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*** - Parabolic Partial Differential Equations BDMG 

BDMG - NUMVEC FORTRAN Library Routine Document 

1. Purpose 

BDMG is a time integrator designed to solve a system of ordinary differential equations (ODEs} 
originating from semidiscretization of a (scalar} nonlinear parabolic partial differential equation 
defined over a two-dimensional rectangular region. 

2. Specification 

SUBROUTINE BDMG (NX, NY, M, X, Y, 
+ T, TEND, V, G, SPRAD, TOL, METHOD, 
+ WORK, IWORK, INFO, IFAIL) 

C INTEGER NX, NY, M, METHOD, IWORK(*}, INFO(*), IF AIL 
C real X(*), Y(*}, T, TEND, V(*), SPRAD, TOL, WORK(*) 

3. Description 

BDMG applies to semidiscrete parabolic equations in two space dimensions, which can be written 
in the form 

rJv .. 
:::::..!:L - ( V) dt - g;,j t, ' V = (v;,j), i = 1,. .. ,NX, j = l, ... ,NY, (I) 

where the (scalar) matrix elements v;,j are associated with the user-defined grid points (x;,yj) which 
form in the (x,y) plane a (not necessarily uniform) grid with rectangular meshes. Thus, any partial 
differential equation of the form 

~ - ~ ~ a2
u ~ a2

u :::;;. 
at - j(t, X, y, u, ax' ay' ax 2 ' axay' ay 2 }, t ,,,.-to (2) 

defined on a rectangle, with initial data defined at t = t 0 and prescribed boundary conditions can 
be dealt with by BDMG as soon as (2) and the boundary conditions are semidiscretized on the 
grid { X; ,yj}. Then, the resulting system (l} is integrated forwards in time using the second-order 
backward differentiation method; the nonlinear system emanating from this implicit scheme is 
(approximately} solved by a multigrid technique (cf. references [l] and [5]). 

In forming the semidiscrete approximation to (2), there are two options available to the user (see 
also the description of the parameter METH in Section 5): 
(i) the system of ODEs can be provided by a user-supplied subroutine G, defining the right-hand 

side function g in (I} or 
(ii) the package PDETWO (cf. [2] and [3]) can be linked to BDMG, in which case the semi-

discretization is automatically performed. 
In selecting the last possibility, it suffices to supply routines defining the PDE and the boundary 
conditions, but on the other hand, its application is restricted to PDEs in which the mixed deriva­
tive is absent, resulting in five-point coupled ODEs. 

The boundary conditions allowed by PDETWO are of the form 

au 
A(t,x,y)u + B(t,x,y)a;; = C(t,x,y), (3) 
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n normal to the boundary. In case B_O (i.e. Dirichlet boundary conditions), A and C may also . 
depend on u. One should be aware of the fact that PDETWO defines the semidiscrete system (1) 
in all gridpoints, including the boundary points. In order to preserve the structure of this ODE 
system, the user-written subroutine G should also define ODEs at the boundary points. In case of 
Neumann or mixed (i.e. H::j=.O) conditions, the semidiscretization of (3) may be achieved by 
differentiation with respect to t and forming an ODE (in t) at these boundary points by discretiza­
tion of o2u!onot. In case of Dirichlet conditions, dummy equations dv;,/dt=O should be specified 
(cf. [2]). 

4. References 

[l] HOUWEN, P.J. VAN DER and B.P. SOMMEIJER, Analysis of Chebyshev relaxation in multigrid 
methods for nonlinear parabolic differential equations, Z. Angew. Math. Mech. 63, Vol. 3, pp. 
193-201, 1983. 

[2] MELGAARD, D.K. and R.F. SINCOVEC, General Software for two-dimensional nonlinear par­
tial differential equations, ACM Trans. Math. Softw., Vo! 7, pp. 106-125, 1981. 

[3) MELGAARD, D.K. and R.F. SINCOVEC, Algorithm 565, PDETWO/PSETM/GEARB: Solution 
of systems of two-dimensional nonlinear partial differential equation, ACM Trans. Math. 
Softw., Vol. 7, pp. 126-135, 1981. 

[4] Numerical Algorithms Group, NAG FORTRAN Library manual-mark 11, 1984. 
[5] SOMMEIJER, B.P. and P.J. VAN DER HOUWEN, Algorithm 621, Software with low storage 

requirements for two-dimensional nonlinear, parabolic differential equations, A CM Trans. 
Math. Softw., Vol. JO, pp. 378-396, 1984. 

5. Parameters 

We distinguish between three types of parameters: 

5.1. Grid-defining parameters. 

NX, NY - INTEGERS. 
On entry, NX and NY must specify the number of mesh lines parallel to they- and x-axis, 
respectively, defining a rectangular grid. 
Unchanged on exit. 

M- INTEGER. 
On entry, M defines the number of successive grids, used in the multigrid method; for a dis­
cussion on M, see below. 
Unchanged on exit. 

X - real array. 

