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Abstract. A graph is without solvable orbits if its group of automorphisms

acts on each of its orbits through a non-solvable quotient. We prove that there

is a connected graph without solvable orbits of cyclomatic number c if and only

if c is equal to 6, 8, 10, 11, 15, 16, 19, 20, 21, 22, or is at least 24, and briefly

discuss the geometric consequences.

1. Introduction

Throughout this paper, by a graph we always mean a finite undirected graph

with or without loops and multiple edges. For such a graph G let V(G) and E(G)

denote its set of vertices and edges, respectively. An automorphism of G is a pair

(π1, π2) where π1, π2 is a permutation of V(G) and E(G), respectively such that

a vertex v ∈ V(G) is incident to an edge e ∈ E(G) if and only if π1(v) is incident

to π2(e). If G is a simple graph, then π1 uniquely determines π2. The set of

automorphisms of G forms a group with respect to composition which is denoted
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by Aut(G). We say that G is without solvable orbits if Aut(G) acts on the orbit

of any vertex in V(G) and any edge in E(G) through a non-solvable quotient. A

group Γ acts on a graph G if a homomorphism Γ → Aut(G) is given. We say

that Γ acts on G without solvable orbits if Γ acts on the orbit of any vertex in

V(G) and any edge in E(G) through a non-solvable quotient. In that case each

orbit of Aut(G) splits up into orbits of Γ and thus G is without solvable orbits,

see [7], Lemma 3.2.

We define the cyclomatic number of a connected graph G as the alternating

sum c(G) = 1− |V(G)|+ |E(G)| (in the general case the term 1 must be replaced

with the number of connected components of G). Thus, 1 − c(G) is the Euler

characteristic of the graph G, viewed as a CW-complex. The topological invariant

c(G) equals the arithmetic genus of each projective algebraic curve with ordinary

double points, defined over an algebraically closed field, whose incidence graph is

isomorphic to G and whose irreducible components are all rational curves. The

relevance of connected graphs without solvable orbits in arithmetic geometry has

been made apparent by the second author in [7]: in the above context they yield

to constructions of curves without solvable points. A more precise statement is

given at the end of this paper. A principal motivation for the present work has

been to explore the limitations of that method.

Theorem 1.1. There is a connected graph without solvable orbits of cyclomatic

number c if and only if c is equal to 6, 8, 10, 11, 15, 16, 19, 20, 21, 22, or is at

least 24. The same holds for stable graphs.

A graph G is stable, if it is connected and the degree of any vertex in V(G)

is at least 3. In Proposition 3.4 of [7] it was proved that there is a stable graph

without solvable orbits of cyclomatic number c for every natural number c listed

above except for c equal to 19, 24, 33 and 39. It was pointed out by J. Jahnel

that even the last three numbers can be represented as the cyclomatic number of

certain stable graphs constructed therein. Thus one novelty here is a construction

for the case c = 19.

In the paper quoted above it was also shown (Proposition 3.5) that there is

no connected graph without solvable orbits of cyclomatic number less then 10

and different from 6 or 8. The main theme of the present paper is to show that

there is no connected graph without solvable orbits in the remaining cases, that

is, when c is 12, 13, 14, 17, 18 or 23.
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We organize this paper as follows. In the next section we present the construc-

tions that prove the ‘if’ part of Theorem 1.1. In Section 3 we review some tools

from group theory. This is followed by a collection of simple observations that

we will use frequently throughout the rest of the paper. In Section 5 we prove

the solvability of the automorphism group of certain regular graphs. In Section 6

we show how to reduce connected graphs without solvable orbits to stable simple

graphs with the same property, and study what happens to the orbits and the

cyclomatic number of the graph during such a reduction process. This allows us

to split up the proof of the more essential part of Theorem 1.1 into two lemmas

that we prove in Sections 7 and 8, respectively. In the last section we briefly

discuss the geometric implications.

2. Constructions

To prove the ‘if’ part of Theorem 1.1, for the sake of completeness we briefly

recall the constructions from [7]. For integers n ≥ 5, x ≥ 0, let Kn(x) denote

the complete graph Kn with x loops attached to each of its n vertices. The

symmetric group Sn acts on Kn(x) without solvable orbits. The numbers 6, 11,

16 and 21 arise as the cyclomatic number of the graphs K5(x) for x = 0, 1, 2 and

3, whereas the graphs K6(0), K6(3) and K6(4) have cyclomatic number 10, 28

and 34, respectively.

For integers n, m ≥ 5, x, y ≥ 0, let Kn,m(x, y) denote the complete bipartite

graph Kn,m with x loops attached to each of its n vertices in the first colour class

and with y loops attached to each of its m vertices in the second colour class.

The group Sn ×Sm acts on Kn,m(x, y) without solvable orbits. The numbers 20,

25, 26, 30, 31, 32, 35, 36, 37, 38 as well as every integer ≥ 40 can be represented

as c(K5,6(x, y)), for suitable values of x and y.

