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1
Introduction and outline

The PhD research that is collected in this thesis is dedicated to the development of
novel tomographic reconstruction methods for characterizing both structural and
compositional information of nanomaterials. In this chapter, first an introduction
is given to the two imaging modalities in electron tomography that are central to
this thesis: high angle annular dark field scanning transmission electron microscopy
(HAADF-STEM) and energy dispersive X-ray spectroscopy (EDS). Second, we
formulate the mathematics for the problem of tomographic reconstruction. Finally,
we discuss the challenges for performing accurate tomographic reconstructions for
individual chemical elements based on these modalities, and give an overview for
several methods developed during the PhD research.

1.1 Electron microscopy and tomography

An electron microscope (EM) uses accelerated electrons instead of visible light
to image materials at the nanoscale. Conventional EM is based on the same
principle as optical microscopy, but with an electron source and electromagnetic
lenses. As illustrated in Figure 1.1, a parallel electron beam is formed and used
to illuminate the sample. An image is then formed and projected on the camera.
This conventional imaging mode is called transmission electron microscopy (TEM).
At present, the highest resolution realized in high-resolution TEM is around 0.5
[Kis+08].

It is also possible to focus the electron beam to an atomic-size probe, and use
the probe to scan across the sample. The image is formed by measuring the inten-
sity of transmitted or scattered electrons at every scanning position. This imaging
mode is called scanning transmission electron microscopy (STEM). One popular
technique to detect the intensity of electrons in STEM is high angle annular dark
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2 CHAPTER 1. INTRODUCTION AND OUTLINE

field (HAADF). As Figure 1.2 shows, an annular detector collects the electrons
that are scattered to high collection angles (> 60 mrad). Ideally, the intensity of
the electrons scattered to such high angles increases monotonically with respect
to the mass and thickness of materials. In comparison, when imaging crystalline
materials, TEM images are affected by diffraction of electons in addition to the
sample thickness, which makes interpretation difficult [Küb+05].

Figure 1.1: Overview of a TEM. Accelerated electrons are generated by the electron gun. In
TEM mode, a parallel electron beam is formed by the condenser lenses and used to illuminate
the sample placed on the sample holder. The objective lenses form an image of the sample. In
STEM mode, the electron beam is focused to a small probe by a set of condenser lenses and
an objective lens. The probe is used to scan across the sample. The intensity of transmitted or
scattered electrons is measured as the image intensity at each scanning position. (The pictures
are adapted from wikipedia.org.)

The monotonic relationship between signal intensities and sample thickness is
an important property of HAADF-STEM [Mid+01]. Consider a sample of thick-
ness t with homogeneous attenuation coefficient µ as illustrated in Figure 1.3.
Assume that the HAADF detector collects almost all the electrons scattered to
angles higher than the inner collection angle of the annular detector, which are
complementary to the electrons passing through the hole. According to the Beer-
Lambert law, the intensity of electrons that are transmitted or scattered to small
angles is approximately given by:

It = I0 exp(−µt), (1.1)

where I0 is the intensity of the incident electron beam. As a result, the comple-
mentary HAADF signal intensity I is:

I = I0 − I0 exp(−µt). (1.2)
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Figure 1.2: Schematic of simultaneous HAADF and EDS imaging in STEM mode. The focused
electron probe moves in directions perpendicular to the beam direction. The HAADF detector
collects the electrons scattered to high angles. The four EDS detectors are positioned symmet-
rically around the sample, and collect the X-rays emitted from the sample. The sample can be
tilted by rotating the sample holder (not shown in this figure) for tomographic experiments.

Figure 1.3: Electrons scattered by a thin specimen. The specimen has a thickness of t and a
homogeneous density. An incident beam with intensity I0 is focused on the sample. It, which
is the intensity of electrons transmitted or scattered to angles smaller than the inner collection
angle θin, can be modeled by the Beer-Lambert law. Assuming that the electrons scattered to
angles higher than the outer collection angle θout are few, the intensity of electrons collected by
the detector is given by I0 − It.

For small µt, a linear approximation of Eq.1.2 can be derived using the Taylor
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expansion:

I ≈ I0µt, (1.3)

which indicates that the signal intensity is approximately linearly proportional to
the sample thickness weighted by the attenuation coefficient [MW03]. In practice,
the validity of the linearity assumption is affected by a variety of factors, such as
the atomic number and thickness of sample, the inner and outer collection angle
of the annular detector as well as the accelerating voltage [AR16].

Figure 1.4: HAADF-STEM for a Au-Ag nanoparticle. Left: volume rendering of the tomographic
reconstruction of the sample. Middle: inner structure of the reconstruction. Right: a HAADF-
STEM projection image for the nanoparticle. (The pictures are adapted from [Zan+16a].
The sample is prepared by the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain. The
HAADF-STEM projection data is provided by EMAT, University of Antwerp, Belgium.)

Another property of HAADF-STEM is that the signal intensity also depends
on the atomic number Z of the projected materials, which is referred to as the Z-
contrast. Based on empirical studies, the attenuation coefficient µ is proportional
to Zα, where α approaches 2 for an ideal detector [Mid+01; Tre11]. The image
contrast depending on Z can show the variation of chemical composition and be
used for compositional analysis.

However, when the difference in Z is small or chemical elements are mixed,
compositional analysis based on HAADF-STEM is difficult. For example, Figure
1.4 shows the HAADF-STEM image of a nanoparticle composed of Au (Z = 79)
and Ag (Z = 47) that are alloyed. It is difficult to separate the Au and Ag in the
projection image, while knowing their concentrations is essential for understanding
the sample.

In these situations, it is possible to apply spectroscopic techniques that resolve
chemical information based on analyzing the energy of radiation (electrons, X-rays,
etc.). The spectroscopic techniques that can be combined with STEM include en-
ergy dispersive X-ray spectroscopy (EDS) [Gen+12; Lep+13; CM17] and electron
energy loss spectroscopy (EELS) [Jar+09; Yed+12; Hab+14]. Both techniques
can be used for chemical mapping since the signal intensities are related to the
concentrations of chemical elements, and have their own strengths and weaknesses.
For example, EDS is more suitable for elements with high atomic numbers com-
pared to EELS, and vice versa. In this thesis we focus on EDS, motivated by the
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challenge of imaging semiconductor components in 3D at the nanoscale. In this
application domain the key chemical elements match well with the applicability
scope of EDS. Moreover, the methods developed in this thesis potentially can be
adapted for EELS, as both techniques yield element-specific images.

Figure 1.2 also shows a modern EDS detection system with four energy-resolved
X-ray detectors positioned symmetrically around the sample. For each scanning
position in STEM mode, the energy-resolved detectors collect the X-rays emitted
by the atoms that are excited by the electron beam. The detectors also measure
the energy of every incoming X-ray photon, and generate raw data as a three-
dimensional (3D) data cube that is illustrated in Figure 1.5. In each pixel of the
2D array of the data cube, there is a spectrum of X-ray counts for over 1000
energy channels. Such a data cube is called a spectral image. Figure 1.6 shows
examples of EDS spectra for one pixel and for all X-rays integrated over all pixels.
From the spectral image, characteristic X-rays, which are emitted from transitions
between different electronic shells of a certain chemical element, are integrated
over a narrow band of energy channels to form an image. The image can be seen
as the 2D projection of the concentration of an element, and is referred to as the
elemental map [WC16, Chapter 16]. Figure 1.7 shows the elemental maps for Au
and Ag of the nanoparticle in Figure 1.4.

While HAADF-STEM gives the projection of all atoms, EDS yields multiple
elemental maps, each showing the concentration of a single element. For a thin-film
sample with a uniform thickness, assuming that the variation of electron intensity
and the interaction between the generated X-rays and the sample are negligible,
the image intensity Ia, which is the intensity of characteristic X-rays for element
a, is proportional to the sample thickness t and the concentration of the element
[WW06]. This relationship is expressed as:

Ia = ζaDCaρt, (1.4)

where ζa is the sensitivity factor, D is the total electron dose, Ca is the concentra-
tion of chemical element a, ρ is the density. The mass-thickness of element a is
given by Caρt.

The sensitivity factor ζ is defined in the so-called ζ-factor method for quanti-
fying the elemental compositions in a sample based on the EDS signal intensity
[WW06]. Theoretically, the ζ factor is determined by the ionization cross-section,
the fluorescence yield, the relative transition probability, the atomic weight, the
detector collection-angle, and the detector efficiency. In practice, the value for
a specific element can be estimated using a pure-element standard sample, given
that the signal intensity, the total electron dose, and the mass-thickness are known.
Quantifying the elemental compositions based on the ζ-factor is a relatively recent
development. A more common approach is the so-called Cliff-Lorimer approach,
which relates the the signal intensities to the elemental compositions but not to the
concentration of a specific element [CL75]. Moreover, the accuracy of this method
is limited when lacking calibration samples of which the compositions are accu-
rately known. The accuracy of the ζ-factor method was also limited in the past
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due to the difficulty in precisely measuring the thickness of the standard sample.
Zanaga et al. propose to estimate the ζ factors based on thickness measured using
electron tomography which makes the ζ-factor method more reliable and feasible
[Zan+16b].

Figure 1.5: Schematic of the EDS data cube acquired in STEM mode. The data cube (spectral
image) consists of a full spectrum in each pixel in a 2D array. Each spectrum contains the X-ray
intensities at 1000 or more energy channels.

Figure 1.6: EDS X-ray spectra for the Au-Ag nanoparticle showing in Figure 1.4. Left: all
counts integrated over all pixels. Right: X-ray counts of one pixel of the 128×128×1024 spectral
image. The dashed lines indicate the characteristic energies for Au and Ag. Elemental maps
are extracted by integrating X-ray counts over the energy channels near the characteristic lines.
(The EDS data is provided by EMAT, University of Antwerp.)

The most critical issue for EDS mapping is the strong noise, as the examples
in Figure 1.7 show. The noise is mainly due to the small number of X-ray photons
being detected (e.g. less than 10 counts per pixel) [WC16, Chapter 16]. A key
factor limiting the X-ray detection is the small area covered by detectors. While
the possibilities of X-ray emission in all directions are the same, the maximal
total solid angle covered by the four detectors is about 0.7 sr, which means only
about 6% of the emitted X-rays can be collected [Kra+17] compared to the full
4 π emission solid angle. The signal-to-noise ratio can be enhanced by applying a
higher electron dose. This can be realized by increasing the scanning time and/or
the beam current. However, a long scanning time is often accompanied by spatial
drift of the sample, and increasing the beam current is limited by how much current
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Figure 1.7: EDS elemental maps for Au (right) and Ag (left) of the Au-Ag nanoparticle showing
in Figure 1.4, before (upper row) and after (lower row) being smoothed by a Gaussian filter.
Note that the X-ray intensities are low (less than 25 counts), and therefore strong Poisson noise
is present. (The EDS data is provided by EMAT, University of Antwerp.)

the sample can withstand.
So far, we have discussed acquiring 2D projection images using HAADF-STEM

and EDS. In many research domains, such as research on the production of semicon-
ductors, characterizing the 3D structure is crucial for understanding the physical
properties. 3D imaging for nanomaterials is often performed by electron tomogra-
phy (ET) – a technique to reconstruct 3D structures from a series of 2D projection
images taken in different directions [SM12], [WC16, Chapter 12]. In an experi-
ment of ET, the sample is placed on a holder which can be tilted to a certain range
of angles, as illustrated in Figure 1.2 and Figure 1.8. At a certain tilt angle, a pro-
jection/spectral image is acquired using HAADF-STEM/EDS/EELS, after which
the sample is rotated, and another image is acquired. At the end of the experi-
ment, one or more tilt series of images are acquired. From a tilt series, a 3D object
can be obtained using a reconstruction algorithm. Reconstruction algorithms are
based on the assumption that the image intensities are proportional to the in-
tegration of some properties of the sample. The assumption is referred to as the
projection requirement. The projection requirement is satisfied for HAADF-STEM
and EDS if the assumptions for the monotonic relationships are valid (Eq.1.3 for
HAADF-STEM and Eq.1.4 for EDS).
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Figure 1.8: A series of HAADF-STEM images for a tomographic experiment in which a sample
is tilted over an angular range of ±60◦. For HAADF-STEM tomography, the increment of tilt
is usually 1◦ or 2◦

1.2 Mathematics of tomography

In this section, we will introduce the mathematical model for tomographic imaging,
which is fundamental for developing novel reconstruction algorithms. Consider an
electron probe with a small convergence angle (e.g. 10 mrad) and a large depth
of field (e.g. 25 nm). We can approximate the probe as a ray and consider the
STEM imaging process as a parallel beam tomographic model. When the sample
is rotated over a single axis, the data collected for each slice orthogonal to the
rotation axis is independent from the other slices. In this case, the 3D parallel
beam model can be considered as a stack of 2D parallel beam models. In this
section, we will discuss the 2D model.

1.2.1 The Radon transform
The parallel beam model can be mathematically described by the Radon transform.
The Radon transform for 2D parallel beam is illustrated in Figure 1.9. Consider
the object to be reconstructed as a function f : R2 → R. The projection data
for the sample tilted by angle θ and the ray at scanning position u is a function
P : [0, π] × R → R. Radon transform maps f to P as the integral of f along the
line lθ,u described by u = x cos θ + y sin θ, where x and y correspond to the spatial
coordinates centered at the rotating axis. The projection Pθ(u) of f(x, y) is given
by:
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Figure 1.9: Schematic of the Radon transform of function f in 2D. The sample is tilted by angle
θ. The ray at scanning position u is described by the line u = x cos θ + y sin θ. The projection
data Pθ(u) of f(x, y) is given by the line integral of f(x, y) along the line.

Pθ(u) =
∫

lθ,u

f(x, y)ds, (1.5)

where s is the length along line lθ,u.
In practice the data are measured as a discrete sampling of the continuous

model, which is illustrated in Figure 1.10. The projection data are expressed as
a vector p ∈ RM , where M denotes the total number of pixels for all tilt angles
combined. Consider the sample to be located in a 2D space discretized into N
pixels as an image. The reconstructed unknowns are then expressed as a vector
x ∈ RN , each entry of which corresponds to a pixel value of the 2D image. For
each ray i, the projection data pi is then modeled as the weighted sum of the pixel
values xj along the ray, which is expressed as:

pi =
N∑
j

wijxj . (1.6)

Each weight wij is determined by the area of pixel j intersected with ray i. The
full set of equations for all rays is:

p = Wx. (1.7)

The multiplication of matrix W = {wij} and x is called the forward projection of
x. The goal of tomographic reconstruction is to estimate the unknowns x from the
data p.

1.2.2 Reconstruction algorithms
One group of reconstruction algorithms is based on inverting the Radon transform
Eq.1.5 to find an analytical expression for f(x, y), which is known as the analytical
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Figure 1.10: Schematic of the discrete linear projection model in 2D. The unknown corresponding
to pixel j is denoted by xj . The measurement data corresponding to the ith ray is denoted by
pi. The contribution of xj to pi is given by wijxj , where wij is determined by the area of pixel
j intersected with ray i (indicated in bold).

reconstruction methods. A widely used analytical reconstruction method is filtered
backprojection (FBP) [KS88, Chapter 3]. The FBP method has the advantage of
being computationally efficient, as it only consists of a convolution operation and
an integration operation. However, the analytical methods are based on the as-
sumption that there is an infinite number of projections available. When only a
limited number of projections are acquired, artifacts will appear in the reconstruc-
tion. Another group of reconstruction methods which are based on inverting the
discrete model Eq.1.7 is called algebraic reconstruction methods. These methods
tend to handle the problem of limited number of projections better than the an-
alytical methods, as they do not assume that infinite number of projections are
available. The unknown x is usually determined such that if we compute the
projection of it, the data discrepancy D(Wx, p) between the measured p and the
reprojected data Wx is minimized, which is expressed as:

x∗ = argmin
x

D(Wx, p). (1.8)

The data discrepancy is often defined as the squared l2 norm of the difference
between p and Wx: ∥ Wx − p ∥2

2. The minimization problem can be solved by
iterative algorithms, such as algebraic reconstruction technique (ART) [GBH70]
and simultaneous iterative reconstruction technique (SIRT) [GB08]. Compared to
the analytical algorithms, the algebraic algorithms result in fewer artifacts when
data are missing or noisy. Over-fitting to noise can be prevented by stopping the
algorithm early (e.g. at tens of iterations), however, at the cost of not being able
to reconstruct fine structures [ENH10].

In addition to the quadratic functional, non-quadratic functionals such as Stu-
dent’s t, Kullback–Leibler divergence and negative log-likelihood have been exam-
ined extensively for tomographic reconstruction considering the statistical proper-
ties of the measurement data. In particular, the Kullback–Leibler divergence and
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the negative log-likelihood are often used for data that are Poisson noise limited
[HW16; ER07], while the quadratic functional is based on Gaussian noise model.
Minimizing the data discrepancy often converges to the same result as maximizing
the likelihood for measuring the data. Examples of the latter approach are the
maximum likelihood estimation (MLE) and the maximum a posteriori (MAP) esti-
mation [SV82; Gre90], which are often applied on emission tomography assuming
that the measured data are random variables obeying certain statistical models.

To yield more accurate reconstructions, a popular approach is to incorporate
prior knowledge about the reconstructed object [BO13; Bat+09]. The prior knowl-
edge is often implemented as a regularization term added to the minimization
problem:

x∗ = argmin
x

D(Wx, p) + λR(x). (1.9)

The regularization term R(x) is a functional promoting some properties of the
reconstructed image, and λ indicates the weight of the regularization term. A
well-known example is the total variation (TV) regularization [BO13]. The recon-
structed image with penalized TV tends to possess piecewise constant features.

1.3 Challenges and overview
After introducing the mathematics of tomography, we now look at the actual tomo-
graphic experiment based on simultaneously acquired HAADF-STEM and EDS.
Both imaging modalities have their own advantages and disadvantages. The noise
in EDS mapping is a critical issue for computing accurate tomographic reconstruc-
tions, as real measurement data deviate from the ideal projection data defined in
Eq.1.7. In many EDS tomographic experiments, the noise issue is addressed by
image filtering before and after reconstruction at the cost of reducing resolution
[Zan+16a; Sla+16a]. The noise can also be reduced using multivariate statisti-
cal analysis methods which separate the noise from the spectral image, but with
limited effectiveness when the noise dominates the data [Bur+16; Jol02].

Moreover, the number of tilts in EDS tomography is usually limited (e.g. 29
tilts for ±70◦), as it takes a long time to acquire enough X-rays in every scan
(about 5 to 10 mins). Consequently, it is difficult to reconstruct accurately with
information from many angles missing. Furthermore, the projection matrix W
is often ill-conditioned. This means that even small noise in measurement data
can cause large errors in the reconstruction. The strong noise, together with the
limited number of tilts and the ill-conditioned matrix, poses strong challenges for
EDS tomographic reconstruction. Other challenges in EDS tomography include
detector shadowing [Sla+16b; Sla+16a] as well as X-ray absorption and fluores-
cence [WW06]. The sample holder causes shadowing of X-rays on the detector,
and consequently the signal intensity varies as a function of the tilt angles. To
addressed the influence on the reliability of the tomographic reconstruction, novel
correction methods have been proposed, such as adjusting the acquisition time
at different tilts based on the detector geometry [Kra+17] and compensating the
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angle-dependency in combination with HAADF-STEM tomography [Zan+16a]. In
addition, an X-ray absorption correction method for EDS tomography has been
proposed [Bur+16], showing improved reconstruction results. Although these ef-
fects are not the focus of this thesis, they should be carefully considered especially
when conducting quantitative EDS tomography.

Compared to EDS, HAADF-STEM can yield a larger number of tilt images
(e.g. 141 tilts for ±70◦) with much higher signal-to-noise ratios, and consequently
can lead to reconstructions with less noise and higher resolution. In addition, vari-
ation of chemical elements can be characterized based on the HAADF reconstruc-
tion as long as the difference in contrast is mainly contributed by the difference
in Z. Thus, it is possible to obtain element-specific 3D objects by segmenting the
HAADF-STEM tomographic reconstruction based on the Z contrast. However,
this is only applicable to samples of segmentable compositions with large difference
in Z.

Table 1.1 compares some properties of HAADF-STEM and EDS tomography in
terms of the chemical information, noise, and the number of tilts. These properties
of the two simultaneously performed modalities are complementary to each other.
Attempts have been made to combine HAADF-STEM tomography and EDS to-
mography. For instance, HAADF-STEM tomography has been combined with
EDS tomography for projection alignment, joint analysis and thickness estimation
[Gor+14; Bur+16; Kra+17]. In particular, an approach has been proposed to com-
bine HAADF-STEM and EDS tomography to acquire quantified element-specific
reconstructions [Zan+16a]. In this approach, the HAADF-STEM reconstruction is
computed to estimate the sample thickness which is then combined with the ratio
maps of elements obtained by EDS. Given these promising results, the overarching
goal of this thesis is to explore novel methods that combine HAADF-STEM and
EDS tomography to acquire accurate and element-specific reconstructions.

Table 1.1: HAADF-STEM tomography vs EDS tomography

HAADF-STEM EDS
Chemical information mixed element-specific

Noise level low high
Number of tilts large small

As it turns out, to successfully combine the strengths of HAADF-STEM and
EDS tomography, many challenges must be solved, including developing novel
algorithms that can combine both modalities, making these advanced approaches
generally applicable, as well as solid modeling of the image formation. This thesis
mainly addresses four challenges as follows.