Page2 

Before entry, the first NX elements of X should contain the (x-) coordinates of the mesh lines 
parallel to the y-axis, with 
X(l) < X(2) < ... < X(NX). 
Unchanged on exit. 
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Y - real array. 
Before entry, Y contains similar information concerning the mesh lines parallel to the x-axis, 
with 
Y(l) < Y(2) < ... < Y(NY). 
Unchanged on exit. 

It is worth to go into more detail about these parameters. Because the method is based on a 
multigrid method, a sequence of M successive grids is necessary. 

The level index K runs from 1 (which is associated with the coarsest grid) until M (the finest 
grid, which is identical to the grid chosen by the user and defined by means of the parameters NX, 
NY, X, Y). Apart from the finest grid, these grids are generated by the code. Internal values 
NXK, NYK are calculated as well as arrays XK(I), I = l, ... ,NXK and YK(J), J = l, ... ,NYK, 
defining the grid at level K. These values are used, among other things, to pass to the subroutine 
G (see below) in which the user has to define the derivative at that particular grid (XK(I), YK(J)) 
(only if METH = 1, see below). 

A grid at level K is obtained from a grid at level K+ 1 (denoted by KPl) by alternatingly delet­
ing grid lines; hence, 

NXK=(NXKPl + 1)/2, XK(l)=XKPI(l), XK(2)=XKP1(3), etc. 

This means that the grid lines on level K coincide with those on level K + I. Because the values of 
the internally used arrays XK (for K < M) are stored in the X- array as well, the X- array should 
be dimensioned in the calling program of length at least M + (NX - I) (2M - 1 )21-M. Similarly, 
the Y- array must be declared of length at least M +(NY - 1 )(2M - I )21- M. 

The values of NX, NY and M should be chosen in a suitable relationship to each other. The 
number of grids should not be specified that large that one conflicts with one of the following 
situations: 
(i) the above algorithm of deleting grid lines delivers an non-integer NXK- or NYK- value for 

some K < M. 
(ii) the grid on level 1 has less than four grid lines in each direction, including the grid lines form-

ing the boundaries. 
If none of these restrictions is applicable, the user is advised to choose M as large as possible, 
because the efficiency of the algorithm usually increases as more grids are available. However, 
when running in vector mode, a more efficient algorithm does not necessarily imply a better per­
formance of the code (see also Sections 8 and 11 ). 

Finally, we mention that specifying M = I is prohibited. 

5.2 Time integration parameters. 

T - real. 
T is the current time. On entry, it must contain the initial value of the independent variable t 
in (1). 
On exit, T contains the value TEND, unless an error has occurred (see the parameter IFAIL 
below). 

TEND - real. 
On entry, TEND must specify the final value of T to which the integration is to be carried 
out with TEND > T. 
Unchanged on exit. 
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V - real array of DIMENSION (NX, NY). 
V contains the current solution values for all gridpoints (see also the remarks on boundary 
points in the description of the parameter G). Before entry, V must contain the initial values 
of the dependent variable V in (I). 
On exit, V contains the solution at time T. 

G - SUBROUTINE, supplied by the user. 
G defines the right-hand side function g of (I) at level K. This routine is only necessary in 
case of semidiscretization by hand (see the parameter METH below). 
Its specification reads: 

SUBROUTINE G (K, NXK, NYK, XK, YK, T, VK, DVKDT) 
INTEGER K, NXK, NYK 
real XK(NXK), YK(NYK), T, VK(NXK, NYK), DVKDT(NXK, NYK) 

The grid is determined by XK(I), I = 1, ... ,NXK and YK(J), J = l, ... ,NYK, containing the 
coordinates of the grid at level K. Given the approximations at the current time T in the 
array VK, this routine must deliver the derivates at all gridpoints in the array DVKDT, 
including the derivatives at the boundary points. (Here, the subscripts (I, J) in VK and 
DVKDT refer to the gridpoint with coordinates (XK(I), YK(J))). 
In order to preserve the structure of the system of ODEs, irrespective of the type of boundary 
conditions, the boundary points are included in the grid and, consequently, in the arrays VK 
and DVKDT. However, in case of Dirichlet boundary conditions the time integration at 
these points seems to be superfluous. Therefore, the derivatives at these points may be given 
a dummy value; the value zero is strongly recommended. As a consequence of this approach, 
the elements in VK corresponding to boundary points where a Dirichlet c::ondition is 
prescribed, may contain a value which is not an approximation to the solution in this point 
(unless the dummy value specified equals exactly the time-derivative of the Dirichlet condi­
tion). Hence, in calculating the derivative in a point adjacent to a "Dirchlet boundary point", 
one should use the Dirichlet condition, rather than the value of VK in this boundary point. 
In case of using PDETWO, dummy differential equations dvi,/ dt =O are specified in such 
"Dirichlet boundary points". 
Apart from such points, the routine G must not change any of the values in its first seven 
parameters. 
G should be declared EXTERNAL in the calling program. 