For a prime power q and a natural number x we define the graph Pq(x) as

follows. Its vertices are the points p and the lines ℓ of the projective plane of

order q, pℓ is an edge of the graph if and only if the point p is incident to ℓ,

and moreover x loops are attached to each vertex p corresponding to a point on

the projective plane. The group PGL3(q), as well as the group PSL3(q), acts

on Pq(x) without solvable orbits, and the graphs P2(0), P2(1), P2(2), P2(3) and

P3(0) have cyclomatic number 8, 15, 22, 29 and 27, respectively.
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So far we have covered all the possible values of c except of 19, 24, 33 and 39.

The last three cases can be handled by the bipartite construction: c(K5,7(0, 0)) =

24, c(K5,8(1, 0)) = 33 and c(K5,7(3, 0)) = 39. Our new construction for c = 19

goes as follows.

For an integer n ≥ 5 we define the graph K ′
n,n as follows. Its vertices are

1, 2, . . . , 2n. For 1 ≤ i ≤ n and n + 1 ≤ j ≤ 2n we connect i and j by an

edge ij if and only if j − i 6= n. Thus, K ′
n,n is obtained by removing a 1-factor

from the complete graph Kn,n. It is clearly stable, and its cyclomatic number is

c(K ′
n,n) = n(n − 3) + 1.

The symmetric group Sn acts on K ′
n,n as follows. If π ∈ Sn is a permutation,

that is, a bijective function π : {1, 2, . . . , n} → {1, 2, . . . , n}, we extend it to an

automorphism π̃ ∈ Aut(K ′
n,n) by putting π̃(j) = π(j−n)+n for any n+1 ≤ j ≤

2n. The vertex set splits up into two orbits {1, 2, . . . , n} and {n+1, n+2, . . . , 2n}

under this action, whereas the action on the edge set is transitive. The action is

clearly faithful on each of the three orbits, and therefore Sn acts on K ′
n,n without

solvable orbits.

In particular, K ′
6,6 is a stable graph without solvable orbits of cyclomatic

number 19.

3. Solvable groups

The proof of the ‘only if’ part of Theorem 1.1 heavily depends on the solvability

of groups of certain cardinality. First we recall the following well-known result,

see e.g. [3], pages 221–222.

Theorem 3.1. (Burnside) Let p, q denote primes, α, β nonnegative integers.

Then every group of order pαqβ is solvable.

To go one step further we will use a rather deep result from the theory of finite

simple groups. A minimal simple group is a simple group of composite order all

of whose proper subgroups are solvable.

Theorem 3.2. (Thompson [10]) Every minimal simple group is isomorphic to

one of the following minimal simple groups:

(i) the projective special linear groups PSL2(2
p), p any prime;

(ii) PSL2(3
p), p any odd prime;
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(iii) PSL2(p), p any prime exceeding 3 such that p2 + 1 ≡ 0 (mod 5);

(iv) the Suzuki groups Sz(2p) (also denoted by 2B2(2
p)), p any odd prime;

(v) PSL3(3).

Corollary 3.3. Let α, β denote positive integers. Then every group whose order

is 2α3β11 or 2α3p, where p is either 13 or 17, is solvable.

Note that there exist minimal simple groups whose order is 2α3βp for p = 13 and

p = 17: namely |PSL3(3)| = 243313 and |PSL2(17)| = 243217.

Proof. If a finite group is not solvable, then it has a non-abelian simple composi-

tion factor. Either it is a minimal simple group, or has a nonsolvable subgroup.

Iterating this procedure, because of finiteness we eventually obtain a minimal

simple group whose order divides that of the original group. It suffices to prove

that no minimal simple group has an order in the form 2α3β11 or 2α3p, where p

is either 13 or 17. As we have already seen, this is true for PSL3(3).

The order of PSL2(2
p) is 2p(2p−1)(2p +1). The three factors involved therein

are pairwise coprime integers ≥ 2, and none of them is equal to either 11, 13 or

17, if p is any prime, hence the claim.

The order of PSL2(3
p) is 3p(3p − 1)(3p + 1)/2. Note that (3p − 1, 3p + 1) = 2.

It is not possible that one of 3p − 1 and 3p + 1 is a power of 2, whereas the other

is 2 · 11, 2 · 13 or 2 · 17.

The order of PSL2(p) is p(p − 1)(p + 1)/2. It is not possible that one of p− 1

and p + 1 is a power of 2, whereas the other is 2 · 11, 2 · 13 or 2 · 17. Thus, in a

hypothetical counterexample, p must be 11, 13 or 17, whereas one of p − 1 and

p + 1 is a power of 2, and the other is twice a power of 3. This is only possible

when p = 17, but then |PSL2(17)| = 243217.

Finally, the order of Sz(2p) is 22p(22p + 1)(2p − 1). The odd factors are again

coprime integers ≥ 2, and none of them is equal to either 11, 13 or 17 when p is

an odd prime. �

Note that one can derive Corollary 3.3 directly from Wales’s classification [11]

of the simple groups of order 2α3βp, see [12, 13] for the particular cases p = 17

and p = 13, respectively. Since these results also depend on Thompson’s theorem,

we preferred the more direct approach.

