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ABSTRACT 

This paper surveys linear nonparametric one- and k-sample tests for 

counting processes. The necessary probabilistic background is outlined and 

a master theorem proved, which may be specialized to most known asymptotic 

results for linear rank tests for censored data as well as to asymptotic 

results for one- and k-sample tests in more general situations, an important 

feature being that very general censoring patterns are allowed. 

A survey is given of existing tests and their relation to the general 

theory, and we provide examples of applications to Markov processes. We 

also discuss the relation of the present approach to classical nonparametric 

hypothesis testing theory based on permutay.on distributions. 
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1 • INTRODUCTION 

Although actuarial computations of survivorship functions have been 

known for a long time, much.of the recent biostatistical research in non­

parametric statistical methods for censored data take the important review 

paper by KAPLAN & MEIER (1958) as starting point. Kaplan and Meier's empir­

ical distribution (or survivorship) function provides a direct descriptive 

means of studying the simplest situation with censored observations. Out of 

n independent identically distributed lifetimes X., some are observed, but 
1. 

for the rest it is only known that they are larger than some time T.: the 
1. 

observations are given as (min(X.,T.), I{X. ~ T.}); i = 1, ••• ,n, where 
1. 1. 1. 1. 

I(•) is the indicator function. The particular situation with the T. 's given 
1. 

as nonrandom quantities is called fixed censorship, but we shall not be 

restricted to that in this report. 

Two important developments in nonparametric statistical analysis of 

censored data have emerged from the Kaplan-Meier estimator. The first sticks 

to the subject of independent lifetimes, but provides statistical methods 

for assessing the dependence of the survival distribution on individual 

characteristics. Examples are the modifications of standard nonparametric 

two- and k-sample tests by GEHAN (1965), BRESLOW (1970), and PETO & PETO 

(1972), and the semiparametric regression,-'J)}odel by COX (1972). This develop­

ment has been reviewed in the very important monograph by KALBFLEISCH & 

PRENTICE (1980), which contains a comprehensive set of references. 

- The second development generalizes the simple alive-dead situation to 

several states, modelling each individual's life history as a stochastic 

process; so far most often a Markov process. Again the models have roots 

far back in actuarial science and also demography (see e.g. HOEM, 1976); 

however a decisive breakthrough for nonparametric statistical theory for 

such models occurred only recently with Aalen's (1975) thesis, cf. AALEN 

(1978). The mathematical framework is multivariate counting processes and 

stochastic integrals and the asymptotic theory is based upon martingale 

central limit theory. 

The present paper is devoted to an exposition of one- and k-sample 

tests for comparison of coun-ting processes. We use the definitive martingale 
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central limit theory by REBOLLEDO (1978), cf. also SHIRYAEV (1980), accord­

ing to which one master theorem provid~s proofs of the asymptotic distribu­

tions of many estimators and test statistics known from the literature for 

the simple life expectancy.problem, as well as their generalizations to the 

counting process framework. GILL (1980), following up the preliminary treat­

ment by AALEN (1978, section 7), performed a detailed study of the two-sample 

problem (comparing two life distributions) using this probabilistic machin­

ery, and added a study by similar methods of the one-sample estimation 

problem. 

Along the way, we show that most, if not all, generalized linear rank 

tests for censored data may be treated in this general framework. (The word 

"linear" in the title of this paper serves to distinguish from Kolmogorov­

Smirnov tests, such as discussed by FLEMING et al. (1980), and other non­

linear nonparametric tests such as the recent k-sample median test by 

BROOKMEYER & CROWLEY (1980). Some of these can in fact also be treated in 

our framework, see GILL (1980).) 

Our own original motivation (which at the same time provides a prac­

tical example) was an empirical study (AALEN et al., 1980) on the possible 

interaction between menopause and the onset of the chronical skin disease 

pustuZosis paZmo-pZantaris. This application goes beyond the simple life­

table set~up. 

The plan of the paper is as follows. In Section 2 we review the basic 

results from the theory of counting processes, and we recapitulate Aalen's 

"multiplicative intensity" model for multivariate counting processes, 

including a discussion on how various types of censoring may be incorporated 

into the model. A brief summary of the necessary probabilistic background is 

deferred to Appendix I. Section 3A provides a general k-sample test statis­

tic and its asymptotic distribution, while Section 3B is an exposition of 

simpler conservative approximations to the test statistic. In Section 3C 

we show how the classical nonparametric k-sample tests fit into our frame­

work, deferring to Appendix III the detailed verification for the Kruskal­

Wallis test of the conditions of our "master" Theorem 3.1. Section 3D 

surveys current literature on k-sample tests for censored data, including 

a discussion of the direct validity of the conservative approximations 



under asymptotically equal censorship. In Section 3E we discuss the connec­

tion between our approach and the conventional approach, only valid under 

equal censorship, via permutation distributions. Chapter 3 is concluded by 

3 

a couple of examples from Markov processes, and thus outside of the censored 

survival data circles. Finally, Section 4A discusses a general one-sample 

test statistic with examples and discussion in Section 4B. 

2. MULTIVARIATE COUNTING PROCESSES AND THE MULTIPLICATIVE INTENSITY MODEL 

2A. Multivariate counting processes 

The basic statistical model will be formulated in terms of rrrultivariate 

cowiting processes; for a detailed review see BREMAUD & JACOD (1977). (The 

reader is referred to Appendix I for the necessary probabilistic definitions.) 

For an alternative approach to the theory attempting to minimize the depen­

dence on general martingale theory we mention the recent comprehensive lec­

ture notes by JACOBSEN (1981). 

The discussion below is phrased in terms of processes defined on the 

time interval [0,1]. The theory thus trivially applies to any other compact 

interval [O,t] but some care has to be observed when interpreting generaliza­

tions (via monotone transformation) to [0, 00], since the behaviour at 00 may 

restrict the applicability of the results. We shall add some comments on 

this when necessary. 

Briefly, we consider a complete probability space (Q,f,P) and an in­

creasing, right-continuous family (ft, t E [0,1]) of sub-a-algebras off. 

A stochastic process~= ((N 1(t), ••• ,Nk(t)), t E [0,1]) is called a k-dimen­

sional cowiting process if each of the k component processes N. has a sample 
1 

function which is a right-continuous step function with a finite number of 

jumps, each of size +l, and if furthermore two different component proces­

ses cannot jump at the same time. We require that ~(O) = O, that~ is adapt­

ed to (ft), and that ENi(l) < 00 for all i. (This last condition can actual­

ly be dropped if local martingale techniques are used; see MEYER (1976).) 

Since each component process N. is increasing and integrable and hence a 
1 

submartingale, we have the Doob-Meyer decomposition N. = A. +M., where A. 
1 1 1 1 

is a natural (or predictable) increasing process and M. a martingale. We 
1 
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shall assume that A. is absolutely continuous, more precisely that there 
l. 

exists a unique non-negative left-continuous stochastic process 

~ = ((A 1(t), .•• ,~(t)), t E [0,1]) adapted to (F) and with right-hand 
t . t 

limits, such that Ai(t) = f0 Ai(s)ds; 1. = I, .•• ,k. Then (cf. AALEN, 1978, 

pp.704-705) 

(2. I) 

t 

Mi(t) = Ni(t) - I Ai(s)ds, 

0 

i = I, ..• ,k, 

are orthogonal square integrable martingales with variance processes 

t 

(2.2) <Mi,Mi>(t) = I Ai(s)ds, i = 1, ... ,k. 

0 

The process~ is called the intensity process of~- This name is justified 

by the following property (valid whenever each of the components of~ are 

dominated by an integrable random variable): 

lim -h1 P(N.(t+h) - N.(t) = lift)= 
h+0 1. 1. 

lim .! E(N.(t+h) - N.(t)IF) = 
h+0 h i i t 

/ 

A.(t+), 
l. 

l. = 1, ... ,k. 

2B. Asymptotic theory for square integrable martingales related to 

counting processes 

The basic tool in deriving asymptotic results for the general k-sample 

statistic in Section 3 is the following theorem, which may be obtained from 

Rebolledo' s (1978) Theor.eme I. 3.~ by a fairly standard argument using the 

Cramer-Wold device (see also AALEN (1977, LeDIDla A.I)). 