SPRAD - real FUNCTION supplied by the user. 
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In case the non-automatic option with respect to the spectral radius is selected (see the 
parameter INFO below), SPRAD must deliver an estimate of the spectral radius of the Jaco­
bian matrix of the right-hand side function gin (1) at level K. 
Its specification reads: 

FUNCTION SPRAD (K, NXK, NYK, XK, YK, T, VK, TAU) 
INTEGER K, NXK, NYK 
real XK(NXK), YK(NYK), VK(NXK, NYK), T, TAU 

The meaning of the parameters is the same as given in the description of the routine G. The 
additional parameter TAU denotes the current timestep. SPRAD must not change the value 
-0f any of its parameters and should be declared EXTERNAL in the calling program. 
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TOL - real. 
On entry, TOL specifies the local truncation error tolerance with TOL >0. 
Unchanged on exit. 

METH - INTEGER. 
Before entry, METH must be given the value l or 2. 

BDMG 

If METH = 1 the semidiscretization will be performed by hand and the subroutine G must 

deliver the derivatives required by the integrator. 
METH = 2 means that the semidiscretization will be performed by PDETWO. 
Unchanged on exit. 

5.3 Auxiliary parameters 

WORK - real array 
WORK is used for internal storage. It must be dimensioned as WORK(**) in the calling pro­

gram, where 

** ;;;o(NX-l)(NY-1) (86 -
4
J_

2 
]/ 12 + 

(NX+NY-2) (22 -
2
J_ 2 

]/ 2 + 

7M + 5 + (7NX + l 6)(METH - 1 ). 

The user should be aware that this expression must yield an integer value. If not, one should 

carefully reconsider the values of NX, NY and M. 

IWORK - INTEGER array. 
IWORK is a work array containing pointers to provide dynamic dimensioning in BDMG. It 

must b~ dimensioned as IWORK(***) in the calling program, where 

*** ;;;.10 M + 5. 

IWORK(lO M+5) must be initialized with the value of** (see the parameter WORK). 

INFO - INTEGER array. 
INFO contains information about the status of the integration process; it must be dimen­

sioned as INFO(****) in the calling program, where 

**** ;;;.2 M + 10. 

INFO (I), .... , INFO (3) -
INFO (4), .... , INFO (6) -
INFO (7), .... , INFO (2 M + 10) -

are input parameters and must be initialized by the user 
are used for internal control 
are output parameters. 

The elements of INFO have the following meanings: 

INFO(l) = 0 
to indicate that this is the first call to BDMG. On return, BDMG has assigned INFO(l) the 

appropriate value with respect to subsequent calls. 
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INF0(2) 
maximum number of evaluations of the right-hand side of (1) to be spent during the integra­
tion process. This number is the converted equivalent of evaluations on the finest (i.e. user­
defined) grid. To get an impression of the costs of the algorithm we refer to [5], Table I of 
Section 3. 

INF0(3) 
can be given the value 1,2 or 3. It is used to select the option with respect to the spectral 
radius of the Jacobian matrix of the right-hand side function g. The three options available 
are: 
INF0(3) = 1 : automatic option 

with this option the code estimates and controls the spectral radius during the entire 
integration interval. A five-diagonal structure of the Jacobian matrix is assumed (this 
restriction is also made in the semidiscretization code PDETWO). 

INF0(3) = 2 : semi-automatic option 
if the problem has a constant spectral radius (e.g. in linear problems) or if it is at least 
non-increasing with time, one may select the semi-automatic option which only calculates 
the spectral radius at the beginning of the integration process. No control is performed. 
If this situation applies, this option may save a lot of right-hand side evaluations. One 
should only apply this option when the right-hand side function g has a five-point cou­
pling. 

INF0(3) = 3 : non-automatic option 
some problems allow the user the calculation by hand of the spectral radius, so that an 
explicit expression in terms of T, the mesh sizes at level K, the current solution V and the 
current time step TAU can be given to be used in the interval [T, T+TAU]. Again, 
many right-hand side evaluations can be avoided and, if no use is made of PDETWO, 
the restriction to five-point coupling no longer applies. It should be noted that an 
underestimate of the spectral radius may give rise to internal instabilities in the integra­
tion process. Because these instabilities use to develop appallingly fast we have protected 
the code against overflow. Whatever option is chosen, the overflow checking is always 
performed. In case of options 2 and 3, the integration process is discontinued when 
violating the overflow condition; control is returned to the calling program and the user 
can take action with respect to the spectral radius. 

INF0(4) , .... , INF0(6) are used for internal control 

INF0(7) 
total number of integration steps performed, including rejected ones. 

INF0(8) 
total number of rejected steps. 

INF0(9) 
number of times a step has been abandoned because of violating the overflow test. 

INFO(IO) 
total number of derivative-evaluations, expressed in terms of evaluations on the original grid. 

INFO(IO+K) 
number of times the derivative is evaluated at level K (K = l , ... ,M) used for the integration 
process only. 

INFO(IO+ M + K) 

Page 6 

number of times the derivative is evaluated at level K (K= l, ... ,M) used for the evaluation and 
<eontrol of the spectral radius. 
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!FAIL - INTEGER. 
For this routine, the normal use of IFAIL is extended to control the printing of error and 
warning message as well as specifying hard or soft failure (see [4], chapter POi). Before entry, 
IF AIL must be set to a value with the decimal expansion cha, where each of the decimal 
digits c,b and a must have the value 0 or 1. 

a = 0 specifies hard failure, otherwise soft failure; 
b =O suppresses error messages, otherwise error messages will be printed 

(see Section 6); 
c =O suppresses warning messages, otherwise warning messages will be printed 

(see Section 6). 