Assume that the simple graph G has connected components H1, H2, . . . , Hm,

all isomorphic to a given simple connected graph H . Aut(H) can be understood
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as a permutation group acting on V(H). Then Aut(G) = Aut(H) ≀ Sm, see

[1]. Here we use the terminology of [8] for wreath products. Consequently,

|Aut(G)| = |Aut(H)|m · m!. In particular, if m ≤ 4, and the only primes that

divide |Aut(H)| are 2 and 3, then the order of Aut(G) is of the form 2α3β, and

thus it is solvable by Burnside’s theorem. This will apply to every wreath product

that occurs in this paper.

4. Preliminary lemmas

Throughout this section we assume that a group Γ acts on the graph G, and by

an orbit we always mean an orbit under this specific action. Let G be a simple

graph, and let G denote its complement, then Aut(G) ∼= Aut(G) and in general,

the action of Γ on G induces in a natural way an action of Γ on G such that the

two actions coincide on V(G) = V(G).

Claim 4.1. Γ acts on G without solvable orbits if and only if Γ acts on G without

solvable orbits.

We say that Γ acts on a set X without solvable orbits if Γ acts on every

orbit in X through a non-solvable quotient. The above claim is an immediate

consequence of the following

Lemma 4.2. If Γ acts on V(G) without solvable orbits, then it also acts on E(G)

without solvable orbits.

Proof. Assume that the claim is false and let E be an orbit of edges on which

Γ acts through a solvable quotient ∆. Let H be the subgraph of G whose edge

set is E and whose vertices are the endpoints of the edges in E. Then Γ leaves

the subgraph H invariant. Every automorphism in Γ which fixes the edges of H

but not all vertices of H must interchange the endpoints of some of the edges in

E. In particular it acts as an involution on H . Therefore Γ acts on H through

a quotient Ξ which is the extension of ∆ by an elementary abelian 2-group.

Accordingly, Ξ is solvable, and Γ acts on V(H) through a solvable quotient,

which is a contradiction. �

In the sequel let G denote a connected graph, not necessarily simple. For every

vertex v ∈ V(G) let O(v) denote the orbit of v with respect to the action of Γ.

For any orbit V = O(v), all vertices in V have the same degree, so we can define

the degree of the orbit as d(V ) = deg(v).
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Lemma 4.3. Assume that the prime p divides the cardinality of a vertex orbit

V and p > d(U) for every vertex orbit U 6= V . Then p divides the size of each

vertex orbit.

Proof. Let U be any orbit which has a vertex adjacent to a vertex in V . The

number of edges connecting a vertex in V to vertices in U is the same because

the action of Γ is transitive on V , and similarly the number of edges connecting

a vertex in U to vertices in V is the same. The latter number is not divisible by

p. Double-counting the edges between V and U we find that the cardinality of

U must be divisible by p. Since G is connected, this implies that the cardinality

of each orbit is divisible by p. �

We will also use frequently the following variant, that can be proved along the

same lines. Let U and V be two vertex orbits and assume that e = uv ∈ E(G)

for some u ∈ U, v ∈ V . Then each edge in the orbit of e connects a vertex in U

to a vertex in V . Thus we may say that U and V are connected by an edge orbit

E, and double counting as above gives the following

Lemma 4.4. Assume that the vertex orbits U and V are connected by an edge

orbit E. Then each vertex in U is incident to the same number of edges in E,

and this number is a positive integer multiple of |V |/(|U |, |V |).

Suppose that the vertex set of the connected graph G splits up into t ≥ 2

orbits V1, V2, . . . , Vt of cardinality n1, n2, . . . , nt, respectively, a fact we denote by

V [n1, n2, . . . , nt]. It follows that

Corollary 4.5. For any 1 ≤ i ≤ t we have

d(Vi) ≥ min
j 6=i

nj

(ni, nj)
.

Looking at the connections of orbits of the same given cardinality with the

rest of the graph, we obtain the following variant.

Corollary 4.6. Assume that n1, n2, . . . , nt are not equal to the same number.

For any n ∈ {n1, n2, . . . , nt}, there is an index 1 ≤ i ≤ t such that ni = n, and

d(Vi) ≥ min
nj 6=n

nj

(n, nj)
.
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Denote the maximum degree of the graph G by δ(G). Suppose that the edge

orbit E is incident to the vertex orbit V . Each vertex in V is incident to the

same number of edges in E, say δ of them. If one edge in E is incident to only

one vertex in V , then so is each edge in E, and thus |E| = δ|V |. If on the other

hand each edge in E connects two vertices in V then |E| = δ|V |/2. Since in a

connected graph each vertex orbit is incident to some edge orbit and vice versa,

we have:

Proposition 4.7. Let G be a connected graph. If there is a vertex orbit whose

cardinality is divisible by the odd prime p, then there is also an edge orbit with

the same property. If p divides the cardinality of each vertex orbit, then it also

divides the cardinality of each edge orbit. If p > δ(G) divides the cardinality of

an edge orbit, then there is also a vertex orbit whose cardinality is divisible by p.