Consider a sequence ~(n) of k-dimensional counting processes with 

intensity processes A(n) and define for each n = 1,2, ••• square martingales 

M(n) = (M1(n) , ••• ,M. (n)) by (2.1). Let furthermore H(n) = (H .. (n)) be a ~ -le ~ l.J 
sequence of (mxk)-matrices of predictable processes on [0,1] satisfying 

E J1[H .. (n)(s)J2 A~n)(s)ds < 00 for all i,j, which for instance holds if 9 l.J J 
H~~ is bounded (cf. Appendix I). Then the following theorem holds. 

l.J 



THEOREM 2.1. Suppose that the following two conditions are fulfilled: 

There exists an (mxk)-matrix g = (g .. ) of non-negative Lebesgue-square ~ 1J 
integrable functions on [0,1] such that 

k t . 

(2.3) g • • ( s) g n • ( s) ds L J H~:1)(s)H(:1)(s)A~n)(s)ds 
. l 1J tJ J 
J= 0 n-+oo 1J x,J 

for all i,t = 1, ••• ,m, t E [0,1], and 

1 k 

J l (H~r_i) (s) / 
j= 1 1J 

0 

(2.4) 

for all i = 1, ••• ,m, £ > O. Then 

(2.5) 

processes. 

Also for all i, t and t 

k t p 

L J H~:1)(s)H(r_i)(s)dN~n)ds + 
J·=1 1J tJ J 0 n-+oo 

p 

+ 0 
n-+oo 

g • • ( S) g n • ( s) ds . 
1] x,J 

Here ~ denotes weak convergence in the space Dm[O,l] of m-dimensional 
/ 

functions on [0,1] with right-continuous real-valued components, equipped 

with the Skorohod product topology (cf. BILLINGSLEY, 1968, Chapter 3). 

In practice the verification of the Lindeberg condition (2.4) is not 

always so direct, and it is useful to have alternative and more easily 

verifiable sets of conditions. Such conditions are given in the following 

corollaries. 

COROLLARY 2.2. Consider the situation of Theorem 2.1 and suppose that the 

following conditions are satisfied: 

(2. 7) 

(2.8) 

and 

H~r_i) (s) 
1J 

p 

+ o, 
n-+oo 

for aU i,j ,s, 

k 
l g .. (s)g,Q,.(s) for all i,t,s, 

j = 1 1J J 

5 
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(2.9) 

are integrable over {n,s,i,t}. Then (2.5) and (2.6) hold. 

PROOF. In a similar way as AALEN & JOHANSEN (1978, Theorem 4.1) we may prove 

that (2.7) to (2.9) are sufficient for (2.3) and (2.4), and the corollary 

follows from Theorem 2.1. D 

For some applications these conditions are a little too strong (they 

imply for instance that g .. is bounded) but the following more complicated 
1J 

corollary can be applied: 

COROLLARY 2.3. Suppose that for each T < 1 the conditions of Corolla-ry 2.2 

hold withs restricted to the interval [O,.J. Suppose that the functions 

g .. are Lebesgue square integrable on [0,1] and that for all i,j and all 
1J 

£ > 0 

(2.10) 

1 

lim lim sup P(J 
,t 1 n-+<x> 

T 

Then (2.5) and (2.6) hold. 

PROOF. It is simple to check that (2.3) and (2.4) hold by applying Theorem 

4.2 of BILLINGSLEY (1968). 0 

A sufficient condition for uniform integrability of a set of random 

variables which is often easier to verify is boundedness of the (l+e:)'th 

absolute moments of the variables for some e: > O. Alternative sets of con­

ditions in which the uniform integrability in (2.9) is replaced with uniform 

convergence in (2.7) and· (2.8) were given by GILL (1980). 

It should be noted that Corollary 2.2 can be applied mutatis mutandi 

to proving weak convergence on any finite time interval [O,,], T < 00 • 

Theorem 2.1 and Corollary 2.3 are in fact also valid on the infinite time 

interval [0, 00 ]. 



2C. The multiplicative intensity model 

We consider a statistical model P = {P6 , 0 E 0}, that is, a family of 

probabilities on (n,F). Following AALEN (1978), it is assumed that for each 

0 E 0, the ((Ft),P0)-intensity process ~8 exists and that there furthermore 

exists an (F )-adapted stochastic process!= (Y 1, ••• ,Yk) and functions 
0 e t e 

2 = (a 1, ••• ,ak) such that 

(2. 1 1) A~(t) = 
1 

0 a.(t)Y.(t), 
1 1 

i = l, .•. ,k, t E [0,1], 

the point being that 2 8 is deterministic while! does not depend on 0. For 

each i it is required that the sample 
1 . . e 1m1ts; a. 

1 

paths of Y. are non-negative and left 
1 

is also non-negative. continuous with right-hand 

Statistical inference in the multiplicative intensity model at time t 

is based on observing (N(s),Y(s)), 0 $ s $ t $ 1, or more generally on ~ ~ 
observing the family (F, 0$s$t). We restrict here attention to inference s . 
concerning 2 8 (and drop the superscript 0) and refer to REBOLLEDO (1978, 

II.2) for a discussion of the more general problems of classifying statis­

tical models with the structure (2.11), and of finding conditions for the 

a. to parametrize the model. 
1 

Several examples of the multiplicative intensity model were given by 

AALEN (1975,1976,1978); we return below to some of these in connection 

with the discussion of the specific results. AALEN (1978) approached the 

estimation problem in the following way (we have slightly improved some of 

his arguments, in particular to make use of later developments in the 

theory of stochastic integrals). 

Since for each i = 1, ... ,k we may rewrite (2.1) symbolically as 

"dN. (t) = a. (t)Y. (t)dt + noise" a natural estimator of s. (t) = J0t a. (s)ds 
1 1 1 l 1 1 

would be ft0 Y. (s)- dN. (s). 
1 1 

However, one may have Y. = O, and in order to deal systematically with 
1 

this possibility the problem is rephrased by defining 

t 

= I (2.12) * s. (t) 
1 

0 

where 

a. (s)J. (s)ds, 
1 1 

i = 1, .•. ,k, t E [Q,l], 

7 



8 

(2. 13) J.(s) = I(Y.(s) > O). 
l. l. 

Interpreting J.(t)/Y.(t) as O whenever Y.(t) = 0 and assuming that there 
l. l. l. 

exists a constant c > 0 such that Y. (t) < c ~ Y. (t) = 0 almost surely, 
l. l. . * . est1.mators of$. are def1.ned by 

l. 

t 

(2. 14) s. (t) 
l. = I J. (s) /Y. (s) dN. (s) , 

l. l. l. 
i = l, ..• ,k, t E [0,1]. 

0 
A * It now holds that S, - $., i = 1, ••• ,k, are orthogonal square integrable 

l. l. 

martingales with variance processes 

t 

(2. 15) - * - * <s.-s.,s.-s.>(t) 
l. l. l. l. = I a.(s)J.(s)/Y.(s)ds, 

l. l. l. 
i = 1, ••• ,k. 

0 

The asymptotic behaviour of the estimators and of tests for comparing ai and 

a. for i I j may then be studied by means of the results of AALEN (1977). 
J 

2D. Censoring 

One important advantage of the rather general formulation of the multi­

plicative intensity model is that it accomodates fairly general censoring 

patterns. 

Thus assume that the time intervals where the process is observed (or 

at least, where its jumps are observed) are determined by an (Ft)-adapted 

multivariate indicator process£= (c 1, ••. ,Ck) with values in {O,l}k. 

(Formally, let Eis [0,1] x n be the set of (t,w), where Ni(t,w) and 

Y.(t,w) may be observed; then C.(t,w) = IE,(t,w).) If C is predictable (for 
l. l. l. ~ 

our purposes, left continuous), then the censored process 

t 

N~(t) = I C.(s)dN.(s) 
l. l. l. 

0 

has intensity process 

a 1.(t)Y1~(t) = a.(t)C.(t)Y.(t). 
l. l. l. 

This is seen by noting that 
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t t 

N~(t) 
l. = I C. (s)a.. (s)Y. (s)ds + 

l. l. l. I C.(s)dM.(s), 
l. l. 