First, knowing that EDS maps each chemical element and HAADF-STEM
maps all elements combined, one can combine the two modalities in one recon-
struction process.The simultaneous reconstruction process needs to be based on a
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tomographic model that is consistent with both modalities.
In Chapter 2, we introduce a technique to reconstruct for all elements simulta-

neously from EDS elemental maps and HAADF-STEM projection images, which is
named HAADF-EDS bimodal tomography (HEBT). We assume that the HAADF-
STEM projection images are the weighted sum of EDS maps for all present chem-
ical elements. We therefore introduce a linear sum constraint to a reconstruction
process for all elements, which can be solved using an iterative algorithm.

Second, while HEBT requires EDS mapping for all the chemical elements im-
aged by HAADF-STEM, which may be impossible sometimes, we need a different
combining strategy which can be applied to one element each time. A clear combin-
ing strategy is to encourage the Z-contrast reconstruction and the element-specific
reconstruction to preserve consistent image features such as common edges. The
remaining questions include what feature to exploit and how to incorporate the
consistency in the reconstruction process.

In Chapter 3, HAADF-STEM and EDS is combined in a way different to
HEBT. We penalize so-called total nuclear variation (TNV) of a Z-contrast recon-
struction made from HAADF-STEM data and an element-specific reconstruction
made from EDS data, to encourage common edge locations and parallel/antipar-
allel gradients. This combining approach can be applied to the reconstruction for
one element each time.

Third, in addition to combining modalities, many advanced reconstruction
methods can also be applied to improve the accuracy of reconstruction. However,
these methods are based on different assumptions for the sample and the imaging
process, and a clear guideline for deciding which algorithms to use is still missing
in the field of HAADF-STEM + EDS tomography. It is also possible to combine al-
gorithms with different strengths and weaknesses in one reconstruction framework
to obtain optimal results. Therefore, a framework for applying the algorithms
needs to be developed.

In Chapter 4, we propose the framework to combine different advanced recon-
struction algorithms for HAADF-STEM + EDS tomography. Algorithmic recipes
composed of different ingredients can be applied to augment tomographic recon-
struction. The ingredients mainly belong to three modules: statistical modeling,
variational regularization, and HEBT. To incorporate the correct prior knowledge
and physical constraints, we also provide guidelines to tailor recipes based on the
experimental conditions and the samples.

Finally, the linear integral model is fundamental for combined tomographic re-
construction. However, the linearity assumption can be invalid for thick samples.
For EDS, the nonlinear signals are mainly caused by the X-ray absorption of the
sample. For HAADF-STEM, when the sample is thick, the signal intensity damps
at large thickness as illustrated in Eq.1.2. While numerical methods to correct the
absorption in EDS tomography have been proposed [Bur+16], numerical meth-
ods that require no extra experimental step to correct the intensity damping in
HAADF-STEM tomography are missing.

To address the nonlinear damping effects in HAADF-STEM data, we propose
an automatic correction algorithm for samples consisting of homogeneous compo-
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sitions, which is described in Chapter 5. The correction algorithm only requires
the projection images as input. A nonlinear model is estimated based on the re-
constructed structure as well as the errors between linearly re-projected data and
measurement data. It is possible to use the correction algorithm together with
the correction for X-ray absorption to improve the accuracy of HAADF-STEM +
EDS tomography.



2
HAADF-EDS bimodal

tomography

2.1 Introduction
Electron tomography (ET) is nowadays commonly used in materials science to
characterize the three-dimensional (3D) structure and composition of nanomateri-
als starting from a tilt series of two-dimensional (2D) projection images [Her09].
Typically, the projection images for ET in materials science are obtained using
high angle annular dark field (HAADF) scanning transmission electron microscopy
(STEM) [Mid+01; MW03]. Images acquired using HAADF-STEM are called Z-
contrast images because the projected intensity is related to the average atomic
number that is integrated along the projection direction [Mid+01; Küb+05]. Con-
sequently, the chemical composition can be characterized in 3D. However, when
investigating heteronanostructures with small differences in Z, spectroscopic tech-
niques are required to investigate the 3D distributions of the different chemical
elements.

Previously, both energy dispersive X-ray spectroscopy (EDS) [Sag+07; Gen+12;
Lep+13; Sla+16b] and electron energy loss spectroscopy (EELS) [Jar+09; Yed+12;
Yed+14] have been used in combination with tomographic reconstruction tech-
niques. Both techniques require similar computational steps to produce element-

This chapter is based on:
Z. Zhong, B. Goris, R. Schoenmakers, S. Bals, and K. J. Batenburg. “A bimodal
tomographic reconstruction technique combining EDS-STEM and HAADF-STEM”.
Ultramicroscopy 174 (2017), pp. 35–45.
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specific images (elemental maps) that give the 2D projections of a chemical ele-
ment, which also satisfy the projection requirement for tomography under certain
circumstances [Sla+16b; Yed+12]. In this study, we only focus on EDS-STEM
tomography.

HAADF-STEM tomography and EDS-STEM tomography are highly comple-
mentary techniques that each have advantages and disadvantages. The major
advantage of HAADF-STEM tomography in comparison to EDS-STEM tomogra-
phy is that it yields reconstructions with a relatively high signal to noise ratio
(SNR). However, the reconstructed image intensities contain only aggregate in-
formation of all elements, while the EDS-STEM technique yields element-specific
reconstructions. So far, HAADF-STEM has been combined with EDS-STEM in
ET in terms of tilt series alignment [Gor+14], density estimation [Bur+16] or
thickness estimation [Zan+16a]. It is highly desirable to develop reconstruction
techniques that can exploit the favorable properties of these complementary tech-
niques simultaneously. The concept of “multimodal imaging” has been introduced
in the field of medical imaging, where the data from several imaging modalities
such as PET, SPECT, CT and MRI are combined in a single joint reconstruction
procedure [ZMA10].

In this chapter, we introduce the multi-modal imaging concept to ET, by
proposing a novel HAADF-EDS bimodal tomographic (HEBT) reconstruction
technique that simultaneously reconstructs from projection images acquired by
two complementary imaging modalities. In this method, chemical elements are
linked in the reconstruction process but separated in the final output. The aim
of our algorithm is to keep the element-specific feature of elemental maps while
preserving the high SNR of Z-contrast images.

Section 2.2 will begin with discussing the mathematical models of HAADF-
STEM tomography and EDS-STEM tomography. A new approach to link the
models will be proposed and the HAADF-EDS bimodal tomographic reconstruc-
tion technique will be explained. In Section 2.3 and Section 2.4, we will investigate
the performance of the new technique using both simulated and experimental data.
In Section 2.5, the advantages and the outlook of HEBT will be discussed.

2.2 Projection models and the reconstruction method

2.2.1 HAADF-STEM and EDS-STEM imaging models
Suppose there are K chemical elements in a specimen, we have K volumetric
objects as the unknowns to be reconstructed, so the distribution of each chemical
element is represented by a voxel image. Images formed by HAADF-STEM and
EDS-STEM are related to the density distributions of these chemical elements.

For HAADF-STEM projection images, it is known that the intensity is pro-
portional to the number of electrons scattered at high angles. For a single atom,
the number of these electrons is proportional to the scattering cross section which
depends on its atomic number [Tre11; Pen89; Wal06]. For thin-film specimens



2.2. PROJECTION MODELS AND THE RECONSTRUCTION METHOD 17

in which multiple scattering and absorption is negligible, the number of scattered
electrons ph equals the sum of scattering cross sections of all the atoms probed by
the electron beam:

ph =
K∑

e=1
σeNe =

K∑
e=1

σe

∫
ρe(t)dt

Me
, (2.1)

where e = 1, 2, . . . K are the indices denoting the type of chemical element, σe is the
scattering cross section, Ne is the number of atoms, ρe(t) is the mass-thickness and
Me is the atomic weight. By defining the HAADF-STEM response factor ze = σe

Me

, the image grayscale is concisely expressed as the weighted sum of mass-thickness
of all atoms:

ph =
K∑

e=1
ze

∫
ρe(t)dt. (2.2)

For the sake of numerical computation, the volume to be reconstructed is often
discretized into N equally-spaced voxels. Thus, the density distribution of chemical
element e is written as a vector ρe ∈ RN , e = 1, 2, . . . K. The Z-contrast images
used as tomographic reconstruction inputs are taken at different tilt angles, where
every pixel specifically corresponds to a beam position and a tilted angle of the
specimen. In total there are M pixels for all the tilted images. The grayscale on
the ith pixel is now written as an entry ph

i in ph ∈ RM . Now the continuous line
integral in Eq. 2.2 is replaced by the discrete ray-sum as:

ph
i =

K∑
e=1

ze
N∑

j=1
wijρe

j , (2.3)

where the factor wij is determined by the area intersected between the ith ray
integral and the jth voxel [KS88, Chapter 7]. Note that in the conventional
HAADF-STEM tomography where the reconstruction models are defined by ph

i =∑N
j=1 wijxj , the reconstructed quantity is actually

∑K
e=1 zeρe

j , which describes the
distribution of the weighted sum of densities.

Unlike in HAADF-STEM tomography where projection images contain infor-
mation about all atom types simultaneously, in EDS-STEM tomography each
chemical element has its own series of tilted element-specific images, which de-
picts the projection of the chemical element and are usually called elemental maps
(see more in [Sch+10; Hab+14] and [WC16, Chapter 16]). Their grayscales cor-
respond to the photon counts of the characteristic X-ray of a chemical element.
Under the thin-film approximation in which X-ray absorption and fluorescence is
negligible, the characteristic X-rays counts pe for the eth chemical element is pro-
portional to the mass-thickness of this chemical element probed by the electron
beam (discussed in [WW06; WC16]), which we define here as:

pe = ζe

∫
ρe(t)dt, (2.4)
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where ζe is the EDS-STEM response factor that characterizes how many char-
acteristic X-ray counts are collected for a unit amount of the chemical element.
Using the same notations as Eq. 2.3, the line integral relationship can be written
in a discrete form as:

pe
i = ζe

N∑
j=1

wijρe
j . (2.5)

Based on the model, each chemical element can be characterized independently.
Please note that in EDS-STEM tomography as in [Sag+07; Gen+12; Lep+13], the
reconstructed quantity is the weighted density distribution ζeρe

j .

2.2.2 Linking HAADF-STEM and EDS-STEM

An obvious and internal connection between the two types of imaging techniques
is that their projection images are both related to density distributions. However,
the relations to density are based on different response factors (ze and ζe) which
are difficult to estimate. To estimate these factors, special pure-element specimens
need to be prepared and measured with extra labor and cost. Moreover, estimated
factors are often not reusable since their values vary for different experimental set-
ups.

Instead, we estimate the ratio of response factors re = ze

ζe , which we refer to
here as the response ratio factors, to link the two types of images. They can be
estimated based on the assumption that both types of images are linearly related
to the projection of density distribution. To be more specific, if we replace the∑N

j=1 wijρe
j by pe

i

ζe (according to Eq. 2.5) in Eq. 2.3, we have:

ph
i =

K∑
e=1

repe
i , (2.6)

where there are K unknowns re. For M pixels in the HAADF-STEM and EDS-
STEM images, there is an overdetermined system of M linear equations for the
K unknowns. By solving this system of linear equations (e.g. using the linear
least squares method), we can estimate the response ratio factors. This can be
done using only the tomographic projection images and without measuring extra
specimens, and is the first step to incorporate HAADF-STEM and EDS-STEM in
a simultaneous reconstruction process.
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2.2.3 HAADF-EDS bimodal tomographic reconstruction
By making the substitution xe

j = zeρe
j , the HAADF-STEM model of Eq. 2.3 and

the EDS-STEM model of Eq. 2.5 can be rewritten as:

ph
i =

K∑
e=1

N∑
j=1

wijxe
j , (2.7)

repe
i =

N∑
j=1

wijxe
j . (2.8)

In a full system of equations, containing an equation for each measured value
in each projection image, the above equations are written as ph =

∑K
e=1 Wxe and

repe = Wxe. We see that both systems now have the same unknowns, the images
xe for all chemical elements. The unknowns xe have the same unit as the intensities
reconstructed from HAADF-STEM projections, but they can also be transformed
into the quantitative distributions of the individual elements for each voxel when
EDS response factors (ζ factors) are provided.

To obtain reconstructions that are maximally consistent with both HAADF-
STEM and EDS-STEM data, we should minimize the following residuals for EDS-
STEM and HAADF-STEM simultaneously:

x∗ = argmin
x=(x1T ...xeT ...xkT )T

α2 ∥ ph −
K∑

e=1
Wxe ∥2

2 +

(1 − α)2
K∑

e=1
∥ repe − Wxe ∥2

2, (2.9)

where 0 < α < 1 is introduced here to balance between the HAADF-STEM and
EDS-STEM terms. The square terms are weighted by α2 so that α corresponds to
the image intensity. This weighting factor determines the weight of the HAADF-
STEM term in the reconstruction process and should be chosen depending on
the noise level of the elemental maps. In principle, α can be arbitrarily chosen
between 0 and 1. However, in practice, if α is too small, the influence from the
HAADF-STEM data will be hardly observable. Our empirical studies show that
a number between 0.7 and 0.9 yields consistent results that balance the influences
of the two modalities for our experimental data. In Section 3, we will discuss more
about how the weighting factor influences reconstruction results.

The minimization problem in Eq. (9) can be formulated as a least squares
problem:

x∗ = argmin
x

∥ pa − Wax ∥2
2, (2.10)

where
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pa =



(1 − α)r1p1

...
(1 − α)repe

...
(1 − α)rKpK

αph


,

Wa =



(1 − α)W . . . ∅ . . . ∅
...

. . .
...

. . .
...

∅ . . . (1 − α)W . . . ∅
...

. . .
...

. . .
...

∅ . . . ∅ . . . (1 − α)W
αW . . . αW . . . αW


,

and x =



x1

...
xe

...
xK

 .

This least square problem can be solved using an iterative algorithm. In this
chapter, the widely used simultaneous iterative reconstruction technique (SIRT)
[GB08] is adopted in the experiments. To incorporate the physical constraint
that the elemental composition should not have negative values, we apply a non-
negativity constraint to SIRT by thresholding negative values in every iteration.
We refer to the complete method as HAADF-EDS bimodal tomography (HEBT).

The SIRT algorithm is more robust to noisy data than the common weighted
backprojection algorithm, as it computes a weighted least-squares solution, which
effectively averages the noise over all projection angles, assuming that the noise
follows a normal distribution. We point out that there are tomography recon-
struction algorithms that are even more robust with respect to noisy data: (i)
statistical reconstruction algorithms that model the statistical distribution of the
noise and (ii) algorithms that incorporate prior knowledge such as discreteness or
smoothness of the image. As the noise in the EDS data is Poisson distributed, but
the noise in the resulting elemental maps follows a different distribution that is
difficult to model in detail, we consider the Gaussian model to be a solid choice.

2.3 Experimental design and data
We design three experiments for different purposes. In the first experiment, the
HEBT algorithm is applied to reconstruct 2D images from simulation data. In
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this simulation experiment, the stability of the HEBT reconstruction technique as
a function of the response ratio factors can be investigated.

In the second experiment, we investigated cubic Au-Ag nanoparticles using
HEBT. As the two compositions (Au and Ag) are well separated in the particle
and have a substantial difference in atomic number, the 3D distribution of the
different chemical elements can be investigated using HAADF-STEM tomography
and does not require EDS. Here, this HAADF-STEM reconstruction can be used
as ground truth to compare the quality of the HEBT reconstructions in comparison
to conventional EDS reconstructions.

The key advantage of HEBT with respect to conventional HAADF-STEM re-
construction only becomes clear if the HAADF-STEM reconstruction does not
allow for straightforward segmentation of the elements, either because the differ-
ence in Z-contrast between the elements is low, or because the elements are mixed
at a sub-voxel resolution. In such cases, HEBT can potentially reconstruct the in-
dividual 3D elemental volumes (not possible by HAADF-STEM), while achieving
a more faithful reconstruction at lower noise level compared to conventional EDS
reconstructions. This advantage is illustrated by the results of the third experi-
ment, applying the HEBT algorithm to another nanoparticle in which an alloy of
Au and Ag is present.

2.3.1 Phantom simulation
The first experiment is based on a 2D phantom image shown in Figure 2.1, which
was created to resemble a slice of the non-alloyed Au-Ag nanoparticle (see Figure
2.3). Figure 2.1 (a) and (b) are the Au and Ag phantom objects with homogeneous
density. Figure 2.1 (c) is a Z-contrast phantom image of Au and Ag phantoms
weighted by HAADF-STEM response factors that are assumed to be z(Au) = 791.5

and z(Ag) = 471.5 [Tre11]. To simulate projection images, tilt series of projections
were computed using the ASTRA toolbox [Aar+15]. The projection geometry has
512 pixels and 31 tilt angles from −75◦ to 75◦ with a step size of 5◦.

The HAADF-STEM sinogram (Figure 2.1 (f)), which is assumed to be low-
noise, is simply assigned as the tilt series of the Z-contrast phantom. For EDS-
STEM, two sinograms (Figure 2.1 (d) and (e)) were generated by applying Poisson
noise to the tilt series of Au and Ag phantom objects. The EDS-STEM mapping
process was simulated in a way that the X-ray count on each pixel is rendered as a
random integer generated from the Poisson distribution. Based on the EDS-STEM
models, the mean parameters of the Poisson distributions were assigned as the tilt
series multiplied by the response factors. The response factors were selected as
ζ(Au) = 1.88 × 10−2 and ζ(Ag) = 2.4 × 10−2 so that the mean expected numbers of
X-ray counts approximate the mean X-ray counts in the elemental maps of the first
sample (Figure 2.3 (b) and (c)). A filtering operation using an 8-pixel 1D Gaussian
filter was applied to the EDS-STEM sinograms as an easy implementation of noise
smoothing [Gen+13; Sla+16b]. The intensity of the HAADF-STEM sinogram is
at a much larger order of magnitude than the EDS-STEM sinograms.
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(a) (b) (c)

(d)

(e)

(f)

Figure 2.1: (a) The Au phantom object, (b) the Ag phantom object and (c) the Au-Ag Z-contrast
phantom image. (d) The Au EDS-STEM sinogram, (e) the Ag EDS-STEM sinogram and (f) the
HAADF-STEM sinogram.

2.3.2 Au-Ag nanoparticles

For the real-world experiments, tilt series of projection images were acquired using
the same procedures for both Au-Ag samples. First, the sample was mounted on
the tomographic holder placed in an electron microscope (Tecnai Osiris, FEI com-
pany) equipped with four silicon drift detectors (SuperX system, FEI company).
During the tilt series, the sample was tilted from −75◦ to 75◦ with a tilt increment
of 5◦ for the first sample. At each tilt, a Z-contrast image was first recorded by the
HAADF detector. The sample was then scanned with an acquisition time of 300
seconds to record X-rays spectrum images over 2048 energy channels. In order to
reduce the shadowing effect of SDD detectors, the detectors on one side to which
X-rays were blocked were turned off, while the other two detectors on the other
side were turned on [Sla+14]. A tilt series of the second sample was acquired
using almost the same procedures except that the sample was tilted over 29 steps
from −70◦ to 70◦. The raw data were then processed before being used as tomo-
graphic reconstruction input data. For HAADF-STEM, the tilt series of Z-contrast
projection images were aligned using the cross-correlation method. The intensity
damping has also been corrected by linearizing the nonlinear intensity-thickness
relation [van+12]. For EDS-STEM, the spectrum images were denoised using prin-
cipal component analysis (PCA) decomposition/reconstruction [Bur+16; Luc+13].

The high peaks near 8.040 keV and 8.904 keV come from Cu in the holder, which
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will overwhelm and dominate the other components in PCA if they are included.
To avoid this, we only took out the energy channels near the Au and Ag peaks for
PCA decomposition (Figure 2.2 (b)) (the characteristic peaks are Mα = 2.15 keV,
Mβ = 2.20 keV and Lα = 9.70 keV for Au, and Lα = 2.98 keV and Lβ = 3.19 keV
for Ag). After PCA decomposition, we examined every component and selected
the first 15 components for PCA reconstruction and abandoned the remaining
components as noise. Next, the denoised spectrum images near characteristic
channels were extracted and summed up to the elemental maps (Figure 2.2 (b)).

Note that since the X-ray counts are very low for such a high resolution, even af-
ter PCA denoising the elemental maps remain very noisy. Therefore, we applied an
averaging image filter with a 12 ×12 pixel Gaussian kernel (rotational-symmetric)
to the elemental maps. Finally, the elemental maps were again aligned to match
the Z-contrast images using the cross-correlation method. For each sample, the
data processing steps resulted in three tilt series of projection images for each
sample: two tilt series of elemental maps and one tilt series of Z-contrast images
(see examples in Figure 2.3).

2.4 Experimental results
In addition to the HEBT reconstructions, we also computed HAADF-STEM to-
mographic reconstructions from Z-contrast projection images and EDS-STEM to-
mographic reconstructions from elemental maps. All the reconstructions were
computed using the SIRT algorithm with non-negativity constraints unless indi-
cated otherwise. The number of iterations is chosen to be large enough to assure
convergence of HEBT as well as not too large to avoid over-fitting the least square
problem. The weighting factor α was chosen as 0.7 unless indicated, which we
found to be a good value in our experiments that balances the influence of the
EDS-STEM and HAADF-STEM data. The response ratio factors used in HEBT
were estimated by fitting the linear models of Eq. 2.6 using the non-zero pix-
els in the tomographic input data using the NNLS (Non-negative least squares)
algorithm [LH74, Chapter 23].