If G has an edge orbit whose cardinality is a power of 2, then it also has a vertex

orbit with the same property.

In a stable simple graph G without solvable orbits, let rd denote the number

of vertices of degree d, thus r1 = r2 = 0. Note that every permutation group of

degree ≤ 4 is solvable. Since Aut(G), and thus also Γ leaves the set of vertices

of degree d invariant for each positive d, the set of vertices of the same degree

splits up into complete vertex orbits. In view of all this we have:

Proposition 4.8. In a stable simple graph G equipped with an action of Γ without

solvable orbits, every orbit of Γ (vertex and edge alike) has a cardinality ≥ 5.

Moreover, rd ≥ 5 for each d such that rd is non-zero, and the cyclomatic number

of G can be written as

c(G) = 1 +
∑

d≥3

(d

2
− 1

)
rd.

In particular, c(G) ≥ 4.

Pick a vertex v ∈ V(G) and let Xi be the set of vertices connected to v by a

path of length at most i. In particular, X0 = {v}. The action of Γ on G is given

by a homomorphism ϕ : Γ → Aut(G). Introduce Γ̃ = ϕ(Γ) ≤ Aut(G), and let Γi

be the stabilizer of Xi in Γ̃. Clearly the factor set Γ̃/Γ0 can be identified with

the orbit of v and Γi+1 is a normal subgroup in Γi, and also in Γ0, but note that

the latter is not necessarily a normal subgroup in Γ̃. Since G is connected, the

group Γi is trivial for a sufficiently large i, and we have
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Proposition 4.9. |Γ̃| = |O(v)|
∏

|Γi : Γi+1|.

The quotient group Γi/Γi+1 acts faithfully on the set of edges connecting ver-

tices in Xi+1 \ Xi to vertices in Xi. Here |X0| = 1 and |X1 \ X0| = deg(v).

Therefore Γ0/Γ1 is isomorphic to a subgroup of Sdeg(v). For an i ≥ 1, let

u1, u2, . . . , uk denote the elements of Xi \ Xi−1. Each vertex uj is connected

by at most deg(uj)−1 edges to vertices in Xi+1 \Xi, which are permuted among

themselves under the action of Γi/Γi+1. Consequently, Γi/Γi+1 can be embedded

into

Sdeg(u1)−1 × Sdeg(u2)−1 × . . . × Sdeg(uk)−1,

and in turn also into a direct power of Sδ(G)−1. We will frequently refer to this

argument. The following consequences will be particularly useful.

Lemma 4.10. Let G be a stable simple graph.

(i) If δ(G) ≤ 5 and G has a vertex v of degree 3 or 4 such that |O(v)| = 2a3b

for some nonnegative integers a, b, then Γ̃ is solvable.

(ii) If δ(G) ≤ 5 and either r3 or r4 is of the form 2a3b for some nonnegative

integers a, b, then Γ̃ is solvable.

Proof. The first statement follows from the fact that the cardinality of each

quotient Γi/Γi+1 can be written in the form 2α3β with suitable nonnegative

integers α, β. In view of Proposition 4.9, the same holds for the order of Γ̃, hence

it is solvable by Burnside’s theorem.

To prove the second statement, assume that ri = 2a3b for some i ∈ {3, 4}.

Were there a vertex orbit V with d(V ) = i such that |V | is divisible by a prime

p > 5, Lemma 4.3 would imply that p divides the cardinality of each vertex orbit

of degree i, and thus also ri, a contradiction. Since ri is not divisible by 5, there

must be a vertex v of degree i such that |O(v)| is not divisible by 5 either, and

thus the statement follows from (i). �

Lemma 4.11. Let G be a stable simple graph.

(i) If δ(G) ≤ 5 and either r3 or r4 is equal to p, 2p or 4p for some prime

number p > 5, then there exist nonnegative integers α, β, such that |Γ̃|

divides 2α3βp.

(ii) If δ(G) = 3 and |V(G)| = r3 = 2ap for some a ∈ {0, 1, 2} and a prime

p > 5, then there exists a nonnegative integer α such that |Γ̃| divides

2α3p.
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Proof. To prove the first statement, assume that ri = 2ap for some i ∈ {3, 4} and

a ∈ {0, 1, 2}. Were there a vertex orbit V with d(V ) = i such that |V | is divisible

by a prime q > 5, q 6= p, Lemma 4.3 would imply that q divides the cardinality

of each vertex orbit of degree i, and thus also ri, a contradiction. If there is a

vertex orbit V with d(V ) = i such that the only primes that divide |V | are 2 and

3, we find that the order of Γ̃ is of the form 2α3β (see the previous proof).