0 0 

where the last term is a square integrable martingale, being a stochastic 

integral of a predictable process with respect to the square integrable 

martingale M. given by (2.1) (cf. Appendix I). 
l. 

A study of "censored observations from~" is thus equivalent to a study 

of the multivariate counting process ~c with multiplicative intensity 
C (a..Y., i = 1, ••• ,k). 

l. l. 

Two general remarks on censoring are important. The first is that we 

do not restrict attention to censoring processes adapted to the self-excit­

ing family of a-algebras (Nt) given by Nt = cr{Ni (u), u::;; t, i = 1, ••• ,k}. This 

allows for the dependence of the censoring mechanism on outside random in­

fluences in addition to events in the counting process "before now". A parti­

cularly simple example is the so-called random censorship model, where the 

censoring process is stochastically independent of~-

The second remark concerns a fairly common situation where the index i 

of the multivariate counting process refers to a numbering i = 1, ••• ,k of 

individuals whose intensity functions a.. are assumed equal (say= a.), but 
l. 

where the censoring mechanism operates on each individual. That is, we have 

dN . ( t) = a. ( t) Y . ( t) d t + dM. ( t) 
l. l. l. / 

and, after censoring, 

dN7(t) = a.(t)Y.(t)C.(t)dt + dM7(t). 
l. l. l. l. 

In such situations it is. quite common to restrict attention to the aggregate 

process N = IN., that is, after censoring to the counting process IN?. This, 
l. l. 

however, is seen to have intensity process given by 

a.(t)IY.(t)C.(t) 
l. l. 

and is thus again covered by our framework. We return to specific examples 

of this and similar more complicated situations below. The sum IY.(t)C.(t) 
l. l. 

may often be interpreted as a number at risk at time t (for transition with 

the intensity a.(t)). 
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3. THE k-SAMPLE TEST 

3A. The general test statistic 

Consider a k-dimensional (k ~ 2) counting process ~ = ( (N 1 (t), ••• ,Nk (t)), 

t E [0,1]) with intensity process k = ((A 1(t), ••. ,~(t)), t E [0,1]) satis­

fying the multiplicative intensity model (2.11), i.e. A. (t) = a.. (t)Y. (t), 
l. l. l. 

i = 1, ••• ,k, where the a.. 'sand Y. 's satisfy the regularity conditions given 
l. l. 

in Section 2C. 

We want to test the hypothesis 

t E [O,I]. 

The connnon value of a. 1(t), •.• ,a.k(t) will be denoted a.(t). It is natural to 

construct a test statistic by comparing estimates of s.(t) = J0t a..(s)ds, 
l. l. 

connnon value J~ a.(s)ds. i = 1, ... ,k, with an estimate of the hypothesized 

* Actually only s. (see (2.12)) can be estimated so we have to modify this 
l. 

idea slightly, as follows. 

Proceeding as in Section 2C we consider under the null hypothesis the 

aggregate processes 

k 
N = I 

i=l 
N.' l. 

y = 
k 

I 
i=I 

Y. 
l. 

and define J by J(t) = I{Y(t) > 0}. Instead of S we may estimates* defined 

by 

t 

s*(t) = I a.(s)J(s)ds 

0 

by the estimator 

t 

s<t) = I J(s)/Y(s)dN(s). 

Let then s. (t), i 
l. 

s. (t) 
l. 

0 

= 1, ... ,k, be 

t 

= I Ji(s)dS(s) 

0 

given by (2.14) and 

t 

= I J.(s)/Y(s)dN(s), 
l. 

0 

define 

i = 1, •.• ,k, 
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where J.(s) = I{Y.(s) > O} as defined by (2.13). When the a. 's are identical, 
1 1 1 

N is a counting process with intensity process A= aY (ands. is a sensible 
1 

estimator of S~). Hence by (2.1) we have under HO that 

t t 

a.(t)-$.(t)=f J.(s)/Y.(s)dM.(s)-f J.(s)/Y(s)dM(s), i=l, ••• ,k, 
1 1 1 1 1 1 

0 0 

where M = l~=l Mi' are square integrable martingales. 

(3. 1) 

Their covariance processes are given by 

t ,.. - ,.. - f 0i. I <S.-S,,S,-S.>(t) = J.(s)J.(s)a(s)(--J- - -- )ds, 
i i J J O i J Yi(s) Y(s) 

where o .. is the Kronecker 
1] 

delta. To prove (3.1) we first note that under HO 
t 

s.(t) - s.Ct) = 
1 1 

k f o.. 1 L Ji(s)( iJ - -_-)dM.(s); 
j=I O Yi(s) Y(s) J 

(3.1) follows by some straightforward calculations using (A.I) in Appendix 

I, (2.2) and the fact that M. and M. are orthogonal when i I j. 
1 J 

To construct a test statistic for HO we introduce the integrals 

t 

Z.(t) = f K.(s)(d$.(s) - d$.(s)), 
1 1 1 1 

i = I, ... ,k, 

0 / 

where the K. 's are almost surely bounded, predictable processes. Under 
1 

HO z1, ••• ,Zk are square integrable martingales (cf. Appendix I). 

(3.2) 

Furthermore by (A.I) and (3.1) the covariance processes are given by 

t 

<Z.,Z.>(t) = f K.(s)K.(s)J.(s)J.(s)a(s)( 0ij - - 1-)ds. 
i J . i J i J Y. (s) Y(s) 

0 1 

In the following we derive the asymptotic distribution under HO of 
(n) (n) (n) . (n) 

~ = (Z 1 , ••• ,Zk ) assuming that we have a sequence N of k-dimen-
. 1 . . h . . ~A (n) -- "' ~. !(n), h siona counting processes wit intensity process H ~ were a 

is the same for all n. 

This is straightforward since ~(n) can be expressed as Z(n) = fg(n)d~(n) 

with 
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(3.3) 

and 

1 H •• (n) 
l.J 

= K. (n) J. (n) ( 0 ij 
J. J. Y. (n) - -(n))' 

·Y 
i,j=l, ••• ,k 

M. (n) (t) 
J 

= N. (n) (t) 
J 

l. 

t 

-I 
0 

a(s)Y. (n) (s)ds, 
J 

j=l, ••• ,k. 

Thus Theorem 2.1 and Corollary 2.2 or 2.3 give sufficient conditions for 

the process ~(n) (properly normalized) to converge in distribution to a 

Gaussian process. 

We will not, however, state these conditions explicitly except for a 

special case which seems to cover most examples of interest, namely the case 

where the K. (n)_processes have the form 
l. 

(3.4) K. (n) (t) 
l. 

i = 1, ••• ,k, 

where L(n) is a predictable process that only depends on the process 

(N(n), Y(n)). It is assumed that L(n) is zero where Y(n) is zero, and we 

interpret. L(n)/Y(n) as zero where Y(n) is zero. (It should be noted that 

our L(n)(t) has a slightly different meaning from the L-function defined 

by AALEN (1978), Section 7.3).) When K. (n) has the form (3.4) the matrix 
l. 

~(n) with elements given by (3.3) is singular and l~=l Zi (n) = O. Further-

more, since Y. (n)J. (n) = Y. (n) the factor J. (n) may be omitted from the 
l. l. l. l. 

expression (3.3), i.e. 

t 

z. (n)(t) = ( L(n)(s)dN. (n)(s) 
l. J l. 

0 

t (n) 

f (n) Yi (s) () 
- L (s)-_..,..(n_) __ dN n (s), 

0 Y (s) 

i = 1, ••• ,k. 

Theorem 3.1 below gives sufficient conditions based on Corollaries 2.2 and 

2.3 for the weak convergence to take place and provides consistent 

estimators of the covariance function of the limiting Gaussian process. 

THEOREM 3.1. Assume tha.t there exists a sequence of positive aonstants (a) n 
and non-negative Lebesgue-square integrabZe funations h 1 , ••• ,~ on [0,1] 

suah tha.t 
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(3. 5) 
p 

a L(n)(s)Y. (n)(s)/Y(n)(s) ➔ 0 for all i,s, 
n 1 

n➔eo 

for au i,.t,s 

and 

(3.7) 

are uniformly integrable over {n,s,i,.t}. 