The recommended value for inexperienced users is 110 (i.e. hard failure with all messages 
printed). Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit. 

6. Error Indicators and W amings 

Errors detected by the routine: -

IFAIL = 1 
The value of M is too large in connection with the specified values of NX and NY. This 
means that for some K, with 1 ,,.;;; K < M, it is not possible to construct on this K-th level a 
coarse grid having an integer number of grid lines. 

!FAIL= 2 
There is an error in the specification of the (finest) mesh: X(I) ;;;.:, X(I + 1) or Y(J) ;;;.:, Y(J + 1) 
for some I or J. 

IFAIL = 3 
The length of the array WORK is less than the required minimum. 

!FAIL= 4 
TOL :s;;;O or TEND ,,.;;; T or M = 1 

If IF AIL is assigned one of these values, the integration process is not started and one should 
reconsider the input requirements given in the description of the appropriate parameters. 

The following errors are of algorithmic nature: 

IFAIL = 5 
The steplength has been reduced to an unacceptably small value. The problem seems unsolv­
able to BDMG. A possible reason may be too stringent accuracy requirements (parameter 
TOL). 

!FAIL= 6 
The maximally allowed number of derivative evaluations has been spent; if the user decides to 
continue, he only has to increase INF0(2) and recall BDMG. 

!FAIL= 7 
The overflow test was violated while INF0(3) =F 1. The user must take action with respect to 
the (estimation of the) spectral radius of the Jacobian matrix or change to the automatic 
option. 
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7. Auxiliary routines 

This routine calls the NUMVEC Library routines: 
CHEB, DERIV, FIT, GERSG, INJECT, LTE, NEWST, PDETWO, PRELIM, PROLON, 
PROLNG, PROLNU, POlAAF, RESTR, RESTRG, RESTRU, RKR, SHIFT, SPRI, STEP, 
STRSET, SUMG, TAUST, X04AAF, X04ABF. 

8. Timing 

Evidently, the timing strongly depends on the complexity of the parabolic equation and on the 
accuracy requested. Due to the nature of the algorithm, a substantial part of the overall time is 
used to evaluate the derivative, i.e. the right-hand side function g in (1). Hence, in selecting 
METH = 1, the timing critically depends on the coding of the subroutine G (see also Section 11). 
Obviously, the timing is proportional to NX*NY; moreover, for a fixed value of M (i.e. a fixed 
number of grids), the number of times the derivative has to be evaluated usually increases as NX 
and/ or NY increases. Finally, as the algorithm is based on a low-order method, a request for high 
accuracy may result in a very lengthy calculation. 

9. Storage 

There are no internally declared arrays. 

10. Accuracy 

In solving parabolic equations two types of errors arise, viz. space-discretization errors and time­
integration errors. We emphasize that only the last ones are controlled by BDMG (by means of 
the parameter TOL). Hence, in choosing a value of TOL, the user is advised to consider the accu­
racy of the space-discretization. 
Furthermore, in the time~integration only the local errors are controlled and it cannot be 
guaranteed that the global error after a large number of steps will remain small, although a smaller 
value of TOL usually results in a more accurate global solution. The user in advised to test the 
effect of TOL by repeating the calculation with a different value for this parameter. As only a 
second-order method is used, BDMG is not suitable to produce highly accurate results. 
Concerning the space-discretization, it is recommended to perform some trial computations on 
different grids. For this test, the parameter TOL should sufficiently be reduced so that time errors 
do not interfere unduly with the errors in space. 

11. Further Comments 

H.1 General Information 

The minimum stepsize depends on the machine roundoff U and the underflow number P, which 
obviously are machine-dependent. Adapt, if necessary, the DAT A statement in the driver BDMG, 
in which FOURU = 4 * U and TENP = 10 * P. The routine uses the labelled COMMON 
blocks: COEF, MACH, MESH, !STORE and OFLOW; therefore, the user must avoid these 
names for his own purposes. 

We emphasize that the routine is designed to treat parabolic equations which give rise to Jaco­
bian 'matrices with a (more or less) real-valued spectrum; this means that an efficient application of 
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BDMG is restricted to parabolic equations in which the diffusion part greatly dominates the con­
vection part. If the user decides to select option 3 with respect to the spectral radius (see also the 
parameter INF0(3)), the code relies on the user-specified estimate. The FUNCTION SPRAD is 
called at the start of each integration step and the user must be sure to deliver an estimate which 
holds on the whole interval [T, T+TAU]. 

If, on exit, IF AIL = 0 the integration has been successful and TEND is reached. To continue 
the process it suffices to define a new value of TEND and recall BDMG. Moreover, the parame­
ters TOL, INF0(2) and INF0(3) may be changed from call to call. 

In the stepsize control mechanism, as it is implemented in BDMG, we require at each steppoint 
the remaining integration interval to be an integer multiple of the current stepsize. In this way we 
achieve that the process arrives exactly at the prescribed endpoint TEND. Hence, interpolating 
the numerical solution at this point can be avoided which, in our experience, may be rather inac­
curate. As a consequence of this strategy, runs with the same final endpoint but with different 
intermediate endpoints (output points) may produce slightly different results. 