Hence we may also assume that the cardinality of each vertex orbit V with

d(V ) = i is divisible by either 5 or p. Since not all of them can be a multiple

of 5, there is one such orbit whose cardinality is divisible by p. It follows from

Lemma 4.3 that the cardinality of each vertex orbit is divisible by p. If there is

a vertex v of degree i such that |O(v)| = 3p, then it must be a = 2, and then the

remaining vertices of degree i form an orbit of cardinality p. In any case we find

a vertex v of degree i such that |O(v)| = 2bp. Each Γi/Γi+1 (including the case

i = 0) can be embedded into a direct power of S4, and the result follows form

Proposition 4.9.

In case (ii) a similar argument gives that there is a nonnegative integer b and

a vertex v such that |O(v)| ∈ {2b, 2bp}. This time the order of Γ0/Γ1 divides

|S3| = 6, and |Γi/Γi+1| is a power of 2 for every i ≥ 1, hence the result. �

5. Regular graphs

For every pair of integers n ≥ 4 and 1 < k ≤ n/2 we define a graph G = Cn(k)

as follows. Let V(G) = Z/nZ. For i, j ∈ Z/nZ let ij ∈ E(G) if and only if either

i− j = ±1 or i− j = ±k. Edges of the first kind form a cycle of length n. Edges

of the second kind will be referred to as edges of length k, they form an n-cycle

if and only if k is coprime to n, which is always the case if n is a prime number.

The graphs Cn(k) are vertex-transitive circulant graphs, in fact they are Cay-

ley graphs on Z/nZ. It is well-known, that for n odd, the only simple eigenvalue

of such a graph G is the valency of G, see [2, 9]. It is easy to determine the

spectrum of Cn(k), when n is a prime.

Lemma 5.1. Let G = Cp(k), where p is a prime greater than 3, and 1 < k < p/2.

The unique simple eigenvalue of G is 4. Apart from this, every eigenvalue of G

has a multiplicity 2, unless k2 ≡ −1 (mod p), in which case every non-simple

eigenvalue has a multiplicity 4.
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Proof. The adjacency matrix of G is the circulant 0–1 matrix whose first row is

[a0, a1, a2, . . . , ap−1], where ai = 1 if and only if i ∈ {1, k, p − k, p − 1}. Accord-

ingly, the eigenvalues of A are

λi = εi + εki + ε(p−k)i + ε(p−1)i (i = 0, 1, . . . , p − 1),

where ε = e2πi/p is a primitive pth root of unity, see eg. [2]. Thus, λ0 = 4, other-

wise each of the pairwise different four summands of λi is one of ε, ε2, . . . , εp−1.

Since these p − 1 numbers constitute a basis for the extension Q(ε)|Q, a coinci-

dence λi = λj for 0 < i, j < p can only occur if

{εi, εki, ε−ki, ε−i} = {εj, εkj , ε−kj , ε−j}.

Here εj = εi if and only if j = i, whereas εj = ε−i implies j = p − i, and in

fact λp−i = λi. Moreover εj = εki if and only if j ≡ ki (mod p). In this case

ε−j = ε−ki, so λj = λi if and only if {εi, ε−i} = {εkj , ε−kj}. Were εi = εkj , it

would imply εi = εk2i, that is, k2 ≡ 1 (mod p), a contradiction. Thus it must be

that ε−i = εkj , which implies εi = ε−kj , and also k2 ≡ −1 (mod p). Note that

such an integer k exists if and only if p ≡ 1 (mod 4), and then there is exactly

one such k satisfying 2 ≤ k ≤ p/2. Conversely, if k2 ≡ −1 (mod p) and j ≡ ki

(mod p), then εj = εki and ε−i = εkj , therefore λj = λi. A similar argument

shows that εj = ε−ki if and only if j ≡ −ki (mod p), and if this is the case then

again λj = λi is equivalent with the condition k2 ≡ −1 (mod p).

In summary, if k2 6≡ −1 (mod p), then λj = λi if and only if j = i or j ≡ −i,

and if k2 ≡ −1 (mod p), then λj = λi if and only if j = i, j ≡ −i, j ≡ ki

or j ≡ −ki, and all this four cases are pairwise different. Thus the assertion is

proved. �

Let m0 ≤ m1 ≤ . . . ≤ mt be the eigenvalue multiplicities of the graph G =

Cp(k). Thus, if k2 6≡ −1 (mod p), then t = (p − 1)/2, m0 = 1 and m1 = m2 =

. . . = mt = 2. Accordingly, Aut(G) is a subgroup of O(1)×O(2)×. . .×O(2), hence

solvable, since O(1) ∼= Z/2Z, and the only finite subgroups of the orthogonal

group O(2) are either cyclic or dihedral. For more details, see [1, 5].

Corollary 5.2. The automorphism group of the graphs C13(k) and C17(k) is

solvable for every possible value of k.