Then under H0 

where 

t 

U.(t) = f (h.(s)h(s))½dW.(s) -
1 1 1 

0 

k 

I 
j=l 

t 

f h.(s)(h.(s)/h(s))½dW.(s), 
1 J J 

0 

w1, ••• ,wk are independent standard Wiener processes and h = I~=I hi. 

If (3.5) to (3.7) only hold for s E [0,T] for each T < 1 but also for 

all i and all£> Owe have 

1 

(3. 8) lim lim sup P( f (a L(n)(s)Y. (n)(s)) 2a(s)/Y(n)(s)ds > £) = O 
Ttl n-+<x> n 1 

T 

then the result still holds. 

Under either set of conditions it also follows that 

t . t 

(3. 9) an 2 f [L (n) (s)]2Yi (n) (s)Y .t (n) (s)j (y(n) (s)) 2di(n) (s) · ! f hi (s)h.t (s)ds 

o ~o 
for all i,.t and t. 
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- ! .;_ ! 
PROOF. By letting g .. = o •. (h.h) 2 - h.(h./h) 2 , (2.7) to (2.9) are easily 

l.J l.J l. l. J 

verified from (3.5) to (3.7), while (3.8) implies (2.10). 

Hence the first parts of the theorem follow from Corollary 2.2 and 

Corollary 2.3. The last part of the theorem now follows from (2.6) with 

g .. = h.(h./h)½ and H(n) similarly modified •. D 
l.J l. J ~ 

From Theorem 3.1 we find that under H0 , the statistic ~(n) (l) = 
(Z 1 (n)(I), ••• ,zk (n)(l)) is asymptotically normally distributed with mean 

0 and a (singular) covariance matrix a - 2r, where r has elements 
~ n ~ ~ 

I 

( 3 • I O) a . . = <U . , U • > (I ) = f h • ( s) ( o • . h ( s) - h • ( s) ) d s • 
l.J l. J l. l.J J 

0 

A consistent estimator for f is 

2 (n) k 
= a (V.n (1)). n 1' n l.k l.,k= 

where 

vit (n)(t) 

In Appendix II it is shown that under mild conditions on the h. 's r has 
l. ~ 

rank k-1, which is obviously its maximum rank. Likewise V(n)(l) has rank 

k-1 provided that for any i,t there exists a time point :here N(n) jumps 

and such that L(n), Yi (n) and YJI, (n) are positive. Since in any case y<n)(l) 

has rank~ k-1 and is a consistent estimator off, we have 

P(rank y<n)(l) = k-1) = +'I. Hence under H0 the statistic 
n+oo 

(3. 11) 

where y<n)- is a generalized inverse, is asymptotically chi-squared distrib­

uted with k-1 degrees of freedom. 

3B. Conservative approximations to the test statistics. 

An important special case of the structure of the assumptions of 



Theorem 3.1 occurs when 

(3.12) h.(s) = p.h(s), 
1. 1. 

SE [Q,}] 

for some positive constants p. which sum to one and for some nonnegative 
1. 

Lebesgue-square integrable function h. 

It is easily seen that together with condition (3.6), (3.12) implies 

that 

(3. 13) as n ➔ m, 

15 

for each i ands such that h(s) > O. Conversely, if (3.6) holds and (3.13) 

holds for each i ands except possibly on a fixed (i.e. independent of n) 

set of s where Y(n)(s) = O, then (3.12) holds whatever the choice of L. 

When (3.12) holds, some modifications of the test statistic (3.11) 

are possible. For in this situation the elements of the limiting covariance 

matrix reduce to 

1 

J -2 
cr .. = p.(o .. - p.) h (s)ds; 

1.J 1. 1.J J 
0 

that is, a constant times the covariance matrix of a multinomial random 

variable. By (3.9) Jb h2 (s)ds may be estimated consistently by 
2 fl (n) 2 -(n) . a O [L (s)] dN (s). If we furthermore assume the existence of con-

n A (n) A (n) P 
stants or random variables p. such that p. ➔ p. as n ➔ 00 , then an 

1 1. 1 

alternative version of the statistic (3.11) is 

k 
(3. 14) { I 

i=l 

By (3.9) one may also estimate pi fb h2(s)ds consistently by 

an2 fb [L(n)(s)J2 Yi (n)(s)/Y(n)(s)dN(s). Hence, still another version of 

the test statistic is 

(3. 15) 
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,.. 
This is actually (3.14) with the special choice of p.(n) 

l. 

1 1 

;i (n) = J [L(n)(s)J2Yi (n)(s)/Y(n)(s)dN(n)(s)/ J [L(n)(s)J2dN(n)(s). 

0 . 0 

By direct computations similar to those of CROWLEY & BRESLOW (1975) it may 

be verified that the difference between the covariance estimators used in 

(3.15) and (3.11) (and similarly between their asymptotic counterparts) is 

always positive semi-definite. Thus (3.15) always takes on smaller values 

than (3.11), while (3.11) always has the correct asymptotic distribution. 

A common terminology is to state that (3.15) is conservative except in the 

case where (3.13) holds (for all i ands except possibly on a fixed set of 

s where Y(n)(s) = 0). 

Nothing can be shown in general 

and (3.14). One special case is that 

a positive semi-definite difference. 

about the relationship between (3.11) 

if k = 2 and;. (n) =½we have again 
l. 

Thus with k = 2 and p. (n) = ½ (3.14) 
l. 

is also conservative except when (3.13) holds. 

3C. Classical nonparametric k-sample tests. 

As stated in the Introduction, the bulk of the literature on non­

parametric tests for censored data concerns the classical k-sample situation 

where the object is to test the hypothesis F1 = ••• = Fk in the set-up with 

X .. ; j=t,2, ••• ,n.; i=t,2, ••• ,k (with n=E n.) independent random variables 
l.J l. l. 

with absolutely continuous distribution function F., density function f. 
l. l. 

and hazard function a. in group no. i. As an introduction to our more 
l. 

detailed exposition of tests for censored data in this situation, we 

briefly indicate how the theory for the uncensored case, including the 

asymptotic distribution results, fits into our framework. 

Let N .. (t) = I{X .. ~ t}. AALEN (1978), p.707) pointed out that 
l.J l.J 

(3. 16) 

n. 
l. 

N.(t) = l 
l. • 1 J= 

N .. (t) 
l.J 

is a k-dimensional counting process with intensity process satisfying the 

multiplicative intensity model (2.11) with Y.(t) = n. - N.(t-). We want 
l. l. l. 

to test the hypothesis of identical a.'s. 
l. 
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Our theory only strictly applies if all observations with probability 

1 fall into a finite time interval, say [0,1]. However, if P[X .. > t] > 0 
iJ 

for all t < 00 , we can still apply our theory by first mapping [0, 00 ] contin-

uously onto [0,1], e.g. by the transformation x + 1 1 • In the same way, 
+ X 

if the F.'s are continuous but 
i 

not absolutely continuous we can still obtain 

this situation (under the null hypothesis at 

transformation x + F(x). All rank statistics 

least) by, for example, the 

are unaltered by such monotone 

time transformations. Alternatively, but we do not follow that course here, 

Aalen's theory can be extended to apply on [0, 00 ] with arbitrary F.'s, not 
i 

even necessarily continuous (see Gill, 1980). 

Returning to the situation at hand, let us first rewrite the expression 

for Zi(l) when Ki is given by (3.4), where we assume that L(t) = L0 (Y(t)) 

for some fixed function L0 (i.e. the same for all n). Let us also assume 

that F, the connnon distribution function of the X .. 's, satisfies F(l) = 1. 
iJ 

Since then Yi(t) = J[t,l]dNi(u), we may write after a change of the order 

of integration 

1 

Zi(l) = f L0 (Y(s))dNi(s) -

0 

1 

f f L0 (Y(s))/Y(s)dN(s)dNi(u). 

