By the same token, it is possible to falsify All 
A are B, At most n A are B, and no A are B in a fathomless world, but 
impossible to verify such claims. Contemporary philosophy of science bears 
witness to the fact that one may spin long yarns of philosophical argument 
starting from such simple logical observations. 

We end with a connection between monotonicity and the notion M-CONS 
from Section 3. 

Proposition 30 tMON, ::::; PERSIST and IGNOR imply the positive 
part of M-CONS; 
.j.MON, 5 PERSIST andIGNOR imply the negative part o/M-CONS. 

Proof. 

Qt(A+,A-,B+,B-) = 1 
iff(=>: 5 PERSIST,<=:: tMON) Qk(A+,A-uA+,B+,B-) = 1 

iff (W-CONS) Q"ft(A+,A- u A+,B+ n A- u A+,B- u A- u A+)= 1 

iffQv+(A+ A-uA+ B+nA+ B-uA-uA+)=l 
E ' ' ' 

iff (EXT) Qv+ - (A+ A- B+ n A+ B- u A-)= 1 
E-A+ ' ' ' 

iff(=>: IGNOR, <=:: 5 PERSIST) Q°k(A+,A-,B+nA+,B-uA-) = 
1. 

The second claim is proved similarly. 

8 Conclusion 

• 

We have sketched the relational theory of three valued generalized quanti
fiers. It emerged that the supervaluation approach generates a class of well 
behaved three valued quantifiers. The supervaluation perspective made it 
also possible to generalize a number of quantifier intuitions from the total 
to the partial case. But the partial perspective also gave rise to a number 
of new intuitions, with information persistence as the most important. 

The theory of total quantifiers makes use of tree representations and 
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semantic automata to represent quantifiers. Extensions of these notions 
to cover the partial case can easily be given. On the application side, 
one would like to know more about the ways in which logical properties 
of quantified expressions influence linguistic usage. Also, a link should 
be established between partial generalized quantifier theory and theories 
of vagueness for natural language expressions, e.g. the theory of vague 
adjectives. 
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