We can assess the image quality of reconstructions with reference images in
the first two cases. For the simulation, we can compare reconstructions with the
phantom images; for the non-alloy Au-Ag nanoparticle, we use the segmentations
acquired from the Z-contrast reconstructions as the ground-truth references. Here
we use three types of image quality metrics. (i) Structural similarity index (SSIM,
[Wan+04]) computes structural similarity between images, which aligns with im-
age quality perceived by human eyes. Since image intensities are different for
HAADF-STEM and EDS-STEM, we exclude the luminance and contrast terms
for SSIM, and only compute the structure term. (ii) Mean-squared error (MSE)
simply computes the difference between reference images (x) and reconstructions
(y) which were scaled by scaling factors that give minimal MSE. The computation
is formulated as: MSE(x, y) = minc ∥ x − cy ∥2

2, where c is the scaling factor. (iii)
The difference in pixels (DP) is computed as the l1 norm of the difference between
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Before After 
a 

b 

Figure 2.2: (a) Spectrum of the Au-Ag nanoparticle before PCA denoising. On the top-right
corner show the Au elemental maps before and after PCA denoising. The yellow boxes indicates
where the intensities of the spectrum were extracted. (b) Zoom-in to the spectrum (black) and
the denoised spectrum (green). The colored regions indicated at which channels the denoised
spectrum images were extracted to elemental maps.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: The upper and bottom rows correspond to the Au-Ag nanoparticle at tilt angle −75◦

and the alloyed Au-Ag nanoparticle at tilt angle 30◦ respectively. Figures (a) and (e) are Au
elemental maps. Figures (b) and (f) are Ag elemental maps. Figures (c) and (g) are Z-contrast
projection images. Figures (d) and (f) are the sum of elemental maps weighted by the estimated
response ratio factors . The image sizes are 300 × 300 pixels.

two binary images. The reference images are already binary, while reconstructions
for elements have continuous intensity. Given the knowledge that elements have
homogeneous density, we binarize the reconstructions with thresholds, which are
chosen as the ones giving minimal DP. Mathematically this can be written as
DP(x, y) = minb ∥ x − Bb(y) ∥, where Bb(y) means binarizing an image with the
threshold b.

2.4.1 Phantom objects
Estimating the response ratio factors is the first step of HEBT. The response ratio
factors for Au and Ag were estimated to be rest = [3.27 × 104, 1.68 × 104] , while
the ground truths are rgt = [3.66 × 104, 1.43 × 104] based on the given response
factors. The goodness of how the data matches the linear model is indicated by
the coefficient of determination R2 = 0.91, which can be interpreted as 91% of the
data can be explained by the linear model.

The simulation study aims at studying the stability of HEBT when errors are
present in the estimated response ratio factors. Here, the estimated response ratio
factors differ from the ground-truth by −10.66% and 17.48% respectively. Thus,
reconstructions were made by HEBT with estimated and ground-truth response
ratio factors respectively (Figure 2.4). Both were computed with weighting factor
α = 0.7 and for 200 iterations. First of all, intuitively we see both results show less
noise and sharper contrast compared to EDS-STEM tomographic reconstructions.
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Secondly, the deviation of response ratio factors only results in slightly different
distributions of noise between elemental reconstructions. We can observe that
“streaks” are more suppressed in Figure 2.4 (a) than (b) since rAu is overestimated
compared to the true values. On the other hand, Figure 2.4 (d) looks noisier than
(e) because rAg is underestimated. From the image quality metrics, HEBT with
rest produces nearly the same image quality as HEBT with rgt. One noticeable
result is that although HEBT with rgt outperforms HEBT with rest in terms of
SSIM and DP, for MSE the result with rest is better. This can be explained as
that noise has been taken into account when estimating the response ratio factors,
consequently yielding better statistical fitting for reconstructions. In conclusion,
the HEBT algorithm output shows good stability w.r.t. errors in the estimation
of the response ratios.

Table 2.1: Image quality metrics of reconstructions.

Methods HEBT with rest HEBT with rgt EDS-STEM
SSIM Au 0.9923 0.9917 0.9437
SSIM Ag 0.9837 0.9835 0.8739
MSE Au 0.0260 0.0260 0.0801
MSE Ag 0.0449 0.0469 0.0740
DP Au 1664 1940 6936
DP Ag 4915 4762 7318

2.4.2 Non-alloy Au-Ag nanoparticle
The first sample that is experimentally investigated is an Ag nanoparticle with a
diameter of approximately 110 nm with an embedded Au octahedron. Examples
of Z-contrast images and elemental maps are given in Figure 2.3, indicating that
Ag and Au are well separated.

The response ratio factors r(Au) and r(Ag) were estimated from all the non-zero
pixels using the NNLS algorithm. The fitting results are r = [5.31×104, 8.64×104]
with a coefficient of determination R2 = 0.95. The example of Figure 2.3 (d)
shows that the sum of elemental maps weighted by r closely but not perfectly
matches the HAADF-STEM projection image due to noise. After the estimation,
the reconstructions were computed slice by slice in a volume of 300 × 300 × 300
voxels by solving the least square problem of Eq. 2.9.

Figure 2.5 shows the 2D reconstruction images at different slices. Compared to
EDS-STEM reconstructions, HEBT reconstructions demonstrate smoother inten-
sity distributions, suppressed noise levels and clearer boundaries. Especially for
the Ag reconstructions, morphological analysis becomes easier as exterior bound-
aries show a sharper contrast to the background after being regularized by the
HAADF-STEM term. The HAADF term also regularizes intensities of noise to
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Figures (a), (b) and (c) are reconstructions of Au distribution. Figures (d), (e) and (f)
are reconstructions of Ag. The left and middle columns are HEBT reconstructions respectively
with estimated response ratio factors rest and with ground-truth response ratio factors rgt; the
right column is reconstructions from only EDS-STEM elemental maps.

concentrate within the particle and not spread across the background. For exam-
ple, in the HEBT reconstructions for Au, we can see noise forming a ‘shadow’ of
the entire particle on the background. Fortunately, the ‘shadow’ noise is rather
weak and can be removed by thresholding or smoothing.

The HAADF-STEM reconstructions have clear boundaries between Au and
Ag in this case. Therefore, we can easily segment the two particles, and use the
segmentation as the ground truth for reconstruction quality assessment. In Figure
2.6, the HAADF-STEM reconstruction was segmented into two parts by manually
recognizing the boundaries in every slice using the FEI Amira 6.0 software, which
are considered as the ground truths of compositional distributions. Meanwhile,
we also demonstrate the 3D volume rendering of EDS-STEM reconstructions and
HAADF reconstructions for comparison. The image quality metrics were com-
puted in 3D and listed in Table 2.2. The metrics show that the image quality
of HEBT reconstructions is intrinsically enhanced in comparison to conventional
EDS reconstructions.

Based on the ground truth from the segmented HAADF-STEM reconstruc-
tions, the influence of two parameters for HEBT can be investigated: the weight-
ing factor α and the number of iterations. Here, we sampled the weighting factor
from 0.01 to 0.99 for HEBT reconstructions with different numbers of iterations
for one slice. Figure 2.7 plots the MSE indices at each weighting factor. It first
indicates a decrease of MSE as α grows, as the noise is increasingly suppressed
by the HAADF-STEM term. When α gets close to 1, MSE starts to increase
rapidly after reaching a minimum. To understand this phenomenon, we plot the
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(a) EDS: Au (b) HEBT: Au (c) EDS: Ag (d) HEBT: Ag (e) HAADF

(f) EDS: Au (g) HEBT: Au (h) EDS: Ag (i) HEBT: Ag (j) HAADF

(k) EDS: Au (l) HEBT: Au (m) EDS: Ag (n) HEBT: Ag (o) HAADF

Figure 2.5: 2D reconstruction images for the non-alloyed nanoparticle at slice number 80, 150
and 220 corresponding to the up, middle and bottom rows respectively. The left two columns
are the distributions of Au reconstructed by conventional EDS tomography and by HEBT re-
spectively. The middle two columns are the reconstructions of Ag. The right column shows the
reconstructions from HAADF Z-contrast projection images.

reconstructions at α = 0.7 for 50/100/500 iterations. It shows that for 50 itera-
tions, Ag appears in the reconstruction of Au (Figure 2.8 (b)). The explanation
is that a too large α makes minimizing residuals for EDS-STEM terms become
very inefficient due to their small weights. If the residuals of EDS-STEM terms
remain large while the residual of HAADF-STEM has already been minimized,
backprojection from HAADF-STEM projection images will show up in the recon-
structions. In such a case, we can see appearance from the other compositions.
The appearance can be reduced by increasing the number of iterations. In this
case, Ag disappears in the Au reconstruction as the number of iterations grows.
On the other hand, if the number of iterations is chosen very large, this may lead
to over-fitting of the least-square problem, which results in the presence of noise in
reconstructions. The over-fitting also explains why – for small weighting factors –
the MSE metric decreases as the number of iterations increases (see Figure 2.7). In
a word, the weighting factor influences the noise suppression and the convergence
of least square problem; to guarantee convergence for large weighting factors, a
large number of iterations should be adopted. From Figure 2.7, we conclude that
α = 0.7 and 100 iterations are close-to-optimal settings for this example.
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(a) EDS (b) HEBT (c) HAADF

Figure 2.6: 3D volume rendering of Au (yellow, interior) and Ag (blue, exterior) distributions
in the non-alloyed nanoparticle reconstructed using (a) EDS-STEM tomography and (b) HEBT.
The 3D volume rendering of Au and Ag segmented from HAADF-STEM reconstructions (ground-
truth) is shown in (c).

Figure 2.7: Mean-squared errors for Au and Ag reconstructions under different iterations. The
reconstructions are sampled for weighting factors from 0.01 to 0.99.

To investigate whether HEBT leads to improved ability to spatially resolve
the chemical composition of nanomaterials in comparison to separate EDS-STEM
reconstructions, we have conducted two additional validation experiments. In the
first experiment, a binary mask is created from the HAADF-STEM reconstruction,
which is then enforced during each iteration step of the SIRT reconstruction from
elemental maps. For the second experiments, a binary mask is created based on the
Z-contrast projection images which are subsequently applied to the elemental maps
prior to tomographic reconstruction. The results of these experiments are shown
in Figures 2.9 (a) to (d). It can be seen that the results are qualitatively similar to
the reconstructions without the masks in the sense that the chemical composition
is no better spatially localized than in the unmasked case. This can be contrasted
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Table 2.2: Image quality metrics.

Methods EDS-STEM HEBT
SSIM Au 0.9661 0.9680
SSIM Ag 0.9024 0.9097
MSE Au 0.0093 0.0069
MSE Ag 0.0368 0.0229
DP Au 233805 134861
DP Ag 1213822 674403

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: 2D reconstruction images at slice number 150. The upper row is for Au, and the
bottom row is for Ag. (a) and (e) are the reference images for computing SSIM, which are
segmented from the HAADF-STEM reconstruction. (b)/(f), (c)/(g) and (d)/(h) are respectively
HEBT reconstructions with weighting factor α = 0.7 under 50, 100, 500 iterations.

  

  

 

(a) (d) (c) (b) 

(e) (h) (g) (f) Figure 2.9: Figures (a) and (b) are distributions of Au and Ag in the non-alloy nanoparticle
reconstructed from elemental maps. During the reconstruction process, reconstruction volumes
were masked by the binarized HAADF-STEM reconstruction. Figures (c) and (d) are distribu-
tions of Au and Ag in the non-alloy nanoparticle reconstructed from elemental maps that have
been masked by binarized Z-contrast images.
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to Figure 2.5, where the better localization is visible, clearly demonstrating the
advantage of our HEBT reconstruction technique.

2.4.3 Alloyed Au-Ag nanoparticle
In this case, we demonstrate the application of HEBT on data for which 3D compo-
sitional analysis is difficult for both EDS-STEM tomography and HAADF-STEM
tomography. The sample is an Au-Ag alloy nanoparticle with a diameter about 30
nm. As suggested by the Z-contrast images in Figure 2.3 (d), segmentation cannot
be made based on HAADF-STEM reconstructions since no clear boundary exists
between the two compositions. Although elemental distributions can be recon-
structed from elemental maps, the elemental maps are very noisy (Figure 2.3 (e)
and (f)) and lead to strong noise in the EDS-STEM tomographic reconstruction
results.

The HEBT reconstructions were computed using α = 0.7 for 200 iterations.
The response ratio factors were estimated to be r = [5.63 × 104, 6.52 × 104] with
a coefficient of determination R2 = 0.79. The values for the same elements differ
from the first experimental case. This is likely due to an intensity rescaling that
was applied when storing the HAADF-STEM data. As our response ratio factors
are automatically scaled, this does not affect the final results.

Compared with EDS-STEM tomography, HEBT gives more interpretable re-
sults with less noise and stronger contrast to the background as shown in the 2D
slices of Figure 2.10. Here, since we no longer have ground-truth images, we cannot
compute image quality metrics. Figure 2.11 shows that the HEBT reconstructions
provide more information in 3D on the concentration of the different elements
compared to the EDS-STEM reconstructions. The elemental distributions with
reduced noise indicate that the Au is more concentrated in the exterior than Ag.
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(a) EDS: Au (b) HEBT: Au (c) EDS: Ag (d) HEBT: Ag (e) HAADF

(f) EDS: Au (g) HEBT: Au (h) EDS: Ag (i) HEBT: Ag (j) HAADF

(k) EDS: Au (l) HEBT: Au (m) EDS: Ag (n) HEBT: Ag (o) HAADF

Figure 2.10: 2D reconstruction images for the alloyed nanoparticle at slice number 80, 150 and
220 corresponding to the up, middle and bottom rows respectively. The left two columns are the
distributions of Au reconstructed by conventional EDS tomography and by HEBT respectively.
The middle two columns are the distributions of Ag. The right column shows the reconstructions
from Z-contrast projection images.

(a) EDS (b) HEBT (c) HAADF

Figure 2.11: 3D volume rendering of Au (yellow) and Ag (blue) distributions in the alloyed
nanoparticle reconstructed using (a) EDS-STEM tomography and (b) HEBT. The 3D volume
rendering of the HAADF-STEM reconstruction is shown in (c).
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2.5 Conclusion

In this study, we have developed HAADF-EDS bimodal tomography for the 3D
characterization of the chemical composition at the nanometer scale. This tech-
nique first links elemental maps with Z-contrast images that are recorded simulta-
neously in STEM mode and contain complementary information. The linking is
made by estimating response ratio factors that give the linear relation of two types
of images and by scaling their intensities to the same unit. Simultaneously from
two types of projection images, 3D elemental distributions are reconstructed. The
reconstruction process results in a simultaneous minimization of the projection er-
rors of both EDS-STEM and HAADF-STEM and is carried out using an iterative
method such as SIRT.

HEBT has first been tested on a phantom object that is based on hetero-
nanoparticles. We specifically demonstrated that HEBT is robust w.r.t. errors in
the response ratio factor estimation. Subsequently, we used HEBT to reconstruct
the 3D elemental distributions of two different nanoparticles. To investigate the im-
age quality enhancement of HEBT, we first reconstructed an Au-Ag nanoparticle
where the different elements could be distinguished based on Z-contrast. Taking
the Z-contrast reconstruction results as the ground truth, we see that reconstruc-
tions computed by HEBT are improved in comparison to EDS-STEM tomographic
reconstructions in terms of image quality. In this case, we also demonstrated that
HEBT with a large weighting factor requires a large number of iterations to con-
verge and separate between elements. In the second experimental case, Ag and
Au are alloyed, and thus it is impossible to investigate the 3D distributions of the
chemical elements based on HAADF-STEM tomography. Using the HEBT tech-
niques, we are able to investigate the spatial distribution of Ag and Au inside the
particle. The interpretation of the final result is more straightforward in compar-
ison to conventional EDS-STEM tomography, for which the results contain more
noise.

The HEBT algorithm is based on the assumption that both HAADF-STEM
projection images and EDS-STEM elemental maps can be modeled as perfect linear
projections of the structure. In practice, this assumption is not completely valid
as nonlinear phenomena such as X-ray absorption and electron channelling may
break the projection requirement [Sla+16b; Bur+16]. In addition, the EDS noise
follows a Poisson distribution, while the least squares problem in Eq. 2.9 is based
on the assumption that the noise follows a Gaussian distribution. Our purpose
here is to demonstrate the feasibility of HEBT, while recognizing these sources
of inaccuracy. In future work, we plan to incorporate more sophisticated models
for self-absorption (similar to [Bur+16]) and elemental map extraction (similar to
[Luc+13]), as well as to adopt advanced denoising reconstruction algorithm based
on the Poisson noise model such as the EM method.

Conventionally, quantitative analysis based on EDS-STEM measurements suf-
fers from the high noise level in these measurements. By combining EDS and
HAADF, especially by imposing the 3D information obtained by HAADF, the
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improvement in the reconstructions (compared to pure EDS-STEM reconstruc-
tion) will lead to more reliable quantification, provided that the corresponding
zeta factors are known. This application also requires an accurate estimation of
the response ratio factors. Therefore, we are developing a new estimation method
which is based on the Poisson noise model rather than the Gaussian noise model.

In conclusion, the newly developed HEBT technique is a promising technique
to analyze chemical compositions of nanomaterials in 3D. By exploiting more com-
plete information from two complementary types of images, it can characterize the
elemental distribution even when it is not straightforward using HAADF-STEM
tomography or EDS-STEM tomography. This advantage means that the 3D char-
acterization of chemical composition can be pushed to materials with smaller di-
mensions and more complex compositions.
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3
Joined HAADF-EDS

reconstructions regularized
by total nuclear variation

3.1 Introduction

X-ray energy-dispersive spectroscopy (EDS) tomography is an electron tomogra-
phy (ET) technique for 3D compositional characterization. It refers to making a
tomographic reconstruction for the distribution of a specific chemical element from
a tilt series of images called elemental maps. It is based on the linearity assump-
tion that the image intensities, which correspond to X-ray counts, are proportional
to the mass-thickness of the chemical element [WW06; Lep+13]. Unfortunately,
the number of X-ray counts is often low due to small emission probabilities and
small detection angles. Consequently, the signal-to-noise ratios (SNRs) are low
and the number of tilts is limited, which leads to poorly reconstructed images. To
obtain sufficient X-ray counts, a high electron dose is often applied by setting a
large beam current or a long acquisition time. However, this is then limited by
how much dose the sample can survive.

This chapter is based on:
Z. Zhong, W. J. Palenstijn, J. Adler, and K. J. Batenburg. “EDS tomographic recon-
struction regularized by total nuclear variation joined with HAADF-STEM tomogra-
phy”. Ultramicroscopy 191 (2018), pp. 34–43.
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Using advanced reconstruction algorithms, it is possible to make an accurate
reconstruction from a small number of tilts or from data with low SNRs. Total
variation (TV) regularization algorithms are a widely-used method for reconstruct-
ing from a small number of tilts, which find a solution with sparse gradients to the
ill-posed inverse problem [BO13; SKP06; LSP08]. In ET, it is adopted for reducing
the missing wedge artifacts [Gor+12]. In EDS tomography with low-count data,
it is used for the effect of suppressing noise and encouraging piecewise constant
structures [Bur+16; Zan+16a]. However, additional difficulties arise when TV reg-
ularization is applied to EDS tomography. The noise aggravates a significant issue
of TV – the staircase effect that produces small flat regions separated by edges.
In addition, as the TV regularization tends to preserve sharp discontinuities, the
noisy edges become sharp and saw-like. When the number of tilts is small or the
X-ray counts are low, these effects become even more severe as a result.

In this chapter, while TV regularization encourages the information of sharp
edges in the reconstructed image, we instead use total nuclear variation (TNV) reg-
ularization which also encourages common edges in multiple images [RL15; Hol14;
Dur+16]. Using TNV regularization, it is possible to augment the available data
with extra information from another imaging modality. The other modality being
exploited is high-angle annular dark-field (HAADF) STEM. Its image contrast
depends on the atomic numbers of probed atoms. Therefore, the tomographic
reconstruction based on HAADF-STEM shows a (weighted) sum of distributions
for all chemical elements [MW03; Mid+01], which sometimes also contains sharp
edges showing the variance of distributions. More importantly, due to a strongly
reduced time constraint, more HAADF-STEM tilt images can be measured with
higher SNRs in a relatively short time. Thus the HAADF-STEM reconstruction
is usually more accurate and less noisy.

Our proposed method performs the EDS reconstruction together with a HAADF-
STEM reconstruction with joint TNV regularization, from a tilt series of EDS maps
and a tilt series of HAADF-STEM images. As an extension of TV imposed on
multiple images, the TNV regularization also promotes the sparsity of gradients
for each image. Hence, it has similar effects in terms of suppressing noise and
preserving sharp discontinuities. Additionally, TNV regularization promotes joint
reconstructions that have common edge locations and gradients in the parallel/an-
tiparallel directions. The TNV regularization can penalize the staircase effects
and saw-like edges in the EDS reconstruction for not having coinciding edges in
the HAADF-STEM reconstruction image.

Note that the staircase effects can also be reduced using total generalized vari-
ation (TGV) regularization which incorporates smoothness information of the re-
constructed image. However, the TGV regularization incorporates no additional
information from extra data. Thus, saw-like edges may be still present in the TGV
regularized reconstruction. It is also noteworthy that the proposed method can be
seen as a bimodal tomography approach. In Chapter 2 and our paper [Zho+17],
we have proposed another bimodal method which is named HAADF-EDS bimodal
tomography (HEBT). That method incorporates a different prior, exploiting that
the HAADF data should be a linear combination of the EDS data for all chemical
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elements in the specimen. Therefore, HEBT can only be used if EDS data for
all chemical elements in this sample have been acquired. In contrast, the TNV-
regularized method only uses the data for a single chemical element in addition to
the HAADF-STEM data.