Proof. In view of the previous lemma, we only have to prove that Aut(C13(5))

and Aut(C17(4)) are solvable. Let first G = C13(5). Choose v = 0, and let Xi

denote the set of vertices connected to v by a path of length at most i, as in
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Section 4. Thus X0 = {0}, X1 \X0 = {±1,±5} and X2 \X1 = {±2,±3,±4,±6}.

We have X2 = V(G), the edges connecting v to vertices in X1 \X0 as well as the

edges that connect vertices in X1 \X0 with vertices in X2 \X1 are shown below.

Recall from Section 4, that Γ2 = 1 and Γ0/Γ1 is isomorphic to a subgroup

of S4. Choose an element γ ∈ Γ1, it leaves the vertices 0,±1,±5 fixed. Since

the only neighbor of 2 in X1 \ X0 is 1 and 2 is the only neighbor of 1 with this

property, we have γ(2) = 2, and γ does not move the elements −2, 3,−3 either

for similar reasons. Thus γ also leaves the sets {4, 6} and {−4,−6} fixed, hence

Γ1/Γ2 = Γ1 is a subgroup of S2×S2. It follows from Proposition 4.9 that |Aut(G)|

divides 13 · 24 · 4 = 253 · 13, and thus solvable by Corollary 3.3.

0

1−1 5

−6 −4 −3 −2 2 3 4 6

−5

Figure 1 The levels of the graph C13(5)

Consider now G = C17(4), and choose once again v = 0. In this case X1 \ X0 =

{±1,±4}, X2 \ X1 = {±2,±3,±5,±8} and X3 \ X2 = {±6,±7}. We have

X3 = V(G) and Γ3 = 1. The edges between the consecutive levels of G are

shown on Figure 2.

0

5−2

7

1 4−1−4

−8 −5 −3 32 8

6−6−7

Figure 2 The levels of the graph C17(4)
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Γ0/Γ1 again is isomorphic to a subgroup of S4. Choose an element γ ∈ Γ1, it

leaves the vertices 0,±1,±4 fixed. Since the only neighbor of 2 in X1 \ X0 is 1

and 2 is the only neighbor of 1 with this property, we have γ(2) = 2, and γ does

not move the elements −2, 8,−8 either for similar reasons. Since 5 is the only

common neighbor of 1 and 4 in X2 \ X1, it is also fixed by γ, as well as -5 by

symmetry. Thus 3 and -3 are also fixed, and it follows that Γ1/Γ2 = 1. Since

Γ2 fixes the vertices ±2,±3, it also fixes ±6,±7 and thus Γ2 = Γ3. It follows

from Proposition 4.9 that |Aut(G)| divides 17 · 24 = 233 · 17, and thus solvable

by Corollary 3.3. (In fact, we could have easily derived the solvability from the

Sylow theorems in this case.) �

We will frequently refer to the solvability of the automorphism group of small

regular simple graphs covered by the following lemma.

Lemma 5.3. Let G be any k-regular simple graph on 8 vertices, 1 ≤ k ≤ 6, or

on 6 vertices, 1 ≤ k ≤ 4. Then Aut(G) is solvable.

Proof. Assume that G has 8 vertices. Since Aut(G) ∼= Aut(G), it is enough to

prove the statement for k ≤ 3. If k = 1, then G is the union of four disjoint edges,

thus Aut(G) = S2 ≀ S4. If k = 2, then G is either an 8-cycle, or the union of two

disjoint cycles. Accordingly, Aut(G) is either D8, D3 × D5, or D4 ≀ S2. If k = 3

and G is not connected, then G is the union of two disjoint complete graphs,

each on 4 vertices, hence Aut(G) = S4 ≀ S2. Finally, if G is a connected 3-regular

graph, then the solvability of Aut(G) follows directly from Lemma 4.10. If G has

6 vertices, then a similar argument shows that Aut(G) is either S2 ≀ S3, D3 ≀ S2 or

D6. �

Since Aut(G) acts on each vertex orbit V through a quotient that is a subgroup

of Aut(H), where H denotes the regular graph induced by G on V , we have the

following consequence for connected graphs.

Corollary 5.4. Let G be a stable graph without solvable orbits such that Aut(G)

has more than one vertex orbit. Then G induces an empty graph on each vertex

orbit of size 6 or 8.

We close this section with the following remark. In Section 8 we encounter

several graphs whose solvability we prove via Lemma 4.11 and Corollary 3.3.

Some of these graphs are 3-regular and are either circulant, thus may be handled
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by the method of his section, or belong to the family of the so-called generalized

Petersen graphs. The automorphism group of such graphs have been completely

determined in [4], and thus could have been used for our purpose. It is also

quite plausible, that even in the remaining cases any reference to Thompson’s

theorem could have been avoided, but not without any undesirable effect on the

complexity of our presentation.

6. Basic reduction

Assume that the group Γ acts on the connected graph H . Each orbit (edge or

vertex) of Aut(H) splits up into complete orbits of Γ. In the sequel we refer to

an orbit of Γ simply as an orbit. Consider the following five operations on H .