11.2 Vectorization Information 

The explicit nature of the underlying algorithm enables us to achieve a high degree of vectoriza­
tion; therefore, the routine has been written in ANSI FORTRAN 77. To guarantee auto­
vectorization on the CYBER 205, provisions are included with respect to the maximal loop count, 
i.e. 65535. 

In the relaxation routine CHEB, which is the most costly part of the algorithm, the majority 
of the loops has been vectorized; this is performed by employing over-indexing in order to collapse 
nested DO-loops. Furthermore, the routine is provided with a test on the user-defined spatial grid 
to detect whether or not it is uniform. Using this feature, a significant gain can be obtained in the 
routines which perform the restriction and the prolongation (that is, the transformation of grid­
functions from one grid into another). Hence, if the problem allows to be approximated on a uni­
form grid, the user is strongly recommended to do so. 

Concerning the choice of the parameter M (i.e. the number of successive spatial grids 
involved) and its influence on vectorization aspects, we have the following 'rule of thumb': 
(i) in scalar mode, the value of M should be specified as large as possible (see also the discussion 

following the grid-defining parameters in Section 5.1), because the efficiency of both the algo­
rithm as well as of the code usually increases as M increases. 

(ii) in vector mode, however, the startup times may prevent optimal performance when the vector 
length is very short; this particularly applies to the CYBER 205. Therefore, using the coarsest 
grid which is allowed by BDMG (i.e. a 4 * 4 - grid) is not recommended to obtain optimal 
vector performance. 

Finally, in case METH = 1 is specified, that is the subroutine G has to be supplied defining the 
semidiscretization, the user may decide to write this subroutine making use of explicit vector­
syntax; this, of course, only applies when running on a CYBER 205. 

In case the user selects METH = 2 - that is the semidiscretization will be performed by 
PDETWO - it should be remarked that the overall vector performance will be reduced drasti­
cally. This is due to the fact that PDETWO evaluates the semidiscrete approximation to the PDE 
by a call to the problem-defining routines for each gridpoint separately (see also the supplemen­
tary example in Section 13.4). Moreover, as most of the loops in PDETWO run from 1 to the 
number• of PDEs (which equals one in our application) it is recommended to run PDETWO in 
scalar mode. 
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12. Keywords 

Parabolic Partial Differential Equations, Method of Lines, Backward Differentiation Methods, 
Multigrid Methods, Nonlinear Chebyshev Iteration. 

13. Example 

The following example program is intended to illustrate some of the features of BDMG. 
a so-called 'porous-medium' equation given by 

~ _ [L + Lj s 0 ,;;::: :s;::: 1 a - 2 2 u ' ...,,t...,, ' t ax ay 

It solves 

(4) 

defined on the unit square. At the 'upper' boundary (i.e. for y =I, O<x< I) we impose a Neu­
mann condition by prescribing au1ay. On the other boundaries we have a Dirichlet condition. 
All boundary conditions, as well as the initial conditions are taken from the exact solution 

4 
u(t,x,y) = [5(2t + x + y)]1'4• 

To discretize (4), we choose uniformly spaced square meshes with mesh size 1/96; hence, NX ~ 
NY = 97. The local error tolerance parameter was set to TOL = 10-4 . By this choice, the 
overall error at t = I turns out to be largely determined by the time-integration error and not by 
the space-discretization error. Finally, we use 5 successive grids. 

13.1 Program text 

PROGRAM EXAMl 

c-----------------------------------------------------------------------------------------------------------------------
c EXAMPLE PROGRAM FOR BDMG 

c-----------------------------------------------------------------------------------------------------------------------
DIMENSION v(97,97), x(l9l), Y(l91), INF0(20), 

+ WORK(68080), IWORK(55) 

COMMON /TIMINGS/ CPG, CPSPRAD, CPPDE2 
COMMON / AUXIL/ VK5(9409) 

DATA NX, NY, M, METH /97, 97, 5, I/ 
DATA CPG, CPSPRAD, CPPDE2 /0.0, 0.0, 0.0/ 

DATA NOUT /6/ 

EXTERNAL G, SPRAD 

c-----------------------------------------------------------------------------------------------------------------------
OPEN (UNIT = NOUT, FILE = 'OUTPUT') 

CALL X04AAF (I, NOUT) 

CALL x04ABF (1, NOUT) 

WRITE (NOUT, 99991) 

c------------------------------------------------------------------------------------------------------------------:;~---

c DEFINITION OF THE (FINEST) GRID 

c-----------------------------------------------------------------------------------------------------------------------
DEL TAX = 1.0 I (Nx-1.0) 

DO 10 I = 1, NX 

10 X(I) = (1- l) * DELTAX 
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DELTAY = 1.0 I (NY-1.0) 

DO 20 I = l, NY 

20 Y(I) = (I-1) * DELTAY 

BDMG 

c-----------------------------------------------------------------------------------------------------------------------
c DEFINITION OF THE INTEGRATION INTERVAL AND INITIALIZATION 

c-----------------------------------------------------------------------------------------------------------------------
T = 0.0 