The rest of this chapter consists of the following sections. Section 3.2 illustrates
the notations for EDS tomography, HAADF-STEM tomography, TNV regulariza-
tion as well as the TNV-regularized joint reconstruction method. Section 3.3
demonstrates simulation studies and an experimental study. Lastly, in Section 3.4
we discuss the experimental results and draw a conclusion.

3.2 Method
Consider a specimen located in a 3D volume space discretized into N voxels. The
reconstruction unknowns for a single given chemical element in the specimen are
expressed as a vector xe ∈ RN . The reconstruction xe is referred to as the EDS
reconstruction. The input data are a tilt series of elemental maps, which are
expressed as a vector pe ∈ RMe , where Me denotes the total number of pixels.
The image intensities correspond to the characteristic X-ray counts, which are
proportional to the linear projection of the corresponding chemical element probed
by the focused beam under thin film approximation. This linear relationship is
modeled by the following system of equations:

pe
i =

N∑
j=1

we
ijxe

j , (3.1)

for i = 1, · · · , Me and j = 1, · · · , N . Each pixel position i corresponds to a ray
determined by the beam position and the tilt angle of the specimen. The weight
factor we

ij is determined by the area of the jth voxel intersected by the ith ray
integral. The matrix We ∈ RMe×N is referred to as the EDS projection matrix.

The volume space for the HAADF-STEM reconstruction is defined as the same
for joining the reconstruction with the EDS reconstruction. Similarly, the recon-
struction unknowns for the same sample are expressed as a vector xh ∈ RN , with
h denoting HAADF-STEM. The tilt series of projection images are expressed as
a vector ph ∈ RMh , where Mh is the total number of pixels for HAADF-STEM
acquisition. Note that Mh may be different from the number of pixels for EDS
acquisition (Me). In particular, this means it is possible to record HAADF-STEM
data for more tilts than for which EDS data are acquired. Following the linear
integral model, the linear relationship between the tilt series ph and reconstruction
unknowns xh is:

ph
k =

N∑
j=1

wh
kjxh

j , (3.2)

where k = 1, · · · , Mh is the pixel index, wh
kj is the entry of the HAADF-STEM
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projection matrix Wh ∈ RMh×N determined by the area of voxel j intersected by
the ray integral k.

Reconstruction algorithms can be divided into two categories: analytical algo-
rithms (e.g. filtered backprojection (FBP) [KS88]) and iterative algorithms. Here
we focus on iterative algorithms for their capability of implementing regulariza-
tion. Classically, the iterative algorithm minimizes a data cost function, based on
the above linear systems, to find solutions for the inverse problems

xe∗ = argmin
xe

∥ pe − Wexe ∥2, (3.3)

xh∗ = argmin
xh

∥ ph − Whxh ∥2, (3.4)

for EDS and HAADF-STEM tomography respectively.
To regularize the reconstruction, a regularization term is added to the cost

function, resulting in a new minimization problem. Taking TV-regularized EDS
tomography as an example, the reconstruction is computed by solving the mini-
mization problem of:

xe∗ = argmin
xe

∥ pe − Wexe ∥2 +λTV(xe), (3.5)

where the term TV(xe) gives the total variation of the reconstruction image, and
λ is the factor determining the strength of the TV regularization.

The TV term for an arbitrary 3D gray-scale image u ∈ RN is defined as:

TV(u) =
N∑
j

∥ ▽uj ∥, (3.6)

where

▽uj =

▽xuj

▽yuj

▽zuj

 (3.7)

is a discrete approximation of the gradient for the jth voxel. The operators ▽x,
▽y and ▽z approximate gradients in the X, Y and Z directions respectively by
taking the forward difference between voxels. The norm ∥ · ∥ is usually chosen
as l1-norm or l2-norm. In this chapter, we use the l2-norm, for which the TV
regularization is also called isotropic TV. Using l1-norm TV tends to encourage
horizontal and vertical edges, which is a drawback. In contrast, l2-norm TV is
rotationally invariant and thus is preferable in the application of EDS tomography
[BO13; RL15].

Next, we describe the notation for TNV regularization. TNV is usually imposed
on images with multiple channels such as RGB images. In this chapter, we join
an EDS reconstruction image and a HAADF-STEM reconstruction as the two
channels for one image. Consider an arbitrary L-channel image u. The image
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intensity on the jth pixel can be expressed as uj = (u(1)
j , . . . u

(2)
j . . . , u

(L)
j )T . The

TNV of u is then defined as the nuclear norm of the Jacobian matrix:

TNV(u) =
∑

j

∥ (J(u))j ∥⋆, (3.8)

where the (J(u))j is the Jacobian matrix defined by:

(J(u))j =


▽xu

(1)
j , ▽yu

(1)
j , ▽zu

(1)
j

...
▽xu

(L)
j , ▽yu

(L)
j , ▽zu

(L)
j

 , (3.9)

and the nuclear norm ∥ · ∥⋆ is defined as the l1-norm of the Jacobian matrix’
singular values. Note that the l1-norm here does not encourage horizontal and
vertical edges. For a one-channel image, the TNV is reduced to the isotropic TV.

TNV regularization introduces the following effects by encouraging the rank-
sparsity in the Jacobian matrix. First of all, TNV regularization leads to the
similar effects as TV regularization in terms of promoting the sparsity of image
gradients, preserving sharp discontinuities and suppressing noise. The TNV is
also rotationally invariant like the isotropic TV. Second, the TNV regularization
gives preference to the images that have common edge locations and parallel or
antiparallel gradient vectors, while it does not introduce false features between
channels [RL15].

Figure 3.1 illustrates examples of TNV computed for two-channel images with
gradients pointing in parallel, antiparallel, almost parallel and almost antiparallel
directions. For the parallel and antiparallel examples, one of the two singular
values of the Jacobian matrix will be zero, while for the other two examples, the
two singular values will be non-zero and unique. Suppose the norms of all gradients
are equal to 1, the TNV values for the pixels where two edges cross for figures (a),
(b), (c) and (d) are 2, 2, 2.14 and 2.14 respectively. Therefore, minimizing TNV
gives preference to the parallel or antiparallel gradients.

(a) Parallel
gradients

(b) Antiparallel
gradients

(c) Almost parallel
gradients

(d) Almost
antiparallel
gradients

Figure 3.1: Illustration of TNV for two-channel images and gradients.
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In our application of jointly regularizing the EDS and HAADF-STEM recon-
structions, the data fit terms for EDS and HAADF-STEM are minimized together
with a TNV term:

xe∗, xh∗ = argmin
xe,xh

∥ pe − Wexe ∥2 + ∥ ph − Whxh ∥2 +λTNV(xe, xh) (3.10)

where TNV(xe, xh) represents the TNV for a two-channel image consisting of xe

and xh, which means L = 2 and uj = (xe
j , xh

j )T for Eq. 3.9. λ is the regularization
parameter determining the strength of TNV regularization. In practice, the value
of λ should be chosen carefully to obtain a desired reconstruction result. A too
large value may lead to an over-regularized image with blurred edges, while a too
small value may lead to insufficient regularization effects.

In practice, we have to consider the magnitude of these two types of input
data. The magnitudes of EDS elemental maps and HAADF-STEM images can be
tremendously different. Intensities of the EDS elemental map, which correspond
to the X-ray counts, are usually of the order of magnitude 1 or 2, while intensities
of the HAADF-STEM image usually have different magnitudes. This difference
of magnitude may cause a biased TNV term. To avoid this, we scale the image
intensities of both types of images to a range from 0 to 1 before the reconstruction
step. Afterwards the reconstructed image can be re-scaled by the same value so
that quantitative characterization is still feasible.

3.3 Experiments
In this section, we first investigate the proposed method based on a phantom
simulation dataset and a multi-slice simulation dataset, for which ground-truth
images are available. After that, we apply the method to a real experimental
dataset.

For the simulation datasets, noiseless EDS maps are first computed. Based on
the assumption that the noise is Poisson-distributed with expected values given
by the noiseless maps, we generate maps with Poisson noise similarly to the noise
generation in [MHD18] as follows: for each pixel on each map, a random number
is generated for a Poisson distribution taking the corresponding noiseless image
intensity as the expected value. This is then taken as the noise-corrupted image
intensity. For a Poisson distribution the SNR is given by the square root of the
expected value. The magnitude (and therefore the noise level) of the EDS maps
could be calculated from assumed values of probe current, dwell time, fluorescence
yield, solid angle and detection efficiency [MHD18; Che+16]. In this chapter, for
simplicity, we set the magnitudes to levels similar to real experimental data (up
to ∼100 counts).

For comparison, reconstructions are also made for a commonly used non-regularized
reconstruction method – the simultaneous iterative reconstruction technique (SIRT)
[GB08], and the TV regularization method defined by Eq. 3.5. We use the SIRT
implementation in the ASTRA Toolbox [PBS13], and use the Douglas-Rachford
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primal-dual splitting algorithm [BH13] implemented in the Operator Discretiza-
tion Library (ODL) [AKÖ17] in Python to compute the regularized reconstruc-
tions. SIRT is computed for 50 iterations to avoid over-fitting to noise, while the
regularized reconstruction is computed until convergence. We only perform 2D re-
constructions for slices, but the results can be generalized to the third dimension
for the same effects. For conciseness, we refer to the EDS reconstructed image
jointly made using the TNV regularization as the TNV reconstruction, the recon-
structed image regularized by TV as the TV reconstruction and the reconstructed
image using SIRT as the SIRT reconstruction.

We use the linear correlation coefficient to measure image quality, which de-
termines the extent to which the reconstructed image u is linearly related to the
ground-truth image g. The correlation coefficient r is calculated as:

r =
∑

i(ui − ū)(gi − ḡ)√∑
i(ui − ū)2 ∑

i(gi − ḡ)2
, (3.11)

where ū and ḡ are the mean values of u and g respectively.
We also compute segmentation errors which can indicate the accuracy of simple

quantitative characterization. The segmentation error is calculated for a binary
image segmented from a reconstructed image. It is defined as the proportion of
incorrectly segmented pixels to the total number of non-zero pixels in the ground-
truth binary segmentation. For the binary image s and the ground-truth binary
image t, the segmentation error e is:

e =
∑

i|si − ti|∑
i ti

, (3.12)

for si ∈ {0, 1} and ti ∈ {0, 1}. The reconstruction image is segmented by thresh-
olding the image intensities. To find the optimal thresholds, we calculate the seg-
mentation errors for a set of thresholds between the minimal and maximal image
intensities of the reconstructed image. Then the one corresponding to the mini-
mal segmentation error is chosen as the optimal threshold, and the corresponding
segmentation is adopted as the optimal segmentation.

3.3.1 Phantom simulation
Data simulation and preparation

The 2D phantoms are created to simulate the single slice of a core-shell particle
composed of three chemical elements: Ag, Fe and Co. Figure 3.2 (a) shows the
distributions for these elements. Fe and Co have very similar atomic numbers and
consequently show the same contrast in the HAADF-STEM reconstruction image.
Au, which is embedded in the outer shell, has a relatively large atomic number and
a strong contrast in the HAADF-STEM image. A purpose of this phantom study is
to investigate whether the strong Ag features in the HAADF-STEM reconstruction
will introduce false features to the EDS reconstruction.
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(a) Chemical
distributions

(b) HAADF-STEM
phantom

(c) Fe phantom

20 40 60 80 100

(d) Top and bottom: noiseless and noise-corrupted EDS maps simulated for the Fe phantom

Figure 3.2: Illustration of the core-shell phantom: (a) Distribution of chemical elements Ag, Fe
and Co; (b) HAADF-STEM phantom with the Z-contrast; (c) Fe phantom for simulating EDS
maps. (d) simulated noiseless EDS maps (top) and noise-corrupted EDS maps (bottom) for Fe;
each row and each column correspond to a tilt angle and a beam position respectively.

There are two phantoms in this example: a HAADF-STEM phantom and an
EDS phantom for Fe, which are respectively shown in Figure 3.2 (b) and Figure 3.2
(c). We simulated the HAADF-STEM projection data using the ASTRA Toolbox
for every 1◦ from 20◦ to 160◦ for a limited angular range to create a missing
wedge. After that, we added Gaussian noise into the data. In addition, we used
the ASTRA Toolbox to simulate projection data for the Fe phantom for a small
number of tilts within the same angular range, which are for every 14◦ from 20◦

to 160◦ (Figure 3.2 (d)). The intensities of the noiseless maps were scaled and
then used to generate the EDS maps corrupted by Poisson noise. In this case, the
average image intensity on the non-background pixels is 43.1. In the last step, the
maps were filtered using a Gaussian filter (σ = 0.8 pixel) as a denoising process.

Reconstruction results

First of all, we performed TNV-regularized reconstructions for a set of regulariza-
tion parameter λ values to inspect the impact of this factor. We then plotted the
correlation coefficients for these reconstructions in Figure 3.3. Similarly, we per-
formed TV reconstructions for various λ values and a SIRT reconstruction. The
correlation coefficients are also plotted in Figure 3.3. The TNV reconstructions
corresponding to different λ values are shown in Figure 3.4. In addition, Figure
3.4 shows the HAADF-STEM reconstructions, which demonstrate little difference
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Figure 3.3: Correlation coefficients w.r.t. regularization parameter values (λ) in the core-shell
phantom simulation study computed for different reconstruction methods. The SIRT reconstruc-
tion is performed for a fixed relaxation parameter set to 1 [GB08].

when different λ values are applied.

(a) HAADF-STEM,
λ=0.01

(b) HAADF-STEM,
λ=0.06

(c) HAADF-STEM,
λ=0.25

(d) EDS, λ=0.01 (e) EDS, λ=0.06 (f) EDS, λ=0.25

Figure 3.4: TNV-regularized joint reconstructions for the core-shell nanoparticle phantom simula-
tion: (a) - (c) HAADF-STEM reconstructions corresponding to different values of regularization
parameter λ; (d) - (f) EDS reconstructions corresponding to different values of regularization
parameter λ.

The correlation coefficient for TNV reaches the maximum when λ equals 0.06.
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Compared to the TNV reconstruction with a smaller λ, the reconstruction is less
noisy and shows fewer staircase effects. For a larger λ, the image starts to show
blurred edges as a result of over-regularization. These effects are similar for the
TV regularization. Therefore, it is reasonable to take the reconstruction corre-
sponding to the maximal correlation coefficients as the optimal reconstruction for
the regularization method.

(a) TNV, λ=0.06 (b) TV, λ=0.25 (c) SIRT

(d) RIO in (a) (e) RIO in (b) (f) RIO in (c)

Figure 3.5: Reconstructions for the core-shell nanoparticle phantom simulation: (a) - (c) EDS
reconstructions using TNV, TV and SIRT corresponding to the optimal λ values; (d) - (f) Regions
of interest (RIO) in (a), (b) and (c) respectively. The white box in (a) indicates where the RIO
is, which is the same for (b) and (c).

Figure 3.5 compares the TNV reconstruction, the TV reconstruction and the
SIRT reconstruction corresponding to the maximal correlation coefficients. The
region-of-interest images show that the TNV reconstruction has more effective
noise suppression effects and less staircase effects compared to the TV reconstruc-
tion. Both regularization methods reduce the missing wedge artifacts in the hor-
izontal direction, while the TNV regularization is more effective and accurate.
This is due to the augmentation by the more accurate reduction for missing wedge
artifacts in the HAADF-STEM reconstruction from a large number of tilts. In
addition, note that the TNV reconstruction does not show false shadows of the
Ag structure from the HAADF-STEM reconstruction. Figure 3.6 shows the seg-
mented images and the segmentation errors. The plot indicates that the TNV
reconstruction is more consistent with the ground-truth phantom.
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(a) TNV (b) TV (c) SIRT (d) Segmentation
errors

Figure 3.6: (a) - (c) Segmented images corresponding to the TNV, TV and SIRT reconstruction
images in Figure 3.5 (a) - (c); (d) Segmentation errors w.r.t the EDS phantom for (a) - (c).

(a) HAADF-STEM image
at 2◦

(b) HAADF-STEM image
at 92◦

(c) EDS map for Ta at 2◦ (d) EDS map for Ta at 92◦

(e) EDS map for Ta at 2◦,
1/3 image intensities

(f) EDS map for Ta at
92◦, 1/3 image intensities

Figure 3.7: Examples of simulated tilt images for the multislice simulation. The elemental maps
for Ta shown here are after Gaussian smoothing. The dashed lines indicate the position of the
reconstructed slice. The colorbars indicate the image intensities. The tilt axis is vertical.
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(a) HAADF
reconstruction

(b) EDS reconstruction for
Ta

(c) Segmented image for
(b)

Figure 3.8: Ground-truth for the multi-slice simulation. The white frame in (b) indicates where
the “tip” feature is.

3.3.2 Multi-slice simulation study
Data simulation and pre-processing

This study is based on a multi-slice simulation dataset of a 25×25×25 nm semicon-
ductor described in [AR16]. Compared to the phantom simulation, the multi-slice
simulation is more realistic since it includes modeling of the real physics and is
based on a specimen model at the atomic level. The multi-slice simulation was
performed for a high-tension of 200 keV, a convergence angle of 10 mrad and a
focused beam on the uppermost point of the specimen. The HAADF detector has
an inner angle of 90 mrad and an outer angle of 230 mrad. The focused electron
probe was sampled by a 256×256 pixel array over 9.3×9.3 Å. The EDS elemental
maps were generated by summing the probability of characteristic emission.

The model is a region of a PMOS finFET. It consists of several layers placed on
top of a Si region sequentially: O, HfO2, Ta, and TiAlN2. Between the HfO2 layer
and the Ta layer there is a carbon nanoparticle contaminant. There are pinholes
in the HfO2 layer which are filled with Ta. We focus on the EDS reconstruction for
Ta. The distribution of amorphous Ta is homogeneous in the specimen, for which
the total-variation regularization can be applied. Also, the HAADF-STEM data
have a large Z-contrast for Ta compared to the other elements. Therefore, the
HAADF-STEM reconstruction can be used to augment the EDS reconstruction.

The raw dataset is noise-free and is at atomic resolution (≈ 0.049 nm/pixel),
where atomic-scale structures are clearly present. When we tried to add strong
noise to the images, the atomic-scale structures were strongly affected by the
noise. Therefore, to make the data more suitable for studying noisy data, we
down-sampled the simulation data to a lower resolution. Hence, the simulated
images were binned from 512 × 512 pixels to 128 × 128 pixels. After that, the
images were filtered by a Gaussian filter (σ = 1.0 pixel) to simulate the effect
of a less tightly focused beam. Figure 3.7 (a) and (b) show two examples of
the HAADF-STEM projection images. The process of binning approximated a
low-resolution simulation. In real experiments, for lower resolution a less tightly
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focused beam should be used so that the entire area after binning pixel will be
filled by the beam. In the end, we selected the tilt series of HAADF-STEM images
from 2◦ to 178◦ every 2◦, while the tilts at zone-axis (0◦ and 90◦) were excluded
due to the channeling effects.

Similar to the phantom simulation, we generated the maps corrupted by Pois-
son noise from the noiseless simulation data. In this simulation, we focus on com-
paring the reconstructions made from different cases of data. Thus we made three
data cases for different EDS datasets combined with the same HAADF-STEM
data. In the first case, the fully sampled EDS data consists of 30 tilts from 2◦ to
176◦ for every 6◦, of which two examples are shown in Figure 3.7 (c) and Figure
3.7 (d). The average image intensity is about 16.4. Both the second and third
cases simulate the scenarios when the total electron dose is reduced by a factor
of 3. The second one is a limited-tilt case, where the number of tilts is decreased
from 30 to 8. The angular range is from 2◦ to 170◦ for every 24◦. The third case
is a low-SNR case. The number of tilts is again 30, while the noiseless maps were
scaled by a factor of 3 to simulate reducing the dose. In this case, the average
image intensity is about 5.8. For this case, two examples are given in Figure 3.7
(e) and Figure 3.7 (f). To all the maps, a Gaussian filter (σ = 0.8 pixel) was
applied as a denoising pre-processing step.

Figure 3.8 (a) and Figure 3.8 (b) respectively show the SIRT reconstructions
from the noiseless HAADF-STEM and EDS data, for the 2D slice indicated by
the dashed line in Figure 3.7. This EDS reconstruction is regarded as the ground-
truth. In addition, Figure 3.8 (c) shows the ground-truth segmented image for
the EDS reconstruction. Note that there is a “tip” feature on the top right of Ta
reconstruction, which is a simulated semiconductor defect.

Figure 3.9: Correlation coefficients w.r.t. regularization parameter λ for different numbers of tilts
and magnitudes of image intensities in the multi-slice simulation study. The SIRT reconstructions
are performed for a fixed relaxation parameter set to 1.
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(a) TNV,
fully-sampled

(b) TNV, limited-tilt (c) TNV, low-SNR

(d) TV, fully-sampled (e) TV, limited-tilt (f) TV, low-SNR

(g) SIRT,
fully-sampled

(h) SIRT, limited-tilt (i) SIRT, low-SNR

Figure 3.10: EDS reconstructions for the multi-slice simulation: (a) - (c) TNV reconstructions
corresponding to the optimal λ values; (d) - (f) TV reconstructions corresponding to the optimal
λ values; (g) - (i) SIRT reconstructions. The EDS data in the left, middle and right columns are
respectively the fully-sampled, limited-tilt and low-SNR.
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Figure 3.11: Segmentation errors for the reconstructions in Figure 3.10

Reconstruction results

Similar to the phantom study, we performed reconstructions with different regu-
larization parameters and calculated the correlation coefficients w.r.t. the ground-
truth, which are plotted in Figure 3.9. Figure 3.10 shows the TNV and TV recon-
structions corresponding to the maximal correlation coefficient values as well as
the SIRT reconstructions. We segmented these reconstructions using the thresh-
olding values corresponding to minimal segmentation error. Figure 3.11 shows the
segmentation errors.