(i) Remove an orbit of loops.

(ii) Unless H is the complete graph on two vertices, remove an orbit V con-

sisting of degree one vertices, along with the unique edge orbit E incident

to it.

(iii) Unless H is a cycle of length n ≥ 3, remove an orbit V of vertices

of degree 2, along with the edge orbits incident to it, and connect the

two neighbours (which may coincide) of each removed vertex vi by a

new edge ei. More precisely, in the particular case when V consists of

pairs of adjacent vertices, for each such pair vi1, vi2 the new edge ei

should connect the two neighbours of the set {vi1, vi2} (which again may

coincide).

(iv) Take an orbit E that contains two parallel edges. This orbit can be

partitioned into edge sets Ei of the same cardinality such that two edges

are parallel if and only if they are in the same set Ei for some i. Replace

each set Ei by a single edge ei.

(v) Remove an orbit E of edges that does not contain two parallel edges, but

in which each edge is parallel to some edge in a different orbit.

We say that H is reduced if none of these operations can be performed on H .

H is reduced if and only if H is either a singleton, a K2, a Cn (n ≥ 3), or a

stable simple graph. In the first three cases Aut(H) is either a dihedral group or

of order at most 2, thus solvable. Therefore, if Γ acts on the reduced graph H

without solvable orbits, then H must be a stable simple graph.
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Lemma 6.1. Assume that the group Γ acts on the connected graph H without

solvable orbits, and the graph H ′ is obtained from H by performing one of the

above operations. Then H ′ is a connected graph on which Γ acts without solvable

orbits. Moreover, for every orbit O in H there is an orbit O′ in H ′ whose cardi-

nality divides 2|O|, and for every orbit O′ in H ′ there is an orbit O in H whose

cardinality is an integer multiple of |O′|/2.

Proof. H ′ is obviously connected. Assume that we have removed an edge orbit

E consisting of y loops using the first operation. Then y ≥ 5, otherwise Γ would

act on E through a solvable quotient. The vertices incident to these loops form

an orbit V of x vertices, each incident to the same number of loops, say k. Thus

y = kx. Γ acts on H ′ via its restriction to H ′. Each orbit in H ′ is at the same

time an orbit of H , so Γ acts on H ′ without solvable orbits. The second statement

is obvious because V is an orbit of x vertices in H ′. Note that it implies x ≥ 5.

Moreover, c(H ′) = c(H) − kx.

Assume next that we have performed the second operation: it does not change

the cyclomatic number. Γ acts on H ′ via its restriction to H ′. Each orbit in H ′ is

at the same time an orbit of H , so Γ acts on H ′ without solvable orbits. To prove

the second statement, denote by W be the set of vertices adjacent to vertices in

V . Then W is an orbit of x ≥ 5 vertices, it is also an orbit of H ′. Each vertex in

W is adjacent to the same number of vertices in V , say k. Then the cardinality

of the removed orbits V and E are alike kx, a multiple of |W |.

Operation (iii) does not change the cyclomatic number. Assume that |V | = x,

then V is either incident to one edge orbit of size 2x, or two edge orbits, each of

size x, or (in the particular case) one edge orbit of size x and another of size x/2.

Let E′ = {e1, e2, . . . , ey}, where y = x or (in the particular case) y = x/2. The

action of Γ on H ′ can be combined from its restriction to V(H ′)∪E(H ′)\E′ and

its natural transfer from V to E′. Obviously Γ acts then on H ′ without solvable

orbits. The second statement is clear.

Suppose that operation (iv) was performed. Denote the common cardinality

of the sets Ei by k, then |E| = kx for some positive integer x, and c(H ′) =

c(H) − (k − 1)x. Again there is a natural way to define the action of Γ on H ′.

The edge set {e1, e2, . . . , ex} is then an orbit of Γ in H ′. Since V(H ′) = V(H),

Γ acts on V(H ′) without solvable orbits. It follows from Lemma 4.2, that Γ acts

on H ′ without solvable orbits. In particular, we have x ≥ 5, and E is a multiple

of |E′|.
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When operation (v) is performed, H ′ again inherits the action of Γ on H , in

particular Γ acts on H ′ without solvable orbits. Assume that |E| = x, then x ≥ 5

and c(H ′) = c(H)−x. The endpoints of the edges in E either form a vertex orbit

of size 2x, or two vertex orbits, each of size x, hence the second statement. �

Write δc(H) = c(H)−c(H ′). Taking into account the change in the cyclomatic

number and comparing it to the cardinalities of special orbits in H ′, introduced

in the previous proof, we find the following supplement to Lemma 6.1.

Lemma 6.2. Assume that the group Γ acts on the connected graph H without

solvable orbits, and the graph H ′ is obtained from H by performing one of the

operations (i)–(v). Then either δc(H) = 0, or δc(H) ≥ 5. Moreover, there is an

orbit O in H ′, whose cardinality divides 2δc(H).

Let G denote a connected graph without solvable orbits, and fix Γ = Aut(G).