0 (O,u] 

If, furthermore, R .. denotes the rank of X .. in the combined sample, then 
iJ iJ 

Y(X .. ) = n + 1 - R •• , and it is seen that 
iJ iJ 

Z.(1) = 
i 

n. 
i 

I 
j=l 

L0 1 (n + 1 - R .. ) 
iJ 

is a linear rank statistic with score function L0 ' given by 

n 
La'(y) = Lo(y) - l Lo(v)/v. 

v=y 

Especially for L0 (y) = y and L0 (y) = 1 one gets 

n. 
i 

I 
j=l 

Z.(1) = n.(n + 1) - 2 
i i 

R •• 
iJ 

and 
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Z.(1) = n. -1. 1. 

n. 1. 
I 

j=l 

n 

I 
v=n+l-R .. 

l.J 

1 /v, 

respectively, corresponding to rank statistics of the Wilcoxon and Savage 

type (HAJEK & ~IDAK, 1967, p.87 and p.97). For linear rank tests the 

distribution of the test statistic under the hypothesis is independent 

of the null distribution F, and hence the exact so-called permutation co­

variance matrix of ~(1) may be found by a combinatorial argument. For our 

general statistic we have to be content with an estimate of the covariance 

matrix. General connnents on the relation of the present approach to the 

permutation distribution are collected in Section 3E below. Let us as an 

example consider the situation L0 (y) = y more specifically. One may show 

that the conditions in Theorem 3.1 in this case are fulfilled with 

a = n-3/Z and h.(s) = p.(1 - F(s)) 312a½(s) when we assume that p. = n./n + p. 
n 1. 1. 1. 1. i 

as n + 00 (see Appendix III). Hence, (3.12) holds and the version (3.14) of 

the test statistic applies. Since f~ Y2 (s)dN(s) = I~=l i 2 = n(n+l)(2n+l)/6, 

it takes the form 

12 k 
I (n+½) (n+l) i=l n. 

1. 

n+l 
[ni 2 

n. 
1. 

I 
j=I 

2 
R_ • J • 

l.J 

Except for a factor of (n+½)/n (which will be explained 1.n Section 3E below) 

this equals the Kruskal-Wallis test, which is the k-sample generalization 

of the Wilcoxon test (HAJEK & ~IDAK, 1967, p.104). The case L0 (y) = 1 may 

be analysed in a similar manner. 

3D. Nonparametric k..,..,sample tests for censored survival data. Asymptotically 

equal censorship. 

Censoring introduces the modification of the situation discussed in the 

previous section that instead of observing the random variables x .. ; 
l.J 

j=I, ••• ,n., i=I, ••• ,k, whose distributions 1. 
are to be compared we observe 

only (min(X .. , T .. ), I{X .. ~ T .. }) where several different assumptions 
l.J 1.J 1.J 1.J 

be made regarding how the T .. 's are generated. We list below some such 
l.J 

assumptions. 

may 
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a. Simple type I censorship. 

In each sample, observation is discontinued at a predetermined time t .• 
1 

That is, T .. is degenerate at t., for all i and j. 
1J 1 

b. Progressive type I censorship (or: fixed censorship). 

It is quite common in clinical trials for patients to enter consecu­

tively, but to let observation stop at some fixed calendar time. The time 

variable of interest in this connection is usually time since entry, and 

the situation is then formalized by letting one deterministic censoring 

time, T .. = t .. , be attached to each patient. Usually entry times are random, 
1] 1J 

but the above formalization is then justified by conditioning on the entry 

times and assuming independence of entry and survival distributions. 

c. Simple type II censorship. 

Observation in the i'th sample is discontinued at the r. 'th observed 
1 

failure. That is T .. = X.( )' the r.'th smallest observation in sample i. 
1J 1 r. 1 

For a particular industrial1variant of the procedure, uProgressive type II 

Censorship", see e.g. GILL (1980, p.24). 

The situation may be innnediately generalized to T .. being a stopping 
1] 

time on the process. 

d. Random censorship; competing risks. 

If all T .. are 
1J 

and of the x .. 's we 
1] 

random variables which are independent of one another 

are in the random censorship situation. One will 

usually assume T .. , J 
1J 

distribution function 

= l, ... ,n. to be identically distributed (with . 1 

G., say). 
1 

A similar situation will often arise when T .. is the time to a 
1] 

competing cause of failure. It is then not always so clear that the 

assumption that the T .. are independent of the X .. is warranted. Recognition 
1J 1J 

of this fact and of the ensuing difficulties of interpretation and identi-

fiability have been made several times in the literature. We refer to 

PRENTICE et al. (1978) for a survey. 
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e. Testing with replacement. 

GILL (1978; 1980, p.25) mentioned that the present theory does not 

apply for testing with replacement and gave alternative tools for handling 

this situation. 

As described in general terms in Section 2D, the k-dimensional counting 

process (3.16) is modified by defining (left-continuous!) censoring processes 

C .. (t) = I{T .. ~ t} 
l.J l.J 

and the censored counting process in the i'th sample 

t n. 
l. 

I 
j=l 

f c .. (u)dN .. (uJ = #{x .. , j=I, ••• ,n., x .. sT .. , x .. st}, 
l.J l.J l.J l. l.J l.J l.J 

0 

the number of uncensored observations ("observed failures") before tin 
• C C C group 1.. The k-dimensional counting process N = (N1 , ••• ,Nk) has intensity 

process given by the i'th component a.(t)Y.c(t) with 
l. l. 

n. 
l. 

y_c(t) = l c .. (t)I{X .. ~t} = #{x .. , j=I, ••• ,n., x .. ~t, T .. ~t} 
l. j = 1 l.J l.J l.J l. l.J l.J 

the number still at risk at time t- in group i. Again a. is the hazard 
l. 

function in group i. AALEN (1978) and GILL (1980) showed that the multi-

plicative intensity model holds under all the usual models for censoring, 

including those indicated above. 

The various test statistics suggested in the literature may now be 

obtained by suitable choice of the process Land the asymptotic distribution 

theory then follows from Theorem 3.1. In the rest of this Section we omit 

h • CC f • 1 t e superscript con N. , Y. , etc. or notat1.ona ease. 
l. l. 

BRESLOW (1970, Section 3) obtained a generalization of the Kruskal-

Wallis test (L = Y) and appealed to routine asymptotic theory of U-statis­

tics for proof of the asymptotic distribution of the test statistic under 

the model of random censorship (exampled. above). PETO & PETO (1972, 

Section 9) briefly indicated how the log-rank test (L = 1) for two samples 

may be generalized to k samples. CROWLEY & THOMAS (1975, Section 4) 
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provided a careful large-sample study of this k-sample log-rank rest, using 

classical Chernoff-Savage Theory (CHERNOFF & SAVAGE (1958)). TARONE & WARE 

(1977) suggested a family of test statistics generated by a certain function 

g, which is nothing but our L. These authors gave no formal asymptotic theory 

but indicated a comparison of the virtues of the different test statistics. 

For the two-sample case this was also done in an interesting case study by 

PRENTICE & MAREK (1979) and in a study of asymptotic properties by SCHOENFELD 

(1981). 

If in the random censorship model (d. above) it is assumed that the 

same censoring distribution applies in each sample (i.e. G1 = ••• =Gk) 

it is easily seen that, under the null hypothesis, (3.13) holds with p. 
l. 

estimated by n./n. Similarly, under the model of fixed censorship (a. and b. 
l. 

above) (3.13) holds if the discrete distributions of censoring times in each 

sample converge to the same distribution. Thus, under the null hypothesis 

(3.13) (for all i ands except possibly on a fixed set of s where Y(s) = O) 

has the intuitive meaning that the patterns of censorship in the k samples 

are asymptotically the same. We take therefore (3.13) as a definition of 

asymptotically equal censorship in the survival analysis situation. 

If the censoring patterns are asymptotically identical in all groups 

one may apply one of the modifications (3.14) and (3.15) of the test 

statistic. For L = Y and p. = n./n, (3.14) equals the version of the K.ruskal-
l. l. 

Wallis test considered by Breslow (1970, Section 4) for the case of identical 

censoring patterns. On the other hand for L = 1 (3.15) reduces to the well­

known version I.(O. - E.) 2/E. of the log-rank test, where we have introduced 
1 i i i 1 i 

o. = 
l. 

1973, 

f0 dN.(s) and E. = f0 Y.(s)/Y(s)dN(s). It has been shown (PETO & PIKE, 
l. l. l. 