In the fully-sampled case, for which the data quality is relatively good, the
maximal correlation coefficients are close for each method. The optimal TNV
reconstruction image is less noisy than the TV reconstruction. The SIRT recon-
struction is smooth while showing less sharper edges. Thus, although the SIRT
reconstruction has slightly higher correlation coefficient, the segmentation error is
larger than the TNV reconstruction as the edge information is less accurate.

For the limited-tilt case, the maximal correlation coefficient for TNV recon-
struction is larger than the coefficient for TV reconstruction, which is in turn
larger than the coefficient for SIRT reconstruction. The SIRT reconstruction loses
the “tip” defect feature and corresponds to a large segmentation error, while the
TV reconstruction is still affected by staircase effects and has rounded ends. In
contrast, the TNV reconstructions show edges that are more accurate and overlap
with the HAADF-STEM reconstruction. Also, the “tip” feature is clearer. For
the low-SNR case, the SIRT and TV reconstructions have more accurate structure
compared to the limited-tilt case, however, are also more noisy. In comparison,
the TNV reconstruction is both smooth and has accurate structure.

In general, the TNV reconstruction method outperforms the TV method and
SIRT when the number of tilts is reduced or the data SNR is reduced. Comparing
the TNV reconstruction image for the limited-tilt case and the low-SNR case, we
notice that the latter one is slightly better than the former one. In particular,
the “tip” feature is more accurately reconstructed in the latter one. However,
we should not draw a general conclusion based on this, as the result may vary
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depending on the structure or noise levels of reconstructions.

3.3.3 Real experiment
Data acquisition and preparation

In the last part of this section, we apply the TNV-regularized reconstruction
method to real experimental data. The sample is a pillar-shape semiconductor
consisting of 8 chemical elements (N, O, Al, Si, Ti, Co, Hf and Ta) [Qiu+15].
The data were acquired using a FEI Titan electron microscope equiped with the
SUPER-X system with 4 SDD X-ray detectors. The sample was placed on a Fish-
ione on-axis rotation tomography holder, which allows 360◦ rotation and avoids
detector shadowing [Sla+16b]. For HAADF-STEM, a tilt series of 221 images
were taken from 0◦ to 220◦ every 1◦ at a 120 keV high-tension. The angular
range was chosen as the maximal angular range allowed by the sample holder in
a single smooth acquisition sequence. Two projection images at orthogonal angles
are shown in Figure 3.12 (a) and Figure 3.12 (b). For EDS, a tilt series of 47
spectrum-image data-cubes were acquired for an angular range from 0◦ to 216◦

at approximately every 5◦. The convergence angle was 10 mrad, the high-tension
was 120 keV and the probe current was ∼ 280 pA. The data acquisition time was
about 270 seconds per tilt, which corresponds to a dwell time of 4.11 ms/pixel for
the image of 256×256 pixels. The images were later cropped to 192×192 pixels.
In addition, another tilt series of HAADF-STEM projection images aligned to the
EDS measurement were taken simultaneously.

Figure 3.13 plots the spectrum of total X-ray counts integrated over the spec-
trum images at 0◦, where characteristic lines of all the presenting elements are
indicated, among which we focus on the chemical element Ti. In this case, Ti is
suitable for applying the TNV-regularized reconstruction method. It has a rela-
tively low Z-contrast compared to the heavy element Ta that surrounds it. This
property can be utilized to augment the EDS reconstruction. Figure 3.12 (c) and
Figure 3.12 (d) shows two elemental maps of Ti. The elemental maps were ex-
tracted by integrating the spectrum images at the Ti-Kα line (4.51 keV) for an
integration window of 0.25 keV. Neither background subtraction nor PCA denois-
ing has been applied. The maps were then smoothed using a Gaussian filter for
σ = 0.8 pixel.

For the alignment between tilt images, the tilt series of HAADF-STEM im-
ages were aligned using the cross-correlation approach implemented in the FEI
Inspect3D software. After that, the HAADF-STEM images co-acquired with EDS
were aligned to the images at the same tilt in the large HAADF tilt series. Lastly,
the same alignment settings were applied to the Ti elemental maps.

Reconstructions and results

In addition to the EDS data of 47 tilts, we also removed some tilts to investigate
the TNV-regularized reconstruction method for 26 and 14 tilts respectively. Note
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(a) HAADF-STEM image at 0◦ (b) HAADF-STEM image at 90◦

(c) EDS map for Ti at 0◦ (d) EDS map for Ti at 90◦

Figure 3.12: Examples of tilt images for the semiconductor sample. The elemental maps shown
here are after Gaussian smoothing. The dashed lines indicate the position of the reconstructed
slice. The colorbars indicate the image intensities corresponding to the X-ray counts. The tilt
axis is vertical.

that in this case, as there is no ground truth measurement, we cannot compute
the variation of correlation coefficients w.r.t. the parameters like in the simulation
studies. Instead, we first performed reconstructions for different λ values from
the 47-tilt data, and chose one that shows the strongest noise-suppression and no
over-regularization effect. For TNV and TV, we selected the reconstructions for
λ = 0.04 and λ = 0.10 respectively. After that, we applied the same regularization
parameters to the 26-tilt and 12-tilt datasets. The reconstructions are shown in
Figure 3.14.

For the 47-tilt reconstructions, the TNV and TV reconstruction are similar
to each other. Although for both the noise is suppressed and sharp edges are
enhanced, the edges in the TNV reconstruction are slightly less noisy compared
to the TV reconstruction. This is more obvious for the 26-tilt case when the TV
reconstruction shows strong staircase-like patterns, while the TNV reconstruction
is still smooth. For the 12 tilt case, the TV reconstruction and SIRT reconstruction
are very noisy, while the TNV reconstruction is smooth and still shows structural
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Figure 3.13: An example of the X-ray spectrum for total counts integrated over the spectrum
image at 0◦. The Y axis corresponds to the total number of X-ray counts in the spectrum image
at each energy channel. The black lines indicate the characteristic lines for chemical elements
in the sample (N-Kα, O-Kα, Al-Kα, Si-Kα, Ti-Kα, Co-Kα, Hf-Lα, Ta-Lα). The dashed lines
indicate the integration windows (0.25 keV) for extracting the Ti-Kα elemental maps at 4.51
keV.

information similar to the 47-tilt reconstruction.
Figure 3.15 (a) shows the correlation coefficients of the 26-tilt and 14-tilt re-

constructions w.r.t. the 47-tilt reconstructions corresponding to the same method.
For the 26-tilt case, the correlation coefficients show that the TNV reconstructions
are more linearly related to the 47-tilt reconstruction, which indicates that this
reconstruction is more accurate even when some EDS data is missing. Figure
3.15 (b) shows the segmentation errors w.r.t. the segmented image in Figure
3.15 (c), which was segmented based on the reconstruction image Figure 3.14 (a).
For the 26-tilt case, quantitative information based on the TNV reconstruction is
more accurate compared to the others. Nevertheless, for the 14-tilt case, although
the correlation coefficient and segmentation error for the TNV reconstruction are
slightly smaller than those for the TV reconstructions, they are nearly the same
as for the SIRT reconstruction. This may be because the image is so blurred that
the metrics fail.

3.4 Discussion and conclusion
In this chapter, a new tomographic reconstruction approach based on EDS is
proposed. The EDS reconstruction is performed together with a HAADF-STEM
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(a) TNV, 47 tilts (b) TNV, 26 tilts (c) TNV, 14 tilts

(d) TV, 47 tilts (e) TV, 26 tilts (f) TV, 14 tilts

(g) SIRT, 47 tilts (h) SIRT, 26 tilts (i) SIRT: 14 tilts

Figure 3.14: EDS reconstructions for the real experimental data. The EDS data corresponding
to the left, middle and right columns consists of 47, 26 and 14 tilts respectively; (a) - (c) TNV
reconstructions; (d) - (f) TV reconstructions; (g) - (i) SIRT reconstructions.
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(a) Correlation coefficients (b) Segmentation errors (c) Binary image
used to compute the
segmentation error.

Figure 3.15: Measurements for the 26-tilt and 14-tilt EDS reconstructions in Figure 3.14.

reconstruction, and they are jointly regularized by a shared TNV term. Using TNV
regularization, it is possible to suppress noise and accurately reconstruct from a
limited number of tilts, similar to TV regularization. TNV regularization further
incorporates that the reconstruction images have sparse gradients that point in the
same directions. Therefore, it encourages the EDS reconstruction to form edges
overlapping with the more accurate and less noisy HAADF-STEM reconstruction.

The proposed method has been investigated on a phantom simulation, a multi-
slice simulation and a real experimental dataset. For all the datasets, we used
a large number of high-quality HAADF-STEM tilt images to augment the EDS
reconstruction from only a small number of tilts. Note that even if the number of
HAADF-STEM tilt images is smaller, the EDS reconstruction should still be aug-
mented by the method due to the high SNR of HAADF-STEM. Also note that it
is still an unsolved question how to set the regularization parameter automatically.

For the phantom simulation, the TNV method demonstrates noise suppres-
sion effects and correction of missing wedge artifacts. The reconstructed edges
match those of the HAADF-STEM reconstruction. In addition, the reconstructed
image shows no false structures resembling the structures in the HAADF-STEM
reconstruction. For the multi-slice simulation, we compared the reconstructions
for reduced dose. The reconstructions regularized by TNV are consistently more
accurate compared to those regularized by TV or without regularization. Lastly,
the TNV regularization was applied to real experimental data, and also shows
effective noise suppression and sharp-edge enhancement. The TNV reconstruction
made from 26 tilts still shows structures similar to the many-tilt reconstruction,
while quantitative characterization may fail if the number of tilts is decreased to
14.

As an alternative to the method proposed here, the TNV regularization could
also be incorporated in a sequential way: first perform the HAADF-STEM re-
construction, then use the reconstruction as a TNV prior to perform the EDS
reconstruction. The sequential approach is more computationally efficient if the
same HAADF-STEM reconstruction can be repeatedly used. Also, it gives the
opportunity to perform the HAADF-STEM reconstruction using different recon-
struction methods with various priors. However, these need further research and
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experimental validation and will be studied in the future. Also, we will explore to
combine multiple elements together with one TNV term.

In conclusion, the proposed method can be used to obtain more accurate re-
constructions for data acquired using the conventional data acquisition scheme
or for existing datasets. Particularly, it can be used to augment the noisy EDS
reconstruction for elements of low concentrations, which may be most interesting
to characterize. Moreover, using the proposed method, it is possible to adopt
shorter data acquisition time or smaller beam currents while keeping nearly the
same image quality. It also paves the way for developing a faster EDS tomography
pipeline when the next-generation EDS detectors with higher detection rates are
available.
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4
Algorithmic recipes of

numerical methods

4.1 Introduction

In materials science, the compositional characterization in three dimensions (3D)
is important for understanding the properties of nanomaterials. Energy-dispersive
X-ray spectroscopic (EDS) STEM allows mapping of the distributions of chemical
elements in 2D by detecting the X-rays emitted from the specimen. A 3D volu-
metric image of these chemical distributions can then be reconstructed from a tilt
series of the 2D maps [Sag+07; Lep+13; WC16]. Such a technique is referred to as
EDS tomography. However, EDS tomography is limited by many practical issues
[Sla+16b; Kra+17; Bur+16]. One of the most significant issues is the limited num-
ber of detected X-ray counts caused by low emission rates and small solid angles of
detectors. As a result, strong Poisson noise is present in the tilt series of elemental
maps, which leads to reconstructions with low signal-to-noise ratios (SNRs). In
addition, the number of tilt images is often small due to the long data acquisition
time. The limited number of tilts results in an ill-posed inverse problem, which,
together with the high levels of noise, strongly limits the accuracy of the recon-
structed volume. The possibilities for improving the quality of the measured data
are often limited by the electron dose that the sample can withstand.

This chapter is based on:
Z. Zhong, W. J. Palenstijn, N. R. Viganò, and K. J. Batenburg. “Numerical methods
for low-dose EDS tomography”. Ultramicroscopy 194 (2018), pp. 133–142.
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Ill-posed inverse problems have been studied extensively in (electron) tomogra-
phy, and various reconstruction methods have been developed ([WC16, Chapter 7],
[BL08]). However, choosing the most appropriate algorithm in the context of a
specific sample and specific imaging conditions is currently problematic for prac-
titioners in EDS tomography.

The aim of this chapter is to provide guidelines for using and combining three
different types of methods: statistical modeling, variational regularization and
bimodal tomography. These modules are chosen based on the assumptions made
for data statistics, sample structures and instrumental setups respectively. As a
result, we provide the possibility to tailor the reconstruction algorithm as a recipe
composed of ingredients chosen for each module.

First of all, we describe how the tomographic reconstruction process can be
modeled as an inverse problem with Poisson statistics, whereas the conventional
alternative is based on Gaussian-statistic data. For instance, the simultaneous iter-
ative reconstruction technique (SIRT) [GB08], used in [Lep+13; Sla+16b], actually
solves an inverse problem assuming Gaussian noise. Poisson noise is addressed in
a separate denoising step and by the smoothing effects introduced by SIRT. How-
ever, smoothing blurs the images and reduces the resolution. Also, inaccurate
modeling may introduce artifacts in the reconstructed images. For EDS mapping
with low X-ray counts, it is reasonable to assume the image intensities as measure-
ments of Poisson processes like in many other photonic imaging modalities, e.g.
positron emission tomography (PET). Image reconstruction with Poisson statistics
has already been studied extensively [SV82; HW16].

Secondly, we present the module for variational regularization methods. These
have been developed to address the issue of overfitting (to noise) present in di-
rect modeling methods such as maximum likelihood estimation (MLE) [SV82] in
situations with extremely low counts [HW16; YF02; Bar10]. For instance, total
variation (TV) regularization is widely adopted. It encourages sparsity of gradi-
ents, which helps to suppress noise, promote piecewise constant structures and
reduce the artifacts caused by missing data [Gor+12; BO13].

In addition, for EDS tomography, the reconstructions for different chemical
elements often share image features, such as edges. Total nuclear variation (TNV)
regularization – an expansion of TV – encourages such common edge locations
of correlated reconstructions in addition to promoting sparse gradients [Hol14;
Dur+16]. There are many other regularization methods such as total generalized
variation which encourages piecewise smooth structures [BKP10]. In this chapter,
we focus on TV and TNV as our ingredients for the purpose of demonstration.

Thirdly, even with regularization, the reconstructions may still be highly inac-
curate when lacking accurate data. In situations with strong noise, TV regulariza-
tion may introduce staircasing artifacts in the reconstruction [BO13]. The third
module augments the reconstruction with additional accurate data by combining
EDS tomography with other imaging modalities. Here, we use the HAADF-EDS
bimodal tomography (HEBT) technique that was proposed in Chapter 2 and our
paper [Zho+17]. HEBT considers the HAADF-STEM projection images, which
usually have higher SNRs and resolution, to be the weighted sum of the EDS
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maps for all present elements. In Chapter 2, HEBT is based on a Gaussian noise
model. In this chapter, we contribute to HEBT by introducing the formulation
for reconstruction with Poisson statistics.

All these ingredients can be implemented as solving minimization problems in
the reconstruction process. In this chapter, we combine the ingredients of different
modules into a single optimization problem that can be solved by a generic algo-
rithm. Choosing the right combination of ingredients can lead to complementary
effects. For example, HEBT implies a constraint that may suppress the staircasing
artifacts introduced by the variational regularization.

The remainder of this chapter is structured as follows. In Section 4.2, we il-
lustrate the theory and the guidelines for choosing ingredients of an algorithmic
recipe. In Section 4.3, we investigate and compare the performance of different
recipes on simulation and experimental data. In the last section, we draw a con-
clusion for this chapter. We do not discuss the pre-processing steps in the spectral
domain, while in practice these should be carefully considered for the influence
on the data statistics. Also, other issues e.g. detector shadowing effects and X-
ray self-absorption strongly affect the reconstruction results, but are addressed in
other papers [Sla+16b; Kra+17; Bur+16].

4.2 Method

In this section, we will describe the notation for the inverse problem with Gaussian
or Poisson statistics, the regularization methods as well as the adapted HEBT
method. After that, we will discuss the guidelines for constructing recipes.

4.2.1 Notation of EDS tomography

In EDS tomography, the tilt series of projection images, called elemental maps, are
extracted from tilt series of spectrum images, which contain a spectrum of X-ray
counts for every pixel position. The intensities of the elemental map correspond
to the detected X-ray counts emitted from the chemical element.

We first formulate the relationship between the reconstructed image and the
ideal measurement data without noise corruption. Under the thin-film assump-
tion, the ideal data are proportional to the expected numbers of X-ray counts
that are in turn proportional to the concentration of the corresponding element
probed by the focused beam [WW06]. Thus the ideal data are proportional to the
linear projection of the reconstructed quantities, which are expressed as a vector
ge ∈ RMe . Here Me denotes the total number of pixels for all angles for element
e (e = 1, · · · , L). Consider the specimen to be located in a 3D volume space dis-
cretized into N voxels. The reconstructed quantities, which are proportional to
the concentration of the element, are expressed as a vector xe ∈ RN . This linear
relationship is modeled by the system of equations:
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ge
i =

N∑
j=1

we
ijxe

j . (4.1)

The ith pixel position is determined by the beam position and the tilt angle
of the specimen. The weight factor we

ij is determined by the area of voxel j
intersected by the focused beam of pixel i. The matrix We = (we

ij) describes the
EDS imaging setup.

The real data, which are corrupted by noise, are expressed as a vector pe ∈
RMe . The reconstruction problem is then to determine the unknown xe such that if
we compute the projection of xe, the discrepancy between the real and computed
data is minimized. It is common to assume that the real data are ideal data
corrupted by Gaussian distributed noise, which is a valid approximation when
the number of X-ray counts is large. In this case, we take the sum of squared
errors between the measurement data and the ideal data as the data discrepancy,
expressed as:

DL2(Wexe; pe) =∥ Wexe − pe ∥2
2, (4.2)

which is denoted as L2 data discrepancy in this chapter, named after the l2 norm
(∥ · ∥2).

However, when the number of X-ray counts is small, the Gaussian model is
not an accurate approximation anymore. A more solid assumption is to consider
the real data as Poisson distributed measurements taking the ideal data as the ex-
pected values. We then use the Kullback-Leibler (KL) divergence [Ber+10; Csi91]
to define the data discrepancy, which is expressed as:

DKL(Wexe; pe) =
Me∑
i=1

(pe
i − ge

i + ge
i log(ge

i

pe
i

))

=
Me∑
i=1

(pe
i −

N∑
j=1

we
ijxe

j +
N∑

j=1
we

ijxe
j log(
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j=1 we
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j

pe
i

)), (4.3)

for xe ⪰ 0.
Given the data discrepancy D defined by either Eq. 4.2 or Eq. 4.3, the recon-

struction is computed by minimizing the discrepancy:

xe∗ = argmin
xe
D(Wexe; pe). (4.4)

Minimizing KL divergence DKL is equivalent to maximizing the log-likelihood of
the Poisson distributions for pe [Csi91], while minimizing L2 discrepancy DL2 cor-
responds to solving a least-squares problem. The popular reconstruction algorithm
SIRT in fact solves the problem of minimizing a weighted version of L2 discrepancy
[GB08].
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4.2.2 Variational regularization
To incorporate TV regularization, we add a regularization term to the minimiza-
tion problem:

xe∗ = argmin
xe
D(Wexe; pe) + λRTV(xe), (4.5)

where λ is the parameter determining the strength of regularization. RTV(xe) is
a regularization term giving the total variation of image xe, defined as:

RTV(xe) =
N∑

j=1
∥ ▽xe

j ∥2, (4.6)

where ▽ is the discrete approximation of the gradient operator. If the reconstruc-
tion image is 3D, ▽ approximates the gradients in the X, Y and Z directions
respectively using the forward difference as ▽xj = (▽Xxj , ▽Y xj , ▽Zxj)T . Note
that reconstructions can also be performed by stacking 2D reconstructions of each
slice, for which the gradients are only computed in the X and Y directions. In
practice, it is more preferable to directly reconstruct in 3D to also incorporate reg-
ularization in the Z direction. The TV defined in this chapter is called isotropic
TV [BO13], for which the gradient magnitude at pixel location j is computed as
the l2 norm of the gradient.

In addition to sparse gradients, we can use TNV regularization to incorporate
the correlation between reconstructions, such as the reconstructions for multiple
elements in the same sample. It is an extension of TV regularization from one-
channel images to multi-channel images, which encourages the images in multiple
channels to have common edge locations and parallel/antiparallel gradient direc-
tions. Suppose there are Q reconstructions that share the same volume space,
we can formulate them as a single multi-channel image {xk} (k = 1, . . . , Q). The
TNV regularization term is defined as the nuclear norm of the Jacobian matrix of
the multi-channel image:

RTNV({xk}) =
N∑

j=1
∥ (J{xk})j ∥⋆ . (4.7)

The Jacobian matrix at pixel position j is given by:

(J{xk})j =

 ▽Xx1
j ▽Y x1

j ▽Z x1
j

...
▽XxQ

j ▽Y xQ
j ▽Z xQ

j

 , (4.8)

where the nuclear norm ∥ · ∥⋆ is given by the l1-norm of the vector consisting of
the matrix’ singular values. Minimizing TNV encourages the rank-sparsity of the
Jacobian matrix, which leads to parallel or anti-parallel gradient vectors.
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To apply TNV regularization on the EDS reconstructions for all chemical el-
ements, we can set {xk} = {xe} for e = 1, . . . , L. In this case, the optimization
problem is:

{xe∗} = argmin
{xe}

L∑
e=1
D(Wexe; pe) + λRTNV({xe}), (4.9)

where the reconstructions for all elements are computed simultaneously.
TNV allows to correlate multiple reconstructions in a flexible manner. In

addition to promoting common features between multiple elemental volumes, it is
also possible to relate EDS tomography to other tomographic modalities, such as
HAADF-STEM tomography. This is subject to having the HAADF reconstruction
sharing common edges with the EDS reconstructions. More details are discussed
in Chapter 3 and [Zho+18b]. It is even possible to use the TNV regularization to
correlate with EELS-STEM tomography [Hab+14]. Despite the many possibilities
to apply TNV, in this chapter, we focus on the TNV regularization defined by Eq.
4.9 that correlates the EDS reconstructions for all elements.