TEND= 1.0 

DO 30 J = 1, NY 

DO 30 I= 1, NX 

V(I,J) = (0.8 * (X(I) + Y(J)) ) ** 0.25 

30 CONTINUE 

c-----------------------------------------------------------------------------------------------------------------------
c DEFINITION OF THE INTEGRATION PARAMETERS 

c-----------------------------------------------------------------------------------------------------------------------
TOL = l.OE-4 

INFO(l) = 0 

INF0(2) = 2000 

INF0(3) = 1 

IWORK.(10 * M + 5) = 68080 

IFAIL = 111 
c-----------------------------------------------------------------------------------------------------------------------
c CALL FOR THE INTEGRATOR 

c-----------------------------------------------------------------------------------------------------------------------
CPB = SECOND( ) 

CALL BDMG (NX, NY, M, X, Y, 

+ T, TEND, V, G, SPRAD, TOL, METH, 

+ WORK, IWORK, INFO, IFAIL) 

CPE = SECOND( ) 

c-----------------------------------------------------------------------------------------------------------------------
c CHECK IFAIL ON RETURN 

c-----------------------------------------------------------------------------------------------------------------------
IF (IFAIL .GT. 0) THEN 

WRITE (NOUT, 99992) IFAIL, T 

STOP 

ENDIF 

c-----------------------------------------------------------------------------------------------------------------------
c OUTPUT SOME STATISTICS 

c-----------------------------------------------------------------------------------------------------------------------
WRITE (NOUT, 99993) INF0(7), INF0(8), INFO(lO) 

WRITE (NOUT, 99994) CPE - CPB, CPG, CPSPRAD, CPPDE2 

c-----------------------------------------------------------------------------------------------------------------------
c MEASURING THE MAXIMUM NORM OF THE ERROR 

c-----------------------------------------------------------------------------------------------------------------------
ERROR = 0.0 

D040J = 2, NY 

DO 40 I = 2, NX-1 

ERROR = AMAXl(ABS(V(I,J) - (0.8 * (2*T + X(I) + Y(J))) ** 0.25), ERROR) 

40 ,, CONTINUE 
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BDMG *** - Parabolic Partial Differential Equations 

WRITE (NOUT, 99995) T, ERROR 

c-----------------------------------------------------------------------------------------------------------------------
9999 l FORMAT (29HlBDMG EXAMPLE PROGRAM RESULTS,//) 

99992 FORMAT (24H BDMG FAILS WITH IFAIL = , 13, 7H AT T =, Fl0.5) 

99993 FORMAT (28H NUMBER OF STEPS PERFORMED:, 4X, 16/, 

+ 28H NUMBER OF REJECTED STEPS :, 4X, I6/, 

+ 32H TOTAL NUMBER OF G-EVALUATIONS :, 16/, 

+ 32H (INCLUDING THE ONES TO CONTROL I, 
+ 35H THE SPECTRAL RADIUS AND CONVERTED/, 

+ 31H TO THE FINEST GRID EQUIVALENT)//) 

99994 FORMAT (31H TOTAL CP SECONDS USED BY BDMG:, 6X, F8.2 /, 

+ 35H (INCLUDING THE SEMIDISCRETIZATION)/ I, 
+ 37H CP SECONDS USED BY THE DERIVATIVE G:, F8.2/, 

+ 27H CP SECONDS USED BY SPRAD :, lOX, F8.2/, 

+ 27H CP SECONDS USED BY PDETWO:, lOX, F8.2///) 

99995 FORMAT (8H AT T = , Fl0.5, 

+ 39H THE MAXIMUM NORM OF THE ERROR EQUALS:, El2.5) 

c-----------------------------------------------------------------------------------------------------------------------
c END OF EXAMPLE PROGRAM 

c-----------------------------------------------------------------------------------------------------------------------
STOP 

END 

FUNCTION SPRAD (K, NXK, NYK, XK, YK, T, VK, TAU) 

DIMENSION XK(NXK), YK(NYK), VK(NXK, NYK) 

COMMON /TIMINGS/ CPG, CPSPRAD, CPPDE2 

CPB = SECOND( ) 

c-----------------------------------------------------------------------------------------------------------------------
c DEFINE AN UPPER ESTIMATE OF THE SPECTRAL RADIUS ON THE 

C INTERVAL [T,T+TAU] 

c----------------------------------~------------------------------------------------------------------------------------

SPRAD = 32.0 * (l.0+T+TAU) * ((NXK-1)**2 + (NYK-1)**2) 

CPSPRAD = CPSPRAD + SECOND( ) - CPB 

c-----------------------------------------------------------------------------------------------------------------------
c BECAUSE WE SELECTED THE AUTOMATIC OPTION WITH RESPECT 

C TO THE SPECTRAL RADIUS (INF0(3) = 1), SPRAD WILL NOT 

C BE CALLED BY BDMG; HENCE, A DUMMY FUNCTION MAY BE GIVEN 

c-----------------------------------------------------------------------------------------------------------------------
RETURN 