CROWLEY & BRESLOW, 1975) that this version of the log-rank rest is 

conservative in the case of unequal censoring patterns (see also Section 

3B). Further connnents on simplified log-rank test statistics and inequalities 

between them were given by CROWLEY & THOMAS (1975, Section 4.2). 

Let us finally mention that PRENTICE (1978), cf. KALBFLEISCH & PRENTICE 

(1980), developed a theory for linear rank statistics for tests on.regression 

coefficients with censored data. Among other things he gave a generalization 

of the Kruskal-Wallis test which differs from BRESLOW'S (1970). Let us 

consider his test in some detail for the case where one wants to test the 

equality of k samples. Define then D.(t) = n. - Y.(t+), where n. is the 
l. l. l. l. 
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number of individuals in the i'th sample. If B.(t) counts the number of 
i 

censored observations in group no. i in [0,t], it is seen that D.(t) = 
- i 

II (I dN(s) ) h" h. = - - W ic is 
s~t Y(s)+I 

~ = N.(t) + B.(t). Furthermore, introduce S(t) 
i i 

close to the Kaplan-Meier estimator. Then in our notation Prentice's Kruskal­

Wallis statistic takes the form 

or 

I 

f (2S(t) - I)dNi(t) + 

0 

I 1 

I 

f (S(t) - l)dBi(t), 

0 

f S(t)dNi(t) + 

0 

J (S(t) - l)dDi(t), 

0 

i=I, ••• ,k. 

By partial integration the last integral equals f~ Yi(t)dS(t) or 

equivalently - J~ S(t-)Yi(t)/(Y(t) + l)dN(t). Moreover, the first 

f l ~ - -may be given as O S(t-)Y(t)/(Y(t) + l)dNi(t). This follows since 

integral 

the only 

time points that give contributions to the integral are those where N. 
i 

jumps, and for such time points S(t) = S(t-)Y(t)/(Y(t) + I). Hence, 

Prentice's statistic is a special case of our general statistic with K. 
i 

given by (3.4) with L(t) = S(t-)Y(t)/(Y(t) + I) and its distributional 

properties follow from our Theorem 3.1. Note that for computational purposes, 

the statistic may be cast in the compact form 

I 

f S(t)dNi(t) -

0 

1 

J y. ) 
S(t) i(t dN(t), 

Y(t) 
0 

i=l, ••• ,k. 

In a very recent report HARRINGTON & FLEMING (1981) introduced another 

class of test statistics G, having Prentice's Kruskal-Wallis generalization 
p 

and the log-rank test as special cases. 

s(t) 

Their test statistic G is obtained by taking L(t) = (S(t-))P where 
- - p 

= IIs~t(I - dN(s)/Y(s)) is the usual Kaplan-Meier estimator of the 

survival distribution based on the combined samples. Thus G0 is the log 

rank test while G1 is very close to Prentice's Kruskal-Wallis generalization 

(and asymptotically equivalent to it). Harrington and Fleming only give 

asymptotic results in the two sample case, under random censorship, applying 
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theorems of GILL (1980). However, they do include efficiency calculations 

(in this two sample case) showing that each G is appropriate for testing 
p 

against a particular alternative in a continuum of alternatives ranging 

between the proportional hazards (p = O) and logistic location alternatives 

(p = I). How to specify pin practice is, however, not clear. 

3E. "Exact" equal censoring and permutation distribution. 

In several situations with censored survival data one has "exact" 

equal censorship allowing permutation tests (exact or approximate) to be 

used. This can arise for instance in Progressive Type I censorship (example 

b. above) when patients are assigned to treatment groups at random, or in 

random censorship (exampled.) when it is known that under the null hypo­

thesis F1 = ••• = Fk, the censoring distributions G1, ••• ,Gk are also all 

equal to one another. 

In such cases one can conveniently test the null hypothesis by taking 

any of our test statistics ~(I) and approximating its permutation distribu­

tion by a multivariate normal distribution with the same mean (which turns 

out to be zero) and the same covariance matrix. One then goes on to compute 

the analogue of (3.11), and refer this to the x2 (k-l) distribution. In 

principle an exact test is also available, but will involve considerably 

more computations. 

The permutation distribution referred to here is that obtained by 

holding then= rn. observed values of (min(X .. , 
i iJ 

T .• ), I{X .. :;;; T •• }) 
iJ iJ iJ 

fixed, but allocating them at random among the k groups of size n 1, ••• ,~. 

Since we consider test statistics with K. of the 
i 

form (3.4) with L depend-

ing on N and Y only, the permutation expectation and covariance are simply 

calculated (N and Y and hence L, too, remain fixed under permutations). 

The result is a mean zero and a covariance matrix with (i,j)'th element 

n ,.. ... 
-1 p.(o .. - p.) 
n- i iJ J 

Y(s)-1 dN(s) 
Y(s) 

where p. = n./n. 
i i -

Th b · f n Y(s)-l the vers;on (3.14) of the us we o tain, up to a actor n-l -( , L 
y s) 
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test statistic. The permutation covariance matrix is slightly smaller than 

that used in (3.14). For instance, when there is no censoring and L = Y we 

obtain exactly the Kruskal Wallis test (cf. Section 3C>). 

Taking the remarks in Section 3B into account, we see that this permu­

tation test may be invalid (i.e. anticonservative) when censoring is not -equal; we are guaranteed a conservative test when k= 2 and p. =½.PRENTICE 
i 

& MAREK'S (1979) case study has strongly unequal censoring and strongly 

unequal sample sizes; the permutation variances are highly inflated and thus 

strongly conservative tests result. 

Before a x2-type test based on the permutation distribution can be 

used one needs to know that ~(1) is approximately normally distributed. It 

, turns out that ~(t) is still a (discrete time) martingale under this per­

mutation distribution with an appropriate choice of Ft (specifying the 

allocation of observations to samples for those observations~ t). So it 

seems likely that asymptotic normality can be invoked by the discrete time 

martingale central limit theorems of MCLEISH (1974). 

3F. Applications to the analysis of discrete-state Markov processes. 

As mentioned in the Introduction our original motivation for undertaking 

the investigation reported in the present paper was an empirical study of 

the possible interaction between menopause and the onset of the chronical 

skin disease pustulosis palmo-plantaris (AALEN et al. 1980). In that study 

the intensities of getting the disease when being in one of the three 

states M: natural menopause has occurred, I: induced menopause has occurred, 

0: menopause has not occurred, were to be compared (the reader is referred 

to AALEN et al., 1980, for details). 

In this Section we shall outline the Markov process application of 

the present methodology and in particular comment on the applicability of 

the conservative approximations to the test statistic discussed in Section 

3B. We also present another empirical example of application of a Markov 

chain model. 

Let r be a finite set of states and let a .. , i,j Er be transition 
iJ 

intensities satisfying the general regularity conditions from Section 2C. 

Let (U(t), t E [0,1]) be a Markov process on r. 
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If N .. (t) is the number of direct transitions from i to j in [0,t] by 
1.J 

U, i + j, i,j Er, and if Y.(t) = I{U(t-) = i} specifies that U was in i 1. 
just before t, then N .. (t), i,j Er, i + j, is a p(p-1)-dimensional counting 

1.J . 
process (p being the number of points in r) with intensity a .. (t)Y.(t), 

l.J 1. 
i,j E f, i + j. 

In the simplest situation n independent identically distributed copies 

u1(t), ••• ,Un(t) of such a Markov process are considered, though often it 

will be natural to condition on the initial states u1(0), ••• ,Un(0). As 

described towards the end of Chapter 2, it will be quite connnon to have 

censoring and to restict attention to the aggregate processes, here given 

by (with obvious notation) 

N .. (t) = 
l.J 

n 

I 
v=l 

y. (t) = 
1. 

n 
I 

v=l 
Y~v)(t). 

1. 

In the application to censored survival data, we saw 1.n Section 3D 

above that it was quite often reasonable to assume (3.13); this situation 

was termed asymptotically equal censorship. In applications to Markov chain 

models, however, (3.13) will rarely be plausible. This is rather obvious 

when we, as in the application of AALEN et al. (1980), compare the intensit­

ies of diffe~ent transitions in the scone Markov chain. However, (3.13) will 

also often be violated under the hypothesis in the situation where we want 

to test the identity of the intensities of the same transition ink 

independent chains of the same structure. (An example of this is given 

below). 