4.2.3 HAADF-EDS bimodal tomography
HEBT is used to perform reconstructions simultaneously from the EDS data and
the HAADF-STEM data. The elemental reconstructions are made by minimizing
the sum of HAADF-STEM data discrepancy and EDS data discrepancy, based on
the assumption that the HAADF-STEM projection data are the weighted sum of
the EDS maps for all present elements. The weights are referred to as the response
ratio factors.

The HEBT method in Chapter 2 is defined for least-squares. Here, we modify
the formula so that the KL divergence can be used. The reconstruction problem
of HEBT is expressed as:

{xe∗} = argmin
{xe}

αDL2(
L∑

e=1
Whrexe; ph) + (1 − α)

L∑
e=1
D(Wexe; pe),

subject to ph =
L∑

e=1
repe,

xe ⪰ 0, e = 1, . . . , L, (4.10)

where the first term is the L2 data discrepancy for the tilt series of HAADF-
STEM images ph ∈ RMh , and Mh denotes the total number of pixels for all
HAADF-STEM tilt images. The matrix Wh ∈ RMh×N is the HAADF-STEM
projection matrix that describes the HAADF-STEM imaging setup. re’s are the
response ratio factors for different chemical elements. The second term is the
sum of EDS data discrepancies for all the elements. The EDS data discrepancy
can be chosen between KL divergence and L2 discrepancy, depending on how the
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noise is modeled. The parameter α ∈ [0, 1) is the trade-off weight between the
HAADF-STEM and EDS data discrepancies.

Note that in Chapter 2, the EDS map intensities are scaled by the response
ratio factors re, which changes the EDS data statistics. Here, instead we move the
response ratio factors to the HAADF-STEM term so that the EDS maps remain
unchanged. The response ratio factors re can be estimated based on the linear
equations ph =

∑L
e=1 repe using least-squares regression [Zho+17]. Since re’s are

assumed to be spatially invariant, we can bin the images ph and pe’s to increase
the SNRs and improve the accuracy of estimated values.

4.2.4 Preparing the recipe

Figure 4.1: Ingredients of the algorithmic recipes.

Based on the above discussions, we can summarize a generic optimization prob-
lem that includes the three modules:

{xe∗} = argmin
{xe}

(1 − α)
L∑

e=1
De(xe) + αDh(

L∑
e=1

rexe) + λR({xe}), (4.11)

where the EDS data discrepancy De(xe) is always required, while the HAADF data
discrepancy Dh(

∑L
e=1 rexe) and the regularization term R({xe}) are optional. To

construct a recipe, we first choose an ingredient for each module according to the
list in Figure 4.1, then make an instance of this optimization problem by setting
the minimization terms.
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When constructing a recipe, one should carefully consider the validity of the
assumptions behind ingredients. In Figure 4.2, we provide a flowchart as guidelines
for choosing ingredients and the conditions w.r.t. the properties of the data and
the sample. These conditions are based on mathematical assumptions summarized
below:

• HEBT : the HAADF-STEM projection images are the linear sum of the EDS
maps for all present elements.

• KL data discrepancy: the image intensities of EDS maps correspond to X-ray
counts that follow Poisson distributions.

• L2 data discrepancy: the image intensities of EDS maps approximately follow
Gaussian distributions.

• TV regularization: the reconstruction has sparse gradients, piecewise con-
stant features and sharp discontinuities.

• TNV regularization: in addition to the assumption for TV, multiple recon-
structions have common edge locations and parallel/antiparallel gradients.

For instance, HEBT should not be included in the recipe when not all the chemical
elements present in the HAADF-STEM images are mapped by EDS, or when
the HAADF-STEM projection images are strongly affected by nonlinear damping
effects.

4.2.5 Solving the reconstruction problem

After making an instance of Eq. 4.11 for the recipe, a numerical algorithm is needed
for solving the optimization problem. We use the Douglas-Rachford primal-dual
splitting algorithm (DR) [BH13] to compute the solution, which is a broadly ap-
plicable algorithm for solving convex optimization problems. For our application,
the DR algorithm solves the mathematical problem of the following general form:

v = argmin
v

f(v) +
R∑

k=1

gk(Akv), (4.12)

where f(·) and gk(·)’s are proper, convex and lower semicontinuous functions and
Ak’s are linear operators.

In fact, all our data discrepancy and regularization terms can be cast into the
form of gk(Akv). Therefore, different optimization problems derived from Eq. 4.11
can be solved using the same DR algorithm. In Appendix, we provide more details
for fitting our optimization problems into Eq. 4.12.



66 CHAPTER 4. ALGORITHMIC RECIPES OF NUMERICAL METHODS

4.3 Experiments
In this section, we investigate the performance of different recipes on simulation
data as well as real experimental data. We use the DR algorithm implemented in
the Operator Discretization Library (ODL) [AKÖ17].

It is necessary to measure the quality of reconstruction to compare reconstruc-
tions made using different recipes, or based on different HEBT weights α and
regularization parameters λ. In this chapter, the quality of reconstruction is mea-
sured by the linear correlation coefficient which determines the linear relation
between the reconstruction and the ground truth. For the real experimental data,
the ground truth is obtained by segmenting the HAADF-STEM reconstruction.
The correlation coefficient is computed by:

r =
∑

i(xi − x̄)(vi − v̄)√∑
i(xi − x̄)2

√∑
i(vi − v̄)2

, (4.13)

where x̄ and v̄ are the mean values of the reconstruction x and the ground truth
v respectively.

4.3.1 Non-mixed Phantom simulation
Data simulation

The 2D phantom resembles a structure that contains three homogeneous compo-
sitions, which are shown in different colors in Figure 4.3 (a). We assume that the
image contrast scales are respectively zAg = 471.7, zCu = 291.7 and zT i = 221.7

given the corresponding atomic numbers Z of these elements, so that the contrast
scales as Zα with α chosen as 1.7 [Tre11]. The HAADF phantom is shown in
Figure 4.3 (b).

We simulated a tilt series of 1D projection images for the HAADF-STEM phan-
tom for every 5◦ from 0◦ to 180◦ using the ASTRA Toolbox [PBS13]. In addition,
we simulated tilt series of 1D maps for each individual element. A realistic value
for the image intensity can be determined by considering the incident beam cur-
rent, the probe live time, the fraction of incident electrons causing ionization, the
fluorescence yield, the detector solid angle, and the detector efficiency [Che+16].
In this chapter, we simply set the intensities to absolute scales close to real ex-
perimental data for the brevity of the chapter. We then applied Poisson noise by
drawing random numbers for expected values given by the noiseless map intensi-
ties. Figure 4.3 (c) shows the simulated maps with noise for Ti. The mean image
intensity on non-background pixels is 11.76.

Reconstruction results

For this dataset we can choose KL data discrepancy, TNV regularization and
HEBT as the ingredients for our preferable recipe (KL-TNV-HEBT), based on
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(a) Elemental distribution (b) HAADF Phantom

(c) Simulated noisy maps for Ti. The row and
column correspond to the tilt angle and the
beam position respectively. The mean image
intensity on non-background pixels is 11.76.

Figure 4.3: The non-mixed phantom simulation data.

the observation that the Poisson noise is strong and the individual elements have
homogeneous structures that share edges. Additionally, reconstructions based on
other recipes were also performed for comparing the effects. Although reconstruc-
tions were made for all elements, only the reconstructions for Ti are shown for the
brevity of this section.

For comparison, we first show the non-regularized reconstructions. The recon-
struction (Figure 4.4 (a)) based on the KL divergence was computed by solving
Eq. 4.4 using the DR algorithm. Figure 4.4 (b) shows the reconstruction based on
L2 data discrepancy computed using the SIRT algorithm for 50 iterations, com-
bined with a pre-smoothing using a Gaussian filter (σ = 1.0). In fact, SIRT also
incorporates implicit regularization on the image smoothness, which is determined
by the number of iterations. The L2 reconstruction is less noisy than the KL re-
construction due to the smoothing effect. However, SIRT strongly blurs the small
structures.

Second, we performed EDS reconstructions with TV-regularization with the
KL or the L2 data discrepancy (KL-TV/L2-TV). The reconstructions were made
for different values of regularization parameter λ, for which the correlation co-
efficients were computed and plotted in Figure 4.6 (a). Figure 4.4 (c) and (d)
respectively show the optimal KL-TV or L2-TV reconstructions that correspond
to the largest correlation coefficients. Compared to the non-regularized recon-
structions, these reconstructions are more homogeneous with sharper edges. We
observe that small structures have also been smoothed by the TV regularization.
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(a) KL (b) L2(SIRT) (c) KL-TV, λ = 1.60 (d) L2-TV, λ = 1.60

(e) KL-TV-HEBT,
λ = 0.025, α = 0.990

(f) L2-TV-HEBT,
λ = 0.025, α = 0.999

(g) KL-TNV-HEBT,
λ = 0.025, α = 0.990

(h) L2-TNV-HEBT,
λ = 0.025, α = 0.999

(i) Region of
interest for (g)

(j) Region of
interest for (e)

(k) Ground truth

Figure 4.4: Reconstructions for Ti in the non-mixed phantom using various recipes.

Also, the TV regularization introduces obvious staircasing artifacts.
Third, we introduce HEBT to reduce the staircasing artifacts. We performed

the recipe of KL-TV-HEBT and L2-TV-HEBT for a range of regularization param-
eter λ and HEBT weight α. The corresponding correlation coefficients are plotted
in Figure 4.6 (b) and (c) respectively. Figure 4.4 (e) and (f) respectively show
the optimal reconstructions. We see that the KL-TV-HEBT reconstruction shows
clearly reconstructed features at smaller scales (i.e. the “holes”) and less stair-
case artifacts compared to the L2-TV-HEBT reconstruction, due to the proper
assumption of data discrepancy. Figure 4.5 (a) and (b) show the optimal KL-TV-
HEBT reconstructions for a smaller and a larger α respectively. For the smaller α
the reconstruction is similar to the KL-TV reconstruction as the HAADF-STEM
data discrepancy is not given with a substantial weight, while for the larger α the
reconstruction is more noisy.

Finally, we replaced the TV regularization by TNV regularization to promote
the common edges of different elements. Figure 4.4 (g) and (h) are the optimal
KL-TNV-HEBT and L2-TNV-HEBT reconstructions. Figure 4.6 shows the zoom-
in images for the regions of interest (ROI). Compared with the TV-regularized
reconstruction, the TNV-regularized reconstruction is more accurate for areas near
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(a) KL-TV-HEBT,
λ = 0.251, α = 0.900

(b) KL-TV-HEBT,
λ = 0.004, α = 0.999

Figure 4.5: KL-TV-HEBT reconstructions for different α values optimized w.r.t. λ values.

(a) KL-TV/L2-TV (b) KL-TV-HEBT (c) L2-TV-HEBT

(d) KL-TNV-HEBT (e) L2-TNV-HEBT

Figure 4.6: Correlation coefficients sampled for different values of HEBT weight α and regular-
ization parameter λ.

the common edge locations. The improvement of accuracy is also indicated by the
correlation coefficients (see Figure 4.6 (b) and (d)).

For these regularized HEBT reconstructions (Figure 4.4 (e)-(h)), the KL data
discrepancy leads to more homogeneous gray values. However, if the SNRs are
high enough, the Gaussian distribution assumed by the L2 data discrepancy can
also form a close approximation even though the noise is Poisson distributed. For
instance, the L2-TNV-HEBT reconstruction in Figure 4.7 demonstrates little stair-
casing artifacts when the image intensities are increased by 400% (and therefore
the SNRs by 200% for Poisson noise).

In addition, the TV regularization has been shown to reduce the artifacts in-
troduced by the missing wedge [Gor+12], which is a common issue in electron
tomography. Figure 4.8 (a) shows the TV-KL reconstruction for data with an an-
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(a) KL-TNV-HEBT,
λ = 0.025, α = 0.990

(b) L2-TNV-HEBT,
λ = 0.063, α = 0.999

Figure 4.7: HEBT-KL-TNV and HEBT-L2-TNV reconstructions for data with 200% SNRs.

(a) TV-KL
λ = 1.0

(b) KL-TNV-HEBT,
λ = 0.063, α = 0.999

Figure 4.8: reconstructions from data with the missing wedge.

gular range from −80◦ to 80◦. In comparison, the KL-TNV-HEBT reconstruction
(Figure 4.8 (b)) shows more clear structures in the horizontal direction. There-
fore, an algorithmic recipe combining proper ingredients might also better reduce
missing wedge artifacts.

4.3.2 Mixed phantom simulation
Data simulation

The purpose of this simulation is to study the reconstruction methods on inhomoge-
neous structures liked alloyed materials, as opposed to the homogeneous structures
used in the first simulation. The phantom was created resembling the nano-rattle
sample investigated in [Zan+16a]. The alloyed nanoparticle consists of Au and Ag
components, which have inhomogeneous concentrations. Figure 4.9 (a) and (b)
show the Au and Ag phantoms respectively. We created the HAADF phantom as
the weighted sum of these two phantoms for zAg = 471.7 and zAu = 791.7, which
is shown in Figure 4.9 (c). Unlike the non-mixed phantom, the structures of Au
and Ag components can be hardly distinguished in this image. We simulated the
tilt series of 1D EDS maps and HAADF projection data for every 5◦ from 0◦ to
180◦ and added the Poisson noise to the EDS maps following the same procedures
as in the first simulation.



4.3. EXPERIMENTS 71

(a) Au (b) Ag (c) HAADF

(d) EDS maps for Au and Ag. The row and column
correspond to the tilt angle and the beam position

respectively. The mean image intensities on
non-background pixels are respectively 8.77 and 5.71.

Figure 4.9: The mixed phantom simulation data.

Reconstruction results

TNV regularization is not applicable in this case since the reconstructions for Au
and Ag do not necessarily share the same edge locations. We apply TV regular-
ization for noise reduction. Therefore, we consider a recipe of KL-TV-HEBT that
satisfies the conditions in Figure 4.2.

For comparison, we first performed SIRT reconstructions (for 50 iterations).
The results are shown in Figure 4.10 (a) and (b), which demonstrate low SNRs.
Also, we performed KL-TV reconstructions. The reconstructions corresponding to
maximal correlation coefficients are shown in Figure 4.10 (c) and (d), which show
significant staircasing artifacts due to the strong noise.

The optimal KL-TV-HEBT reconstructions are shown in Figure 4.10 (e) and
(f). As a result, the combination of HEBT and TV effectively improves the quality
of reconstruction. In particular, HEBT reduces the staircasing artifacts and results
in more interpretable reconstructed images. The improvement of image quality is
verified by the correlation coefficients in Figure 4.10 (g).
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(a) SIRT: Au (b) SIRT: Ag (c) KL-TV: Au
λ = 1.000

(d) KL-TV: Ag
λ = 1.000

(e) KL-TV-HEBT: Au
λ = 0.040, α = 0.99

(f) KL-TV-HEBT: Ag
λ = 0.025, α = 0.99

(g) Correlation coefficients of the
reconstructions

Figure 4.10: Reconstructions for Au and Ag in the mixed phantom using various recipes.

4.3.3 Real experimental data
Data acquisition

Table 4.1: Data acquisition specifications

Electron microscope Tecnai Osiris FEI company
X-rays detectors SuperX system, FEI company
Scanning time 300 seconds

Accelerating voltage 120 kV
Projection angles range −75◦ to 75◦

Projection angle increment 5◦

Number of tilts 31
Image size 300 × 300 pixels

Image size after binning 100 × 100 pixels

We now investigate the proposed method on a real experimental dataset. The
sample is a core-shell nanoparticle of an Au cube embedded in an Ag particle, which
has been investigated in Chapter 2 and paper [Zho+17]. The two components have
clear boundaries, homogeneous densities and different Z-contrasts. Thus, the core-
shell nanoparticle is suitable for applying a TNV regularization.
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The experimental data, which consist of a tilt series of spectrum images and
correlated HAADF-STEM projection images, were acquired using an electron mi-
croscope equipped with four silicon drift detectors. The specifications of the EDS
data acquisition are listed in Table 4.1. During the tilt acquisition, only the X-ray
detectors on one side were turned on so that the detector shadowing effects were
compensated. However, this approach also limited the number of X-ray counts
that could be acquired. After PCA denoising, elemental maps were extracted by
integrating the spectrum images near the characteristic peaks (Au: Mα = 2.15
keV, Mβ = 2.20 keV and Lα = 9.70 keV; Ag: Lα = 2.98 keV and Lβ = 3.19
keV) as described in [Zho+17]. The HAADF-STEM tilt series were aligned using
the cross-correlation method. The EDS elemental maps were then aligned using
the same alignment settings. The intensity damping in the HAADF-STEM data
was corrected using the correction algorithm [Zho+18a]. Finally, all the images
were binned to 100 × 100 pixels so as to increase the SNRs to reasonable levels.
Figure 4.11 shows two examples of the elemental maps. Au and Ag have distinct

Au
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Ag
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1
2
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7
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9

Figure 4.11: Au and Ag elemental maps at 0◦

Z-contrasts in the HAADF-STEM images. Therefore, ground truth for evaluat-
ing the EDS reconstructions can be obtained by segmenting the HAADF-STEM
reconstruction into Au and Ag components. Figure 4.12 (a) shows a slice of the
3D reconstruction for HAADF-STEM, which was made with TV regularization to
promote piecewise constant structures and to facilitate the subsequent segmenta-
tion. Figure 4.11 (b) and (c) show the subsequent segmented images for Au and
Ag respectively.

Figure 4.12 (d) and (e) show the SIRT reconstructions for Au and Ag from the
EDS maps, which are indeed noisy and inaccurate. We hope to use a tailored recipe
to make more accurate reconstructions. Given the low X-ray counts, the sample
structure and the correlated HAADF-STEM data, we apply a KL-TNV-HEBT
recipe.
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(a) HAADF
reconstruction

(b) Au
segmentation

(c) Ag
segmentation

(d) SIRT: Au (e) SIRT: Ag

Figure 4.12: Reconstructions for slice number 50. The HAADF reconstruction was performed in
3D with TV regularization using the DR algorithm.

Results and Discussion

We first searched for the optimal α and λ parameters for the KL-TNV-HEBT
recipe. Since it is time-consuming to compute 3D reconstructions, we selected a
2D slice to sample reconstructions. Here we used the slice at the center of the
sample (number 50), which should give a good estimation for the SNRs of the
entire volume. Figure 4.13 (a) and (b) show the correlation coefficients with the
segmented HAADF-STEM reconstruction, computed for the 2D reconstructions
at slice 50. The correlation coefficients for Ag reach maximum at α = 0.9900 and
λ = 0.10, at which the correlation coefficient for Au is also close to maximal.

We then applied the λ and α to the entire volume. We performed the re-
construction for the entire volume with regularization in 3D. Figure 4.14 (a)-(f)
show some slices of the 3D reconstruction. For comparison, we also performed
2D regularized reconstruction for each slice, some of which are shown in Figure
4.14 (g)-(l). Figure 4.14(m)-(r) show the ground truth for evaluating these recon-
structions, which were obtained by segmenting the TV-regularized HAADF recon-
struction. The 3D reconstructions are smoother and more accurate compared to
the 2D reconstructions, since the large variation in the direction of rotation axis
was penalized. Figure 4.13 (c) compares the correlation coefficients for 3D and 2D
reconstructions for every slice in the volume. Once again, we conclude that 3D
reconstructions are to be preferred when regularizations are applied.

4.4 Conclusion
When characterizing the chemical structure of nanomaterials in 3D by EDS tomog-
raphy, the limited number of tilt EDS maps, each having a limited signal-to-noise
ratio, often leads to noisy and inaccurate EDS tomographic reconstructions. In
this chapter, we show that the reconstruction can be improved by using an al-
gorithmic recipe that combines several sophisticated methods for modeling the
reconstruction problem. We also provide guidelines for tailoring the recipes based
on the specific sample/dataset.

Different algorithmic recipes have been used to reconstruct from both simula-
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(a) (b)

(c)

Figure 4.13: (a) and (b): correlation coefficients for the KL-TNV-HEBT reconstructions for slice
number 50, sampled for different λ and α values. (c): correlation coefficients for all slices of 2D
or 3D reconstructions.

tion and real experimental data. We evaluated the accuracy of reconstructions
based on the correlation coefficients w.r.t. ground truth. For all these experi-
ments, the algorithms lead to more accurate reconstruction compared to more
naive algorithms when they are tailored for the dataset and sample.