END 

SUBROUTINE G (K, NXK, NYK, XK, YK, T, VK, DVKDT) 

DIMENSION XK(NXK), YK(NYK), VK(NXK,NYK), DVKDT(NXK,NYK) 

c-----------------------------------------------------------------------------------------------------------------------
c DEFINE THE DERIVATIVE FUNCTION G AT LEVEL K 

c-----------------------------------------------------------------------------------------------------------------------

Page 12 

COMMON / AUXIL/ VK5(9409) 

COMMON /TIMINGS/ CPG, CPSPRAD, CPPDE2 

CPB = SECOND( ) 

,, TS = T * 1.6 

H = 1.0 I (NXK - 1.0) 



*** - Parabolic Partial Differential Equations BDMG 

H2INV = (NXK-1) ** 2 

c----------------------------------------------------------------------------------------------------------------------
c TREATMENT OF THE DIRICHLET BOUNDARY POINTS 

c-----------------------------------------------------------------------------------------------------------------------
DO 10 I = 1, NXK 

DVKDT(I,1) = 0.0 

VK(I,l) = ( TS + 0.8 * XK(I)) ** 0.25 

10 CONTINUE 

D030J = 2,NYK 

VK(l,J) = ( TS + 0.8 * YK(J)) ** 0.25 

30 CONTINUE 

DO 40 J = 2, NYK 

VK(NXK,J) = ( TS + 0.8 * YK(J) + 0.8) ** 0.25 

40 CONTINUE 

c-----------------------------------------------------------------------------------------------------------------------
c DERIVATIVES AT INTERNAL POINTS 

c-----------------------------------------------------------------------------------------------------------------------
DO 50 L = 1, NXK * NYK 

VK5(L) = VK(L,1) ** 5 

50 CONTINUE 

DO 60 L = NXK + 1, (NYK-1) * NXK 

DVKDT(L,l) = (VK5(L-NXK) + VK5(L- l)- 4.0 * VK5(L) + 

+ VK5(L+ 1) + VK5(L+NXK)) * H2INV 

60 CONTINUE 

c-----------------------------------------------------------------------------------------------------------------------
c CORRECTION AT THE LEFT AND RIGHT BOUNDARY 

c-----------------------------------------------------------------------------------------------------------------------
DO 70 J = 2, NYK 

DVKDT(l ,J) = 0.0 

70 CONTINUE 

DO 80 J = 2, NYK -

DVKDT(NXK,J) = 0.0 

80 CONTINUE 

c-----------------------------------------------------------------------------------------------------------------------
c DERIVATIVES AT THE UPPER BOUNDARY, WHERE WE HAVE A NEUMANN CONDITION 

c-----------------------------------------------------------------------------------------------------------------------
L = (NYK-1) * NXK 

DO 90 I = 2, NXK - 1 

DVKDT(I,NYK) = (VK5(L+I-1) - 2.0 * VK5(L+I) + VK5(L+I+ 1) + 

+ H * 2.0 * (TS + 0.8 * XK(I) + 0.8) ** (-0.75) * 
+ VK(I,NYK) ** 4 -

+ 0.625 * (VK(I,NYK) + VK(I,NYK-1)) ** 4 * 
+ (VK(I,NYK) - VK(I,NYK-1))) * H2INV 

90 CONTINUE 

CPG = CPG +SECOND( ) - CPB 

RETURN 

END 
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13.2 Program data 

None 

13.3 Program results 

BDMG EXAMPLE PROGRAM RESULTS 

NUMBER OF STEPS PERFORMED : 93 
NUMBER OF REJECTED STEPS 1 
TOTAL NUMBER OF G-EVALUATIONS 996 
(INCLUDING THE ONES TO CONTROL 
THE SPECTRAL RADIUS AND CONVERTED 
TO THE FINEST GRID EQUIVALENT) 

TOTAL CP SECONDS USED BY BDMG: 
(INCLUDING THE SEMIDISCRETIZATION) 

CP SECONDS USED BY THE DERIVATIVE G: 
CP SECONDS USED BY SPRAD : 
CP SECONDS USED BY PDETWO: 

*** - Parabolic Partial Differential Equations 

21.89 

5.50 
0.00 
0.00 

AT T = 1.00000 THE MAXIMUM NORM OF THE ERROR EQUALS: 0.15418E-04 

13.4 Supplementary Example 

Next, we illustrate the use of the interface PDETWO. To that end, we solve the same problem (4) 
as described in the previous section. Therefore, the mainprogram as listed in Section 13. l can be 
used, with the following modifications: 

the first DATA statement should read DATA NX, NY, M, METH I 97, 97, 5, 2 I 
The length of the working array WORK should be increased to 68775. Hence, the dimension 
statement and the initialization of IWORK( 10 M + 5) should be adapted accordingly. 
The SUBROUTINE G is no longer needed, and may be specified as a dummy routine (to 
satisfy the loader). 