A sufficient condition for the validity of (3.13) in the latter 

situation is that all individuals are observed over exactly the same 

period of time, and the k Markov processes have identical initial distribu­

tions and the same set of transition probabilities. Without having numerical 

information, one may therefore expect that (3.15) will often give a strongly 

conservative test in applications to Markov chains. 

EXAMPLE. We shall here connnent on an application concerning admissions to 

psychiatric hospitals among women giving birth (ANDERSEN & RASMUSSEN, 1980). 

In that study it was investigated who among the about n = 70,000 Danish 
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women giving birth to a child in 1975 had been admitted to a psychiatric 

hospital in the period ranging from 1 October 1973 to 31 December 1975 and 

the dates of admission and discharge respectively were registered. Moreover 

information on such demographic factors as age, marital status and parity 

(= number of children born before 1975) was available. Due to the fact that 

the exact date of birth was known only for the women who were actually 

admitted during the time span considered reliable information on admissions 

was only available in the time interval ranging from - 15 months= -456 days 

to 12 months= 366 days relative to the date of birth, and hence that inter­

val is the relevant one to consider. 

L Y (v)(t) = t "f ( 1 ) · 'd h' · et O 1 woman v v= , ••• ,n is res1 ent in a psyc 1atr1c 

hospital at time t- relative to the date of birth (- 456 days st s 366 days) 

and let Y1 (v)(t) = 1 otherwise; let NIO (v)(t) be the number of admissions 

for woman v in the interval [- 456 days, t]. If we consider the two state 

Markov process model: 

1: not admitted I ( 
0: admitted 

a,01 (t) 

where a 10 (t) and a 01 (t) are the forces of transi~~)n, then N10 (v)(t) is a 

counting process with intensity process a 10 (t)Y 1 (t). Consider now a model 

where a 10 (t) depends only on the parity p = p(v) of the woman (v) and define 

n 

NI ci(t) = I 
v=l 

p(v)=p. 

N (v) (t) 
IO ' 

n 
Y~Ct) = I 

v=l 
p(v)=p 

yCv)(t) 
I 

where p takes the values O, I, 2 or 3+, (3+ denoting three or more). Then 
~ . ~ (N10 (t), p = 0, I, 2, 3+) is a multivariate counting process, NI 0 (t) having 

intensity process a 10P(t)Y~(t) and the hypothesis a 10° = a,IOI = a 102 = a 103+ 

that the intensity of being admitted does not depend on the parity of the 

woman may be tested by menas of (3.II), or rather for the ease of computa­

tion by means of the conservative approximation (3.15). 

Choosing the weight function L(t) = 1 corresponding to the generalized 
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2 log-rank test yields the highly significant x -value 24.52 with 3 degrees 

of freedom. The same order of magnitude is obtained for the test statistics 
- - 1 

corresponding to L(t) = Y1(t) or L(t) = Y1 (t)) 2 (cf. TARONE & WARE, 1977) 

namely 21.05 and 24.52 respectively. (Here Y1 = ~ Y1P.) 

4. THE ONE-SAMPLE TEST 

In this chapter we first consider the problem of testing whether the 

a-function of an intensity process is equal to a known function. 

In Section 4B we show how this approach generalizes the one-sample 

test statistics suggested by BRESLOW (1975), HYDE (1977), HOLLANDER & 

PROSCHAN (1979), HARRINGTON & FLEMING (1981) and (in the earlier mentioned 

Markov process application) AALEN et al. (1980). 

4A. A general one-sample test statistic. 

Let (N(t), t E [0,1]) be a (one-dimensional) counting process with 

intensity process a(t)Y(t). We want to test the hypothesis H0 : a= a0 , 
A 

where a0 is known. Let J(t) and S(t) be given by (2.13) and (2.14) 

respectively, (where we have dropped the subscript i), and define s0 (t) = 
f t A A 

0 a0 (s)J(s)ds. Under H0 we have that S - s0 is a square integrable 

martingale with variance process 

t 

<s-s0,s-s0>(t) = f J(s)a0 (s)/Y(s)ds. 

0 

If K is an almost surely bounded predictable process, then under H0 
t 

Z(t) = f K(s)(dS(s) - dS0 (s)) 

0 

is a square integrable martingale with 

t 

<Z,Z>(t) = f 2 K (s)J(s)a0 (s)/Y(s)ds. 

0 

From Theoreme 1.3.~ by REBOLLEDO (1978) we innnediately derive the following 

Theorem 4.1, where we consider a sequence of counting processes (N(n)(t), 
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t E [0,1]) as before. 

THEOREM 4.1. Assume tha.t there exists a sequence of positive constants (a) 
n 

and a Lebesgue-square integrable non-negative function g on [0,1] such tha.t 

(4. 1) 

and 

(4.2) 

Then a Z(n) 
n 

D 
+ fgdW, where Wis a standa,r,d Wiener process. 

n+oo 
Thus we may use the asymptotically standa,r,d normally distributed 

statistic 

(4 .3) 

for testing H0 • 

Note that in contrast to the k-sample situation, <Z(n) ,Z(n) > (1) is in 

this case directly observable. However, note that this variance estimator may 

be somewhat cumbersome to compute. If so, it could be replaced by the quantity 

1 

[Z(n) ,z<n)](l) = f [K(n)(s)J2J(n)(s)/{Y(n)(s)} 2dN(n)(s) 

0 

which is just a simple s.um (the notation [Z,Z] referring to general stochas­

tic integral theory). 

4B. Examples from survival studies. 

In the present Section let x1, ••• ,Xn be independent identically 

distributed life times with hazard function a. For the i'th individual 

we observe X. AT.= min(X.,T.) and I(X. ~ T.) where T1, ••• ,T are censoring 
i i i i i i n 

times. For this situation BRESLOW (1975) via a maximum likelihood argument 

for a proportional hazard situation suggested the following statistic for 



testing the hypothesis H0 : a= a0 where a0 is a known hazard function: 

(4.4) 
( 2r=l I(Xi ~Ti)+ 2r=l log(SO(Xi A Ti)))2 

- 2r=l log(S0 (Xi A Ti)) 

Here s0 (t) = exp(- f~ a0 (s)ds) is the survivorship function corresponding 
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to the hazard function a0• Breslow stated that (4.4), which is seen to have 

the form (observed-expected) 2/expected, has a limiting chi-squared distribu­

tion with one degree of freedom as n + 00 • 

We shall see how (4.4) is obtained as a special case of the general 

test statistic (4.3). Let then K(t) = Y(t), where Y(t) denotes the number 

at risk at time t-. When as in Section 3D N(t) counts the observed failures 

in [O,t] it is seen by partial integration that 

n 
L log(So(X. AT.))= 

i=l i i 

Since furthermore'~ 1 I(X. ~ T.) = Li= i i 

l 

f Y(s) a0 (s)ds. 

0 

fb dN(s) we find that (4.3) equals the 

square root of Breslow's test statistic (4.4). (As in Section 3A we have 

utilized that YJ = Y.) The asymptotic distribution of the statistic can be 

found by verifying the conditions (4.1) and (4.2) in Theorem 4.1. This is 

particularly easy in the model of random censorship in which T1, ••• ,Tn are 

independent identically distributed variables independent of the X.'s, if 
i 

we also suppose that P[T. ~I]= 1 and a0 is bounded on [0,1]. Then with 
-! i2 

the choice an= n 2 and g ~s) = a0 (s)P(X1 A T1 > s) the conditions of AALEN 

(JOHANSEN (1978, Theorem 4.1), sufficient for (4.1) and (4.2), are easily 

verified. 

HYDE (1977) considered a generalization of (4.4) to the case of left 

truncation where the i'th individual enters at risk at time v. ~ 0. Using 
i 

martingale arguments he proved that the statistic 

(4.5) 
n 

< I 
i=l 

I(X. ~ T.) - E.)/( i i i 

n 
I 

i=l 

½ E.) ' 
i 

where Ei = log(S0(vi)) - log(S0(xi A Ti)) has a limiting standard normal 

distribution when n + oo, Interpreting Y(t) as the size of risk set at time 
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t- (4.5) turns out to be a special case of (4.3). 