In conclusion, even with very limited data, EDS tomographic reconstruction
can still be made accurately using the right recipe. This is useful for characterizing
samples sensitive to large dose, or for data measured in a short time. Moreover,
it has the flexibility to include other modeling or regularization methods, which
allows to extend the options of ingredients. In the future, we will also explore
automatic mechanisms for selecting parameters to make the advanced algorithms
more accessible.
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4.5 Appendix
In this chapter we use the Douglas-Rachford primal-dual splitting algorithm to
solve the optimization problem as a sum of multiple objective functions, which
is a broadly applicable algorithm for solving the following convex optimization
problem from [BH13]:

min
v

f(v) +
R∑

k=1

(gk□lk(Akv − ⟨v, z⟩), (14)

where f(·), gk(·)’s and lk(·)’s are proper, convex and lower semicontinuous func-
tions and Ak’s are linear operators. The infimal convolution gk□lk(·) is defined
as:

gk□lk(v) = inf
y

g(y) + l(v − y). (15)

By setting z = 0 and
lk(v) = 0 if x = 0, ∞ if x ̸= 0, (16)

we simplify the mathematical problem to Eq. 4.12.
To construct a optimization problem based on Eq. 4.12 given a reconstruction

recipe, we set f(·) = 0, and map gk(·)’s and Ak’s to our functions and operators.
For example, for a KL-TNV-HEBT recipe, the optimization problem can be made
from:

f({xe}) = 0,

g1({ve}) = (1 − α)
L∑

e=1
DKL(ve; pe),

A1 = {We},

g2({ve}) = α ∥
L∑

e=1
ve − pe ∥2

2,

A2 = {Wh},

g3({Zj}) = λ

N∑
j=1

∥ Zj ∥⋆,

A3 = J ⊗ IN.

The matrix IN is the N × N identity matrix, and ⊗ denotes the Kronecker prod-
uct. Table 2 lists the instances for all functions and linear operators used in this
chapter. Another key to deriving the particular DR algorithm instances is to de-
rive proxσ[g∗

k](y), which is the proximal operator for the convex conjugate of gk(·).



78 CHAPTER 4. ALGORITHMIC RECIPES OF NUMERICAL METHODS

Table 2: Mathematical instances for the ingredients

Ingredient Minimization term DR algorithm instances

L2 De(xe) =∥ Wexe − pe ∥2
g({ve}) = (1 − α)

∑L

e=1
∥ ve − pe ∥2

2, A = {We}
KL De(xe) = DKL(W exe; pe) g({ve}) = (1 − α)

∑L

e=1
DKL(ve; pe), A = {We}

HEBT Dh({xe}) =∥
∑L

e=1
Whrexe − ph ∥2

2 g({ve}) = α ∥
∑L

e=1
reve − ph ∥2

2 , A = {Wh}
None Dh({xe}) = 0

TV R({xe}) =
∑L

e=1

∑N

j=1
∥ ▽xe

j ∥2 g({Ye}) = λ
∑L

e=1

∑N

j=1
∥ ye

j ∥2, A = {▽}

TNV R({xe}) =
∑N

j=1
∥ (J{xe})j ∥⋆ g({Zj}) = λ

∑N

j=1
∥ Zj ∥⋆, A = J ⊗ IN

None R({xe}) = 0

The exact forms of the proximal operators for the functions in Table 2 are derived
and provided in [Dur+16; RL15; SJP12].
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5
Correcting nonlinear

damping effects in
HAADF-STEM tomography

5.1 Introduction
In materials science, electron tomography (ET) is commonly used to characterize
the three-dimensional (3D) structural and compositional information of nanomate-
rials. The 3D image is usually reconstructed from a tilt series of two-dimensional
(2D) projections (projection images). The projection images should have a mono-
tonic relationship between the measurement intensity and the integrated physical
property of the specimen, which is referred to as the projection requirement in ET
[Mid+01; Küb+05]. Strictly speaking, the relationship should be linear, as most
tomographic reconstruction algorithms are based on a linear mathematical model
– the line integral model. It assumes that the projection is a measurement of a
physical property integrated along the projection orientation [KS88, Chapter 3].

High angle annular dark field (HAADF) scanning transmission electron mi-
croscopy (STEM) is commonly used for ET [Mid+01; MW03] under the implicit

This chapter is based on:
Z. Zhong, R. Aveyard, B. Rieger, S. Bals, W. J. Palenstijn, and K. J. Batenburg.
“Automatic correction of nonlinear damping effects in HAADF-STEM tomography for
nanomaterials of discrete compositions”. Ultramicroscopy 184.Part B (2018), pp. 57–
65.
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assumption that the projection requirement can be approximately satisfied. The
image intensity approximates to be proportional to the mass-thickness weighted
by ∼ Z2, where Z is the atomic number [MW03]. However, this approximation is
not always valid. One example is that when projections of a crystalline material
are acquired at zone-axis orientations, fringes and large overall intensity differences
can be observed. Thus the tilts at zone-axis are usually excluded from the tomo-
graphic reconstruction step [Ave+17]. Another example is that the image intensity
damps at high sample thickness due to the multiple scattering events redirecting
electrons outside the annular detector, which can occur in all projection orienta-
tions. While the zone-axis effects can be easily identified, intensity damping is not
easily seen in individual projections. In this chapter, we aim at addressing the
nonlinear effects of intensity damping for tomographic reconstruction.

The consequence of intensity damping appears as the cupping artifact in tomo-
graphic reconstruction: the gray levels in the center of the reconstructed sample
are underestimated while overestimated on the exterior [van+12]. In Figure 5.1
(a), an example of the cupping artifact is given. It is a 2D cross section of an
Au-Ag core-shell nanoparticle [Zho+17], reconstructed using the SIRT algorithm
[GB08]. If we look at the line-profile of the 2D image (Figure 5.1 (b)), the curve
appears in a concave “cup” shape, while ideally it should be flat. The cupping
artifacts are caused by the strong damping effects of Au at large thickness, which
is illustrated by the simulated relationships between measurement intensity and
sample thicknesses using the multislice simulation method [Ave+17] in Figure 5.2.
In this example, the linear approximation is only valid for thickness smaller than
8 nm due to the clear damping effect for larger thickness.

(a) (b)

Figure 5.1: (a): A 2D slice of the SIRT reconstruction of an Au-Ag nanoparticle. (b): Gray
levels of the line-profile located at the dash line of the 2D slice.

It is important to correct the nonlinear effects and the subsequent cupping
artifacts for three reasons. First of all, compositional analysis based on gray levels
becomes difficult when the cupping artifacts occur, as gray levels are not propor-
tional anymore to density and atomic numbers. Second, morphological analysis
based on segmentation of reconstruction images is hindered by the cupping arti-
facts. Some straightforward segmentation methods, e.g. Otsu’s method [Ots79],
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Figure 5.2: Normalized HAADF signal intensity w.r.t the thickness of Au slabs mistilted 10
degrees from the [100] zone axis about the <100> axis, simulated using the multislice method
[Ave+17]. The accelerating voltage is 200 kV, the convergence angle is 10 mrad and the detector
angular range is 50 - 250 mrad. The intensities are scaled by the incident beam intensity. The
red lines indicate the region where intensity is approximately linear to thickness.

require that for each chemical composition there should be one constant gray level.
Third, the nonlinear effects limit applying advanced reconstruction algorithms to
address a critical issue of ET – the missing wedge artifacts caused by the limited
tilt range of the sample. Algorithms such as total variation minimization [Gor+12]
reduce the missing wedge artifacts by incorporating prior knowledge i.e. sparsity
of the unknown sample. Nevertheless, these algorithms have an even stronger re-
quirement for the linear forward model which is inaccurate due to the nonlinear
effects.

Despite these shortcomings of using uncorrected data, there are few publica-
tions addressing the nonlinearity issue in ET [Ave+17; van+12]. Nonlinear effects
are usually ignored or mitigated during image acquisition by increasing the inner
angle of the HAADF detector but at the cost of losing signal strength [Ave+17].
An alternative to adjusting the acquisition parameters is to correct the measured
data in a post-processing step by linearizing the projection data, provided that
the incident beam intensity is known [van+12]. The method described here re-
quires only the HAADF signal, consequently, it can be applied to correct cupping
artifacts in many existing datasets acquired in a conventional manner. The math-
ematical model of nonlinearity and the concept of linearization in [van+12] are
also used in this chapter, which will be explained in Section 5.2.1.

Here, we propose an iterative algorithm to automatically correct the nonlinear
effects and the cupping artifacts. It does not require the extra measurement of the
incident beam intensity as in [van+12]. Instead, it automatically models the non-
linear effects given the projection data. The algorithm iteratively searches for the
minimal distance between the acquired projections and the nonlinear re-projections
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of chemical compositions by varying the nonlinear model and the reconstruction
image, so as to estimate a nonlinear relationship between the measured HAADF-
STEM intensities and sample thickness for all chemical compositions. The algo-
rithm contains the following steps in every iteration: first a reconstruction image
with continuous gray levels is made; then the image is segmented into several
binary images, each of which corresponds to a chemical composition; after that,
the nonlinear effects are modeled by minimizing the projection distance; based
on the model, the projection data is linearized at last. The concept of iterative
correction has been used to correct beam hardening artifacts for X-ray computed
tomography, which is similarly caused by nonlinear intensities [van+11; Hsi+00;
van+02].

Our approach is only applicable to samples consisting of several chemical com-
positions with uniform densities, such as homogeneous or core-shell particles. It is
assumed that for these samples the volumetric distributions of the compositions
can be approximated well by segmenting the reconstructed image based on gray
levels and that this segmentation improves as the correction model applied to the
measured data becomes more accurate. In fact, these kinds of samples are com-
monly studied in materials science. For example, the samples typically studied in
the context of discrete tomography [Bat+09; ZPB16] match the requirements.

In Section 5.2, the correction algorithm is explained in detail. In section 5.3,
we demonstrate how the nonlinear effects are corrected using this algorithm for
real experimental data and phantom simulations.

5.2 The nonlinear model and the correction algorithm

5.2.1 The nonlinear model
To linearize the projections, we first need to define a model that describes the
nonlinear relationship mathematically. A precise mathematical model is possible
but does not fit as a subroutine of the correction algorithm. The computation
of a sophisticated model, such as the one used in multi-slice simulations which
take into consideration the multiple scattering of electrons [Ave+17], is extremely
time-consuming and costly. Therefore, a simple model is preferred here.

Here, we choose a model that has already been used for describing the non-
linear relationship. In [van+12; WC16], it is illustrated we can assume that the
HAADF detector collects electrons complementary to the electrons scattered to
angles smaller than its inner detector angle. The electrons can also be scattered to
angles beyond the outer detector angle, but the proportion is negligibly small. By
pragmatically applying a simple Beer-Lambert description of electron scattering
we can state that the number of electrons scattered to small angles pt decreases
exponentially to the sample thickness t along the beam direction. The pt-t rela-
tionship is

pt = I0 exp(−
K∑
e

µet), (5.1)



5.2. THE NONLINEAR MODEL AND THE CORRECTION ALGORITHM 83

where I0 is the incident beam intensity, e is the index of chemical composition, K
is the total number of chemical compositions, µe is the attenuation coefficient of
chemical composition e. Therefore, the complementary HAADF signal intensity p
at sample thickness t is:

p = I0(1 − exp(−
K∑
e

µet)) + pb, (5.2)

where pb is the bias signal, which is influenced by the dark current, carbon grid,
and possibly other factors.

This mathematical model has been used to correct the cupping artifacts suc-
cessfully in [van+12], which is applicable only if the incident beam intensities can
be measured. An advantage of this simple model is that it can easily be trans-
formed into a linear relationship by taking logarithms so that we can avoid solving
nonlinear least-squared problems for tomographic reconstruction.

In the practice of ET, a series of projections are taken at different angles. The
image intensity of each pixel corresponds to the electrons scattered for an electron
beam transmitting through the sample, which is called a line projection here. In
total, there are M pixels for all the images. The image intensity of the ith pixel is
now written as an entry pi in p ∈ RM . In addition, the space of reconstruction is
a cubic volume partitioned into N voxels.

We also assume the chemical compositions are not mixed and voxels are small
enough to resolve every chemical composition, which means that in each voxel only
one element is present. As stated in the introduction, this algorithm is applied to
samples with uniform density. Thus we assume that each chemical composition
is either present (1) or absent (0) in each voxel. The distribution of chemical
composition e is described by binary variables sej , where j = 1, . . . , N is the index
of voxel.

Now we define the nonlinear relationship in the discrete form. For pixel i, the
corresponding sample thickness of chemical composition e is now written as the
ray-sum

∑N
j=1 wijsej , where the factor wij is determined by the area of intersec-

tion between the ith line projection and the jth voxel. The relationship between
projection intensities and binary volumes are:

pi = I0(1 − exp(−
K∑

e=1
µe

N∑
j=1

wijsej)) + pb, (5.3)

where i = 1, . . . , M .

5.2.2 The correction algorithm
The basis of the correction algorithm is to estimate the nonlinear relationship of
Eq. 5.3 based on the reconstructed distributions of chemical compositions. The
procedures of the automatic correction algorithm are given in the flowchart (Figure
5.3). The correction is realized iteratively through the following steps: (1) make a
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reconstruction image based on the linear model from the projections; (2) segment
the reconstruction into a series of binary images, one for each chemical compo-
sition; (3) estimate the parameters of the nonlinear model in Eq. 5.3 given the
projections and the binary images; (4) reduce the nonlinearities in the projections
through a rescaling of the intensities based on the nonlinear model.

Figure 5.3: Flowchart of the correction algorithm

Before we explain the steps explicitly, we establish an objective function which
will be used to guide the optimization in the correction algorithm. We define it as
the l2 norm of the distance between the acquired projections and the re-projection
of binary images based on our nonlinear model:

C (I0, pb, µ, S) =∥ p − I0(1 − exp(−W
K∑

e=1
µese)) − pb ∥2

2, (5.4)

where W = {wij}, µ = {µe} and S = {sej}.
We also define a stopping criterion. The cost value at the rth iteration is

denoted as the cr. The loop is terminated if the cost is stable, which is when the
following criterion is met:

cr + cr−1

cr−2 + cr−3 > t, (5.5)

where 0 < t < 1 is a thresholding value. Note that although we minimize the
cost function in some steps of the algorithm, the cost is not guaranteed to reach a
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global minimum in the end.

Step 1: Reconstruction
As the first step, a reconstruction with continuous gray levels is made for de-

termining the binary images in the next step. Though it is possible to reconstruct
binary images directly using some discrete tomography algorithms (e.g. [Bat+09]),
these algorithms will possibly not give better results than basic algorithms given
an inaccurate forward model. Thus, we choose to first make a reconstruction x
with continuous gray levels based on a linear model and then segment the recon-
struction into binary images S.

The reconstruction is computed using the simultaneous iterative reconstruction
technique (SIRT) [GB08] which solves the following least-squares problem:

x∗ = argmin
x

∥ plin − Wx ∥2
2 . (5.6)

The widely used SIRT algorithm is chosen for its robustness to noise and its easy
implementation.

The input for this step is a set of “inearized” projections plin. For the first
iteration, they are just the acquired projections. For the other iterations, they are
adopted as the projections that have been rescaled in the previous iteration, which
will be explained in Step 4.

Step 2: Segmentation
The binary images are then determined by segmenting the reconstruction image

x. As gray levels are related to atomic numbers, we segment the SIRT reconstruc-
tion by global thresholding. The thresholds for the segmentation are determined
by solving the following optimization problem:

S∗ = argmin
S∈S

C (I0, pb, µ, S). (5.7)

The solution of this problem is found by straightforward (brute-force) sampling of
the space of thresholds, each time evaluating the cost function. In practice, the
thresholds are sampled from the minimum to the maximum of gray levels of the
SIRT reconstruction in Step 1.

The first iteration is again an exception since parameters have not yet been
estimated and the objective function cannot be computed. Thus, the above seg-
mentation method is not applicable. Instead, the thresholds are determined using
Otsu’s method which finds optimal thresholds based on the gray level histograms
[Ots79].

Step 3: Nonlinear parameters estimation
Given the binary images, we can update the free parameters of the nonlinear

model I0, pb, µ by minimizing the objective function, which is a nonlinear regres-
sion problem. This nonlinear regression problem is solved using the Nelder–Mead
method [Lag+98]. To improve the stability of the regression, the three parameters
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are estimated separately and iteratively in an inner loop:

For l = 1 : L

pb
l+1 = argmin

pb

C (I l
0, pb, µl, S∗);

µl+1 = argmin
µ>0

C (I l
0, pl+1

b , µ, S∗);

I0
l+1 = argmin

I0>max(p)
C (I0, pl+1

b , µl+1, S∗). (5.8)

here l is the iteration number of the inner loop. The estimation algorithm requires
initial parameter values. In the experiments, we found that the initial values have
little influence on the convergence result but proper initial values help to converge
faster. Since we know that the beam intensity I0 should be at least the maximal
image intensity and that the attenuation coefficients µ and the bias intensity pb

are very small, we can start from I1
0 = max(p), p1

b = 0 and µ1 = 0, which were
used in all the experiments in this chapter.

Step 4: Projection intensities rescaling
Given the parameters, we rescale the measured projections p to reduce nonlin-

ear damping effects using:

p,
lin = log I0 + pb − p

I0
, (5.9)

where p,
lin is the rescaled projections and is used as the input data for Step 1. At

the last iteration, the rescaled projections are returned as the output plin. These
correspond to the linearly projected sum of the attenuation coefficients.

5.3 Experiments and simulations
We report the correction of cupping artifacts for two sets of experimental data
and three phantom simulations. The experimental data show strong nonlinear
effects because the samples consist of thick metallic materials. Two phantom
simulations resembling the experimental data were performed, as ground-truth is
missing for quality assessment of the reconstruction image due to the lack of other
measurement methods. In addition, a phantom of four chemical compositions
was simulated to investigate the robustness of the algorithm when more chemical
compositions are present, as the experimental samples consist of only one or two
chemical compositions.

5.3.1 Experiments
The first experimental sample is an assembly consisting of 16 Pt nanoparticles,
each of which has a diameter of about 60 nm (Figure 5.4 (a)) [Sán+12]. It has
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Table 5.1: Data acquisition specifications.

Specimen Nanoparticle assembly Core-shell nanoparticle
Electron microscope Tecnai G2, FEI company Tecnai Osiris, FEI company
Accelerating voltage 200 kV 120 kV
Convergence angle 16 mrad 18 mrad

HAADF detector range 82-180 mrad 54-230 mrad
Projection angles range −74o to 74o −75o to 75o

Projection angle increment 2o 5o

(a) (b)

Figure 5.4: (a): 3D volume rendering of the Pt nanoparticle assembly. (b): 3D volume rendering
of the Au-Ag nanoparticle.

only one chemical composition and a relatively more complex structure than the
second sample.

The second sample is a hetero-nanoparticle, which is an Ag nanoparticle with a
diameter of approximately 110 nm with an embedded Au octahedron [Zho+17]. It
is studied as a case where the cupping artifacts reduce the image contrast between
different chemical compositions. The specifications of data acquisition are listed
in Table 5.1.

This dataset has been used to investigate HAADF-EDS bimodal tomography
(HEBT) in Chapter 2 and [Zho+17]. In that study, the authors have noticed that
the raw data had strong intensity damping which not only limited straightforward
segmentation of the HAADF reconstructions but also undermined the validity of
HEBT based on linear models. Therefore, in [Zho+17] the data has been linearized
in the data preprocessing as mentioned in the paper.

Results: nanoparticle assembly

Figure 5.5 (a) is the initial SIRT reconstruction, based on which a binary image
(Figure 5.5 (c)) was segmented using Otsu’s method. Figure 5.5 (b) and (d) are
the reconstruction and the binary image acquired after applying the correction
algorithm. To obtain morphological information which is difficult to observe in the
reconstruction images, we plotted their edges (Figure 5.5 (e)) which are detected
using a Sobel filter that depends on the derivatives of gray levels.
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(a) (b) (c) (d)

(e)

Figure 5.5: (a) and (b): SIRT reconstructions of the Pt nanoparticle assembly from the non-
linear projections and corrected projections respectively. (c) and (d): Binary images obtained
by segmenting (a) and (b) respectively. (e) Edges of reconstructions before (white) and after
correction (green).

Figure 5.6: The nonlinear damping model fitted for projection signal intensity w.r.t. sample
thickness of the nanoparticle assembly. The error bars indicate mean intensities and the standard
deviations of the projection data.

In addition, the fidelity of the nonlinear regression for the nonlinear model was
investigated. The fitted nonlinear model w.r.t thickness is plotted in Figure 5.6,
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where the thickness was computed as the forward projection of the binary image
after correction. The error bars indicate the mean intensities and the standard
deviations of the projection intensity.

Results: Au-Ag core-shell nanoparticle

For this experimental data, the SIRT reconstructions and segmented binary images
before and after correction are shown in Figure 5.7. In addition, the line profiles
across the reconstruction images for some iterations are plotted in Figure 5.8 to
demonstrate how gray levels evolve during a run of the correction algorithm.

As discussed in the introduction, the nonlinear effects also hinder adopting
prior knowledge to reduce missing wedge artifacts. In this data, the projections
were only acquired from −75o to 75o. We thus compared reconstructions us-
ing advanced reconstruction algorithms: total-variation minimization (TV-min)
[Gor+12], discrete algebraic reconstruction technique (DART) [Bat+09] and total
variation regularized DART (TVR-DART) [ZPB16], which incorporate the prior
knowledge of image sparsity, discrete gray levels and image sparsity combined with
discrete gray levels respectively. The images reconstructed from the nonlinear pro-
jections and the corrected projections are given in In Figure 5.9.

Finally, we plotted the normalized residuals of the cost function w.r.t. itera-
tions for the two experimental data (Figure 5.10). For the first and second ex-
periments, the cost values converge to stable minimums after 16 and 12 iterations
respectively.

(a) (b) (c) (d)

Figure 5.7: (a) and (b): SIRT reconstructions of the Au-Ag nanoparticle from the nonlinear
projections and corrected projections. (c) and (d): Binary images segmented based on the
reconstruction images (a) and (b) respectively.
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Figure 5.8: Cross-section line profiles of the SIRT reconstructions of the Au-Ag nanoparticle at
different iterations.