In order to fit this problem into the class of PDEs that PDETWO is capable of solving, we write 
(4) in the form 

~ = _1_(5u4~) + _l_(5u4 ~). (4') at ax ax ay ay 
Now, the following five SUBROUTINES should be supplied (c.f. (2,3)): 
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*** - Parabolic Partial Differential Equations 

SUBROUTINE BNDRYH (T, X, Y, U, AH, BH, CH, NPDE) 

DIMENSION U(NPDE), AH(NPDE), BH(NPDE), CH(NPDE) 

BDMG 

c-----------------------------------------------------------------------------------------------------------------------
c THIS ROUTINE DEFINES THE BOUNDARY CONDITIONS ALONG HORIZONTAL 

C BOUNDARIES. THESE CONDITIONS ARE OF THE FORM 

c 
C AH(L) U(L) + BH(L) D/DY U(L) = CH(L), L= l, ... ,NPDE, 

c 
C WHERE NPDE IS THE NUMBER OF PDES (HERE, NPDE = 1 ). 
c-----------------------------------------------------------------------------------------------------------------------

IF ( Y .EQ. 0.0 ) THEN 

AH(l) = 1.0 

BH(l) = 0.0 

CH(l) = (0.8 * (2*T + X)) ** 0.25 

ELSE 

AH(l) = 0.0 

BH(l) = 1.0 

CH(l) = 0.2 * (0.8 * (2*T + X + 1)) ** (-0.75) 

ENDIF 

RETURN 

END 

SUBROUTINE BNDRYV (T, X, Y, U, AV, BV, CV, NPDE) 

DIMENSION U(NPDE), AV(NPDE), BV(NPDE), CV(NPDE) 

c-----------------------------------------------------------------------------------------------------------------------
c THIS ROUTINE DEFINES THE BOUNDARY CONDITIONS ALONG VERTICAL 

C BOUNDARIES. THESE CONDITIONS ARE OF THE FORM 

c 
C AV(L) U(L) + BV(L) D/DX U(L) = CV(L), L= l, ... ,NPDE, 

c 
C WHERE NPDE IS THE ~UMBER OF PDES (HERE NPDE= 1). 

c-----------------------------------------------------------------------------------------------------------------------
A V( l) = 1.0 

BV(l) = 0.0 

cv(l) = (0.8 * (2*T + x + Y)) ** 0.25 

RETURN 

END 

SUBROUTINE DIFFH (T, X, Y, U, DH, NPDE) 

DIMENSION U(NPDE), DH(NPDE,NPDE) 

c-----------------------------------------------------------------------------------------------------------------------
c THIS ROUTINE DEFINES THE DIFFUSION COEFFICIENT IN HORIZONTAL 

C DIRECTION (I.E. IN X-DIRECTION). 

C NPDE, THE NUMBER OF PDES, EQUALS 1. 

c-----------------------------------------------------------------------------------------------------------------------
DH(l, l) = 5.0 * U(l) ** 4 
RETURN 

END 
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SUBROUTINE DIFFV (T, X, Y, U, DV, NPDE) 

DIMENSION U(NPDE), DV(NPDE,NPDE) 

*** - Parabolic Partial Differential Equations 

c-----------------------------------------------------------------------------------------------------------------------
c THIS ROUTINE DEFINES THE DIFFUSION COEFFICIENT IN VERTICAL 

C DIRECTION (I.E. IN Y-DIRECTION). 

C NPDE, THE NUMBER OF PDES, EQUALS 1. 
c-----------------------------------------------------------------------------------------------------------------------

DV(l, l) = 5.0 * U(l) ** 4 
RETURN 

END 

SUBROUTINE F (T, X, Y, U, UX, UY, DUXX, DUYY, DUDT, NPDE) 

DIMENSION U(NPDE), UX(NPDE), UY(NPDE), DUXX(NPDE,NPDE), 

+ DUYY(NPDE,NPDE), DUDT(NPDE) 

c-----------------------------------------------------------------------------------------------------------------------
c IN DUDT(L), L= l, ..• ,NPDE, THE RIGHT-HAND SIDE OF THE PDES 

C IS DEFINED IN TERMS OF THE FIRST 8 PARAMETERS. 

C NPDE, THE NUMBER OF PDES, EQUALS 1. 
c-----------------------------------------------------------------------------------------------------------------------

DUDT( l) = DUXX(l,l) + DUYY(l,l) 

RETURN 

END 

13.5 Program data 

None 

13.6 Program results 

BDMG EXAMPLE PROGRAM RESULTS 

NUMBER OF STEPS PERFORMED 
NUMBER OF REJECTED STEPS 
TOTAL NUMBER OF G-EVALUATIONS 
(INCLUDING THE ONES TO CONTROL 
THE SPECTRAL RADIUS AND CONVERTED 
TO THE FINEST GRID EQUIVALENT) 

TOTAL CP SECONDS USED BY BDMG: 
(INCLUDING THE SEMIDISCRETIZATION) 

CP SECONDS USED BY THE DERIVATIVE 
CP SECONDS USED BY SPRAD : 
CP SECONDS USED BY PDETWO: 

93 
1 

996 

228.08 

G: 0.00 
0.00 

211.39 

AT T = 1.00000 THE MAXIMUM NORM OF THE ERROR EQUALS: 0.15640E-04 
~,, 
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