The one sample limit C = - fb s0 (s) dS(s) of EFRON (1975)'s two-sample 

test statistic considered by HOLLANDER & PROSCHAN (1979) may be written as 

C = fb s0 (s) S(s-) dS(s), where S denotes the Kaplan-Meier estimator obtained 

from the sample. Hence also this statistic turns out to be a special case of 

(4.3). For the HOLLANDER & PROSCHAN statistic, verifying the conditions of 

Theorem 4.1 is quite difficult except in the special case of random censor­

ship with a0 bounded on [0,1], P[T. < 1] < 1 and P[T. ~ 1] = 1. The difficul-
1 1 

ties alluded to in a more general situation are however not specific to our 

approach; HOLLANDER & PROSCHAN'S proof of asymptotic normality is actually 

incomplete. For useful techniques for dealing with such situations, see 

Appendix III and GILL (1980). HARRINGTON & FLEMING (1981) recently suggested 

a family of one-sample test statistics, in our relation given by -K(t) = Y(t) 

(S0 (t))P. These authors indicated that the results of GILL (1980) could be 

used to derive the asymptotic properties of the resulting family of test 

statistics which have large power against proportional hazards alternative 

(p = 0) and logistic location alternatives (p = 1). 

As we have seen in this section several recently suggested test statis­

tics for the one-sample situation are special cases of (4.3) and hence 

their asymptotic distributions can all be found from our Theorem 4.1 (i.e. 

from Rebolledo's results). Of course the assumptions (4.1) and (4.2) have 

to be checked in each case, and this may be done as we have outlined for 

(4.4) above. 
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APPENDIX I. Square integrable martingales and stochastic integrals 

Most of the results given in this Appendix are found in the short review 

by AALEN (1978, Section 2). For a more thorough discussion of the theory of 

square integrable martingales and stochastic integrals, see the references 

in Aalen's paper and MEYER (1976). 

A stochastic process M = (M(t), t E [0,1]), adapted to (Ft) i.e. 

M(t) is Ft-measurable for each t E [0,1]) satisfying M(0) = 0 and having 

right-continuous sample functions with left-hand limits is called a square 

integrable martingale if 

E(M(t)IFs) = M(s) for all 0 ~ s < t ~ and 

sup 
tE[0,1] 

E[M(t)J2 < oo. 

Let M be a square integrable martingale. Then M2 is a right-continuous non-

negative submartingale, and by the Doob-Meyer decomposition theotem there 

exists a unique natural (or predictable) increasing process <M,M>, called 

the variance process of M, such that~ - <M,M> is a martingale. Furthermore, 

if M1 and M2 are square integrable martingales, then the covariance process 

<M1,Mz> is defined by 

and we say that M1 and M2 are orthogonal whenever <M1,M2> = 0. 

Let H = (H(t), t E [0,1]) be a predictable process. We will not 

give the precise definition of this concept here. For our purpose it is 

enough to note that any left-continuous adapted process is predictable. 

Moreover, let M be a square integrable martingale. If the Stieltjes inte­

gral [H2d <M,M> satisfies the condition 

1 

E f H2 (s)d <M,M> (s) < oo, 

0 

then the stochastic integral 
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JHdM = ((JHdM)(t), t E [O,I]) 

is well defined, and it is itself a square integrable martingale. If further­

more the Stieltjes integral fblH(s) I ldM(s)I almost surely exists, then the 

stochastic integral (fHdM) (t) coincides with the corresponding Stieltjes 

integral f~ H(s)dM(s). 

Finally we shall mention an important result valid for predictable 

processes H. and K. and square integrable martingales M., namely the 
1 J 1 

formula 

(A. I) <I f H.dM., I f K.dM.> = I l f H.K.d <M.,M.>. 
1 1 J J 1 J 1 J 

1 J i j 

From (A. I) it follows especially that f H.dM. and fK.dM. are orthogonal 
1 1 J J 

when M. and M. are orthogonal. 
1 J 

APPENDIX II. Rank of asymptotic covariance matrix. 

(n) (n) 
The asymptotic covariance matrix f of an(z 1 , ••• ,Zk ) has elements 

cr .. given by (3.10). 
1J 

To prove that f has rank k-1 we use the technique of Breslow (1980, 

Appendix 5). It is enough to show that 

~T f ~ > 0 

T for any vector~ = (X1, ••• ,~) where not all the components Xi are equal. 

We will apply the elementary inequality 

(A. 2) 
2 2 (Er.)(EX. r.) > (EX.r.) 

1 1 1 1 1 

valid for non-negative r. 's provided that X. IX. for some i,j such that 
1 1 J 

both r. and r. are positive. By (3.10) we find 
1 J 

I 

~T f, ~ = f [h(s) 

0 

I. x. 2h.(s) - <Ix.h.(s)) 2Jds. 
1 1 . 1 1 

1 1 



Now Xi I Xj for some i,j by assumption and if we assume that for any i,j 

there exists a set A .. c [0,1] with positive Lebesgue measure such that 
1J -

h.(t) > 0 and h.(t) > 0 for tEA .. , then (A.2) yields that XT [ X > 0. A 
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1 J ii ~ ~ ~ 
. ·1 h h v(n,~(1) h ' · · s1m1 ar arguments ows tat as rank k-1 provided that for any 1,J 

there exists a time point where N(n) jumps and such that L(n), Y. (n) and 

Y. (n) are positive. 1 
J 

APPENDIX III. Example of verification of conditions of Theorem 3.1. 

The example is the ordinary K.ruskal-Wallis test; i.e. the situation 

described at the beginning of Section 3C with no censoring and L0 (y) = y. 

The reason we give this argument in such detail is that it works in identi­

cal fashion for much more complicated situations. 

Thus in Theorem 3.1 we set a = n-3/ 2 and L(n)(s) = Y(n)(s). We have 
n 

where X .. , 
1J 

The sample 

Y. (n) (s) = #{j ::::; n.: x .. ~ s} i=l, ••• ,k, 
1 1 1J 

y(n)(s) 
k 

Y. (n) (s) = I 
i=l 1 

j=l, ••• ,n., i=l, ••• ,k are i.i.d. with distribution function F. 
1 

sizes n. = n.(n) are such that n./n + p. E [0,1] as n + 00 • We 1 1 1 1 
suppose Fis such that F(l) = 1, F(t) < 1 fort< 1, and F has a continuous 

density f on [0,1]. We define a.(s) = f(s)/(1-F(s)) for s < 1 and a.(1) = 0. 

For condition (3.5) we have 

as n + 00 • 

For condition (3.6) we have for s < 1 

(A. 3) 
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! 
So we take h.(s) = p.(1-F(s))f(s) 2 for s < 1; h.(1) = 0. Clearly h. is 

1. 1. 1. 1. 

square integrable on [0.1]. 

For (3.7) we note that by (A.3) for any s ~.<I 

sup f(t) 
tdO, 1 J 

~ --.a--,.-,--
1 - F (.) 

Thus we certainly have uniform integrability on [O,,J for any.> 1. Uniform­

ly integrability on [0,1] in fact only holds for certain choices of F; and 

it is more instructive to verify (3.8) instead. 

First using (A.3) we bound the integral in (3.8) by 

1 

f 
T 

y(n)(s) 
-----''--'- a(s) ds. 

n 

Next we apply a result on empirical distribution functions: for every 

f3 E [0,1], 

(A.4) 
Y(n)(s) 1 

P(-------- < - (1-F(s)) for alls)= 1 - S n - S 

(DANIELS (1945)). 

Thus 

1 1 

f y(nn) (s) 1 J P( --- a(s)ds > B (1-F(s))a(s)ds) < s. 
T T 

Also½ J! (1-F(s))a(s)ds = ½ f! f(s)ds = ½<1-F(,)), which for given Scan 

be made arbitrarily smail by taking, sufficiently close to 1. Thus the 

left-hand side of (3.8) is smaller than S; but since Sis arbitrary the 

required result holds. 

When dealing with censored data it is often useful to known that 

analogues to (A.4) hold for an empirical distribution function based on 

independent but not identically distributed random variables (VAN ZUYLEN 

1977, 1978) and for the product limit estimator (GILL, 1980). 
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