(a) (b) (c) (d)

(e) (f)

Figure 5.9: (a)/(b), (c)/(d) and (e)/(f) are the TV-min, DART and TVR-DART reconstructions
of the Au-Ag nanoparticle from projections before/after the correction respectively.

5.3.2 Phantom simulations
First of all, two phantom simulations were made resembling the two experimental
datasets. Note that the purpose of the simulation is not to validate the nonlinear
model, but to assess the quality of nonlinear correction assuming the nonlinear for-
ward model is accurate once all model parameters have been accurately obtained.
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Figure 5.10: The residuals of cost function (Eq. 5.10) w.r.t. iterations for the two experimental
datasets.

For each sample, we first applied the correction algorithm to the experimental data
to obtain binary images and nonlinear forward models. Afterwards, projections
were simulated by projecting the binary images based on the nonlinear model.
In addition, Gaussian noise was added to the projections to make the simulation
more realistic.

The simulations provide ground-truth to quantify the quality of reconstruc-
tions. Here, the error metric is defined as the mean difference between the recon-
structed and the ground-truth binary images:

err = 1
K

K∑
e

N∑
j

∥ sej − gej ∥ /

N∑
j

gej , (5.10)

where {gej} are the ground-truth binary images.
The third phantom simulation, focused on the correction for more than two

chemical compositions, was made using the same shapes as the nanoparticle assem-
bly phantom. What is different is that instead of having one composition for all
particles, there are particles of four different compositions, each having a different
atomic number. Then projections were made by projecting the particles based on
the nonlinear model.

Results of simulations

The first phantom resembles the nanoparticle assembly, whose contours are plotted
in Figure 5.11 (c) and (d). Figure 5.11 (a) is the initial SIRT reconstruction before
correction, based on which a binary image (Figure 5.1 (c)) was segmented. Figure
5.11 (b) and (d) show the SIRT reconstruction and the binary image after applying
the correction algorithm. The error metrics of the binary images are respectively
5% and 2% before and after correction.

The results of the second phantom simulation are shown in Figure 5.12, where
(a) and (b) are the SIRT reconstructions before and after correction respectively.
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The binary images in Figure 5.12 (c) and (d) were segmented from the SIRT
reconstruction images. The ground-truth phantom is plotted using red and green
contours for Au and Ag respectively. The error metrics of the binary images are
respectively 56% and 1% before and after correction.

Table 5.2: Errors Metrics of Binary Images.

Before correction After correction
Nanoparticle assembly phantom 5% 2%

Au-Ag nanoparticle phantom 56% 1%
Phantom of four chemical compositions 69% 20%

(a) (b) (c) (d)

Figure 5.11: (a) and (b): SIRT Reconstruction images of the nanoparticle assembly phantom
simulation before and after the nonlinearity correction. (c) and (d): Binary images segmented
based on (a) and (b) respectively. The red contour shows the shape of the phantom.

(a) (b) (c) (d)

Figure 5.12: (a) and (b): SIRT reconstructions of the Au-Ag nanoparticle phantom simulation
before and after the nonlinearity correction. (c) and (d): Binary images segmented based on (a)
and (b) respectively. The red and green contours show the shape of the phantoms of Au and Ag
respectively.

The third phantom simulation presents the case when four chemical compo-
sitions exist in the same phantom. The SIRT reconstruction images before and
after correcting the nonlinearity are shown in Figure 5.13 (a) and (b) respectively,
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while the corresponding binary images are given in Figure 5.13 (c) and (d). The
error metrics of the binary images are respectively 69% and 20% before and after
correction.

(a) (b)

(c) (d)

Figure 5.13: (a) and (b): SIRT reconstructions of the phantom simulation with four chemical
compositions before and after correcting the nonlinear effects. (c) and (d): Binary images seg-
mented based on (a) and (b) respectively. The colorful contours show the shape of the phantom
particles of four different chemical compositions.

5.3.3 Discussion
In the initial reconstruction of the nanoparticle assembly (Figure 5.5 (a)), the
artifacts appear, on one hand, as dark streaks elongated from the gaps between
particles. On the other, they appear as underestimated gray levels in the interior,
for which we see missing pixels in the binary image (Figure 5.5 (c)).

The correction algorithm successfully reduced these artifacts and produced
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images easier to interpret. The correction algorithm also changed the morphology
of the reconstruction image (Figure 5.5 (b)), as can be seen from the plot of
edges. The change may be due to the removal of the overestimated gray levels
on the background. The plot of fitting (Figure 5.6) shows that the experimental
data matches our nonlinear model, demonstrating a damping effect following the
exponential rule. It is also noticeable that the standard deviations decrease at
large thickness, which can be explained by noting that the errors introduced by
segmentation are relatively smaller at larger thickness.

In the initial SIRT reconstruction image of the Au-Ag nanoparticle (Figure 5.7
(a)), the cupping artifacts caused the loss of contrast between Au and Ag, even
though Au and Ag have a large difference in atomic number. As a result, many
pixels were misclassified in the binary images (Figure 5.7 (b)). The algorithm
corrected the experimental data and enhanced the contrast between Au and Ag.
Demonstrated in Figure 5.8, the contrast between Au(center) and Ag(outskirts)
was enhanced step by step. At last, the Au and Ag particles were segmented
correctly based on gray levels.

The Au-Ag nanoparticle should be suitable for incorporating prior knowledge to
correct missing wedge artifacts. It contains two distinct compositions with uniform
densities, and thus the reconstruction image should be sparse and have constant
gray levels. However, before the correction, incorporating different variants of prior
knowledge in the reconstruction actually appears to be detrimental to the image
quality, as can be seen in Figure 5.9. Especially the tip of the Au particle was
expanded. The expanded tip probably is a mixture of cupping artifacts and missing
wedge artifacts. After correcting the nonlinear effects, the linearized projection
data was suitable for using the advanced algorithms as the reconstructions show.

The first two phantom simulations show artifacts (in Figure 5.11 (a) and Figure
5.12 (a)) very similar to those from the experimental data, which indicates that the
modeling of nonlinear effects is accurate. Both reconstructions after correction are
free of these artifacts, and are in good agreement with the ground-truth phantom,
as the error metrics were reduced (Table 5.2).

For the third simulation, we see cupping artifacts (Figure 5.13 (a)) with features
observed in the previous two cases. First, there are dark streaks and underesti-
mated gray levels. Second, the contrast between different chemical compositions
is blurred. These artifacts were corrected after applying the correction algorithm
(Figure 5.13 (b)).

The segmented binary images after correction (Figure 5.13 (d)) show a stack
of different chemical compositions at the borders of some particles. However,
these misclassified pixels are not caused by the cupping artifacts, but due to the
limitation of the global thresholding [BS09]. The gray levels in the reconstruction
image are continuously dropping at the borders. These pixels were classified into
particles of smaller gray levels. Despite the imperfect segmentation, the correction
algorithm converged to a result free from cupping artifacts, which also indicates
the good robustness of the algorithm.
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5.4 Conclusion
In this chapter, we proposed an iterative algorithm to automatically correct the
cupping artifacts in tomographic reconstructions from HAADF-STEM projections
with nonlinearly damping intensities using only the projection data. The correction
is based on modeling the nonlinear relationship between projection intensities and
sample thickness as an exponential function.

We showed that the algorithm is an effective tool in achieving better tomo-
graphic reconstructions. It successfully corrected the nonlinear damping effects
and the subsequent cupping artifacts in three cases where one, two and four chem-
ical compositions are present respectively. The correction is useful for improving
the accuracy of morphological analysis and compositional analysis for 3D nanos-
tructures and nanomaterials. In addition, users can benefit from it in enhancing
the Z-contrast between chemical compositions as well as in facilitating incorporat-
ing prior knowledge to correct the missing wedge artifacts.

For limited data (e.g. with only a small range of tilts), the correction algo-
rithms may fail due to the inaccurate segmentation caused by the dominant miss-
ing wedge artifacts. Potentially, this issue may be addressed by replacing SIRT
and possibly the segmentation step by an advanced reconstruction algorithm (e.g.
TVR-DART). However, it is still an unsolved question how to automatically set
the parameters of the reconstruction algorithms, which has to be done in each
iteration of the correction algorithm.

Note that the algorithm is only applicable to samples consist of several chem-
ical compositions with homogeneous densities that can be segmented based on
images gray levels. This is because the graylevel-based segmentation method fails
easily when the chemical compositions are mixed or have similar atomic numbers.
Moreover, this segmentation method is a global thresholding method. It may
lead to poor initial segmentation results and consequently failed corrections when
the cupping artifacts are very strong. Consequently, the next step of improving
the algorithm is to incorporate advanced segmentation methods or spectroscopic
techniques to determine the distributions of chemical compositions.
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Conclusion

In this PhD thesis, we propose several approaches to pave the way for HAADF-
STEM + EDS tomography: (1) the HAADF-EDS bimodal tomographic recon-
struction technique, which is based on jointly modeling the consistence of the two
imaging modalities; (2) TNV-regularized joined reconstruction which allows to
incorporate the prior knowledge that common edges exist in the reconstructions
from HAADF and EDS data respectively; (3) a set of algorithmic recipes to tailor
various reconstruction algorithms for given experimental conditions and sample
properties; (4) an algorithm for automatically correcting the nonlinear damping
effects in HAADF-STEM tomographic data.

Experimental results of the HEBT algorithm in Chapter 2 show that HEBT
enables investigating the structure of chemical elements with lower noise levels
compared to element-wise EDS reconstruction. By promoting consistency between
the forward projections of the element-specific reconstructions and the low-noise
HAADF-STEM data, reconstructions are obtained that are more accurate in com-
parison to pure EDS tomography, resulting in a lower discrepancy between the
reconstructions and the ground-truth.

Chapter 3 shows that using TNV regularization, it is possible to encourage a
reconstruction to have edges overlapping with another reconstruction. The EDS
element-specific reconstruction can be augmented by joining it with the HAADF-
STEM reconstruction that has higher signal-to-noise ratios and is computed from
a larger number of tilts. Alternatively, by promoting shared edges between the
EDS and HAADF reconstructions, the number of tilts required for EDS can be
reduced compared to element-wise EDS reconstruction, while maintaining similar
reconstruction quality.

In Chapter 4, the algorithmic recipes enable to tailor a set of reconstruction al-
gorithms based on the actual experiments, sample, and data. In the experimental
section, we demonstrate how to choose suitable ingredients and algorithmic pa-
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rameters for a variety of data cases. In all these cases, the tailored recipes result
in more accurate reconstruction results compared to more naive algorithms.

The above chapters are based on the simple assumption that the projection
models are perfectly linear. In practice, this is often not completely valid. The
algorithm proposed in Chapter 5 can correct the nonlinear damping effects in
HAADF-STEM data. The experimental results show that the algorithm can re-
duce the cupping artifacts as well as improve further interpretation and segmen-
tation of the reconstruction. For HEBT, correcting the nonlinearity can make the
HAADF data consistent with the linear model.

Overall, this thesis provides several approaches to improve the accuracy of
element-specific reconstructions made by combining HAADF-STEM and EDS
data. An important potential application of this work is the quality inspection
in the semiconductor industry. Besides the need of high image quality and the
ability to resolve chemical elements, being able to carry out a full ET experiment
and the subsequent computational steps in very short time (less than an hour)
is crucial for the adoption of these techniques in an industrial R&D setting. In
the future, a robust and automated pipeline for the complete tomographic process
needs to be developed.

We envision that by extending our proposed methodology with a data acqui-
sition scheme that selects the projection angles in an optimized manner, the time
required for acquiring sufficiently many EDS images can be substantially reduced.
For further automation of the computational part of the imaging pipeline, auto-
mated procedures will need to be developed for setting the values of the various
parameters in the reconstruction algorithms in an objective and repeatable man-
ner.
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Samenvatting

(The English summary follows after the Dutch summary.)

Tomografie is een niet-invasieve techniek waarmee beelden gemaakt kunnen
worden van doorsnedes van een object. Deze doorsnedes worden berekend aan
de hand van projectiebeelden die onder verschillende hoeken worden opgenomen.
Deze techniek staat ook wel bekend als computertomografie (CT). Het principe
achter tomografie kan toegepast worden op projectiebeelden die met verschillende
beeldvormingstechnieken zijn opgenomen. Standaard CT, gebaseerd op Röntgen-
straling, kan alleen structuren onderscheiden van tenminste honderd micrometer
in grootte. In levenswetenschappen en materiaalwetenschappen is het van belang
om structuren in beeld te brengen die slechts een paar atomen groot zijn. Denk
hierbij bijvoorbeeld aan een computerchip, die structuren heeft van ongeveer 10 na-
nometer. Voor deze toepassingen wordt het principe van tomografie gecombineerd
met elektronenmicroscopie (EM). Deze combinatie staat bekend als elektronento-
mografie (ET). EM maakt gebruikt van versnelde elektronen, en met deze techniek
kunnen atomaire structuren in beeld gebracht worden.

Het onderzoek in dit proefschrift richt zich op de tomografische reconstructie
op basis van projectiebeelden die afkomstig zijn van twee verschillende EM modali-
teiten. De eerste modaliteit is high angle annular dark field scanning transmission
microscopy (HAADF-STEM), en de tweede modaliteit is energy-dispersive X-ray
spectroscopy (EDS). Figuur S1 toont voorbeelden van projectiebeelden opgenomen
met respectievelijk HAADF-STEM en EDS. Tegenwoordig is HAADF-STEM een
standaard modaliteit in EM, terwijl EDS soms gebruikt wordt als een aanvullende
techniek om extra informatie te verzamelen over de chemische samenstelling van
het onderzochte object. HAADF-STEM resulteert in beelden met een enkel kanaal
die informatie van verschillende chemische elementen door elkaar mengt. Wan-
neer men gebruik maakt van standaard beeldvormingsmethodes, hebben HAADF-
STEM beelden relatief lage ruisniveaus. In tegenstelling tot HAADF-STEM, leidt
EDS tot een verzameling beelden, één voor elk van de afzonderlijke elementen.
Deze EDS beelden hebben typisch hogere ruisniveaus. Het toepassen van tomo-
grafie op EDS afbeeldingen is uitdagender vergeleken met HAADF-STEM. Dit
komt onder andere door de sterke Poissonruis, een beperkte hoeveelheid projectie-
hoeken, en een lange opnametijd.

Rekeninghoudend met de complementaire eigenschappen van de twee modali-
teiten, stellen we in Hoofdstuk 2 een aanpak voor die elementspecifieke reconstruc-
ties uitvoert op basis van projectiebeelden afkomstig van zowel HAADF-STEM
als EDS.

In deze aanpak worden de elementafhankelijke projectiebeelden opgenomen
voor alle chemische elementen die in het object aanwezig zijn. In de praktijk
kan het moeilijk zijn om al de hiervoor benodigde beelden op te nemen, door
beperkingen van EDS opnametechnieken. Daarom stellen wij in Hoofdstuk 3 een
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(a) HAADF-STEM (b) O (c) Si (d) Ti

Figuur S1: (a): Een HAADF-STEM projectiebeeld van een halfgeleiderobject. (b) – (d): EDS
projectiebeelden voor verschillende elementen uit hetzelfde object. [English: (a): HAADF-STEM
projection image for a semiconductor sample. (b) - (d): EDS projection images for some chemical
elements in the same sample.]

andere aanpak voor die projectiebeelden van de twee modaliteiten combineert.
Deze techniek verbetert de elementspecifieke reconstructie, door het aanmoedigen
van gedeelde randlocaties met de reconstructie gemaakt op basis van HAADF-
STEM data.

Een sleutelprobleem bij het inbrengen van dergelijke informatie die a priori
over het object bekend is, is hoe kan worden bepaald welke methode goed werkt
voor een gegeven object. In Hoofdstuk 4 presenteren we een raamwerk voor het
construeren van geavanceerde reconstructiemethodes, in de vorm van een recept
dat rekening houdt met eigenschappen van het object en het scanproces. Dit
leidt tot een verzameling richtlijnen voor het bepalen van een geschikte methode,
afhankelijk van experimentele condities en het af te beelden object zelf.

(a) reconstruction (b) line profile

Figuur S2: Bekervormige artefacten: (a) een gereconstrueerde doorsnede van een nanodeeltje.
(b) intensiteiten overeenkomstig met de stippellijn in (a). De intensiteiten in het midden worden
onderschat. [English: Cupping artifacts: (a) a slice of the reconstruction for a nanoparticle. (b)
image intensities on the dashed line in (a). The image intensities in the center are underestima-
ted.]

Het toepassen van ET op relatief dikke microscopie-samples is uitdagend, om-
dat in dit geval niet-lineaire effecten sterke invloed hebben op de HAADF-STEM
data. Een consequentie is dat bekervormige artefacten zichtbaar zijn in de re-
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constructiebeelden, wat er toe leidt dat intensiteiten in het midden van het re-
constructiebeeld onderschat worden. Figuur S2 toont een dergelijk artefact in
de reconstructie van een nanodeeltje. In Hoofdstuk 5 stellen we een algoritme
voor dat dergelijke niet-lineaire effecten automatisch corrigeert, zodat de HAADF-
STEM data gelineariseerd kan worden. Hierna kan deze data gebruikt worden
voor tomografische reconstructie op basis van HAADF-STEM + EDS.

Samenvattend wordt in dit proefschift een aantal technieken voorgesteld die een
aanzienlijke verbetering kunnen geven ten opzicht van de gangbare reconstructie-
methoden. De numerieke methoden kunnen toegepast worden op HAADF en EDS
data die volgens gangbare technieken zijn opgenomen. Het is daarnaast mogelijk
om op basis van de voorgestelde technieken de benodigde opnametijd van EDS
data te verminderen. Een mogelijke toepassing van tomografie op basis van ge-
combineerde HAADF-STEM en EDS data, is het in beeld brengen van structuren
in driedimensionale halfgeleidermaterialen. Dit maakt het onder andere mogelijk
fabricagefouten te identificeren. Dit kan de verdere ontwikkeling van geavanceerde
geïntegreerde schakelingen faciliteren.

Summary

Tomography is a non-destructive technique for imaging slices (sectional images)
of an object. The slices are computed from a series of projection images taken from
different angles. This computation is known as tomographic reconstruction. The
principle of tomography can be applied to different techniques for acquiring the
projection images. For instance, the widely-used computed tomography (CT) for
medical diagnostics is based on X-ray imaging. Standard X-ray CT can only
resolve structures that are at least about one hundred micrometers in size. In the
life sciences and materials science, the size of critical structures can sometimes be
as small as a few atoms. For instance, the size of structures in computer chips
is nowadays around 10 nanometers. In these fields, the principle of tomography
is combined with electron microscopy (EM), a combination which is known as
electron tomography (ET). EM uses accelerated electrons for imaging and can
resolve structures at the atomic scale.

The research in this thesis is focused on tomographic reconstruction based
on two imaging modalities in EM. The first modality is high angle annular dark
field scanning transmission microscopy (HAADF-STEM), and the second modal-
ity is energy-dispersive X-ray spectroscopy (EDS). Figure S1 shows examples of
projection images acquired by HAADF-STEM and EDS. While HAADF-STEM
is a standard modality in EM nowadays, EDS is sometimes used as a supplemen-
tary technique to resolve more chemical information. HAADF-STEM yields a
single-channel image that mixes the information for all chemical elements. Using
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a standard imaging scheme, HAADF-STEM images have relatively low noise lev-
els. EDS, on the other hand, yields multiple element-specific images. However, the
resulting projection images have much higher noise levels. Tomography based on
EDS is more challenging compared to HAADF-STEM, due to the strong Poisson
noise, the limited number of projection angles and the long data acquisition time.

Considering the complementary properties of the two modalities, in Chapter 2
we propose an approach to perform element-specific reconstructions from HAADF-
STEM and EDS tomographic data that are simultaneously acquired. Using this
technique, it is possible to obtain element-specific reconstructions with better im-
age quality compared to only using EDS data.

In this approach, element-specific projection images are required for all chemi-
cal elements present in the sample, which may be not possible in practice due to
limitations of the EDS imaging technique. In Chapter 3, we propose a different
approach for combining HAADF-STEM and EDS, which improves the element-
specific reconstruction from EDS data by encouraging the reconstructed images to
have common edge locations with the reconstruction from HAADF-STEM data.

A key problem with incorporating such prior knowledge is to know which
method works well on which type of sample. In Chapter 4 we present a framework
for constructing advanced reconstruction methods as a “recipe” that is tailored
to the particular sample. We present guidelines for determining which method
should be used depending on the experimental conditions and sample properties.

Applying ET on samples with large thicknesses is challenging due to the domi-
nant nonlinear effects in HAADF-STEM data. As a consequence, cupping artifacts
can appear in the reconstructed tomographic images, which means that the image
intensities being underestimated in the center of reconstruction. Figure S2 shows
the cupping artifact present in the reconstructed image for a nanoparticle. In
Chapter 5, we propose an algorithm for correcting these nonlinear effects automat-
ically, so that the HAADF-STEM data can be linearized and subsequently used
for HAADF-STEM + EDS tomographic reconstruction.

Overall, several approaches are given in this thesis for improving the image
quality of element-specific tomographic reconstructions. The numerical methods
can be applied to HAADF and EDS data acquired in a conventional manner using
the existing electron microscopic technique. It is also possible to design novel
data acquisition-processing pipelines based on them, to reduce the time for EDS
data acquisition. A potential application of HAADF-STEM + EDS tomography is
imaging structures and faults in 3D semiconductor materials, which can facilitate
the development of advanced integrated circuits.
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