Since each operation decreases |V(G)| + |E(G)|, by a repeated application of

the operations (i)–(v) we eventually obtain a reduced graph G̃ on which Γ acts

without solvable orbits. We say that R : G = G0 → G1 → . . . → Gn = G̃ is a

reduction sequence if each graph Gi+1 is obtained from Gi by one of the operations

(i)–(v), and the action of Γ on Gi+1 is derived from its action on Gi as described

in the proof of Lemma 6.1. We also associate the sequence ci = δc(Gi) to R,

then

c(Gi) = c(G̃) +

n−1∑

j=i

cj .

An immediate consequence of Lemma 6.1 is

Corollary 6.3. Let R : G = G0 → G1 → . . . → Gn = G̃ be a reduction sequence.

If the odd prime p divides the cardinality of every orbit in G̃, then it also divides

the size of every orbit in Gi, for each 0 ≤ i ≤ n. If, for some 0 ≤ i ≤ n, Gi has

an orbit of size 2β7 for some nonnegative integer β, then G̃ has an orbit of size

2α or 2α7 for some nonnegative integer α.

This, coupled with Lemmas 6.1 and 6.2 yields

Lemma 6.4. Let R : G = G0 → G1 → . . . → Gn = G̃ be a reduction sequence.

If the odd prime p divides the cardinality of every orbit in G̃, then it also divides

ci for each 0 ≤ i ≤ n. If there is an index 0 ≤ i ≤ n such that ci = 2β for

some nonnegative integer β, then G̃ has an orbit of size 2α for some nonnegative
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integer α. If there is an index 0 ≤ i ≤ n such that ci = 7, then G̃ has an orbit of

size 2α or 2α7 for some nonnegative integer α.

Now it is clear that the ‘only if’ part of Theorem 1.1 can be reduced to the

following two lemmas.

Lemma 6.5. Let G be a connected graph without solvable orbits such that c(G) ∈

{7, 9, 12, 13, 14, 17, 18, 23}. If R : G = G0 → G1 → . . . → Gn = G̃ is a reduction

sequence, then c(G̃) 6= 6, 8, 10, 11, 15, 16.

Lemma 6.6. There is no stable simple graph G without solvable orbits such that

c(G) ∈ {4, 5, 7, 9, 12, 13, 14, 17, 18, 23}.

7. Stable simple graphs without solvable orbits

In order to prove Lemma 6.5, in this section first we have a closer look on stable

simple graphs G of cyclomatic number 6, 8, 10, 11, 15 and 16. We assume that

a group Γ acts on G without solvable orbits. Recall from Section 4, that we

denote by Γ̃ the subgroup of Aut(G) that is actually responsible for this action.

In particular, the group Γ̃ is not solvable.

Lemma 7.1. Let G be a stable simple graph of cyclomatic number c(G) = 6, and

assume that the group Γ acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 5.

Proof. It follows from Proposition 4.8 that at most r3 and r4 can be non-zero,

and thus 5 = c(G) − 1 = r3/2 + r4. Either r4 = 5 and r3 = 0, or r4 = 0 and

r3 = 10. In the first case there is exactly one vertex orbit, whose size is 5. In

the second case there is either one vertex orbit of size 10, or there are two vertex

orbits, each of size 5. �

We note that it is not very difficult to see that the only two stable simple graphs

without solvable orbits of cyclomatic number 6 are K5 and the Petersen graph,

but we will not depend upon this fact.

Lemma 7.2. Let G be a stable simple graph of cyclomatic number c(G) = 8, and

assume that the group Γ acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 7.
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Proof. Proposition 4.8 implies that at most r3 and r4 can be non-zero, and ac-

cordingly 7 = r3/2 + r4. Either r4 = 7 and r3 = 0, or r4 = 0 and r3 = 14. In

the first case there is exactly one vertex orbit of size 7. In the second case there

is either one vertex orbit of size 14, or there are two vertex orbits, each of size

7, otherwise it would be either V [5, 9] or V [6, 8], and thus Γ̃ would be solvable

according to Lemma 4.10. �

Lemma 7.3. Let G be a stable simple graph of cyclomatic number c(G) = 10, and

assume that the group Γ acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 3.

Proof. It follows from Proposition 4.8 that rd = 0 for d ≥ 6, and thus 9 =

r3/2 + r4 + 3r5/2. If r5 6= 0, then r5 = 6 and r3 = r4 = 0, thus there is exactly

one vertex orbit, whose cardinality is 6. There is no other possibility, since in

the remaining cases

r4 9 6 5 0
r3 0 6 8 18

it follows from Lemma 4.10 that Γ̃ is solvable, contradicting the assumption that

Γ acts on G without solvable orbits. �

Lemma 7.4. Let G be a stable simple graph of cyclomatic number c(G) = 11, and

assume that the group Γ acts on G without solvable orbits. Then the cardinality

of each vertex orbit is divisible by 5.

Proof. It follows from Proposition 4.8 that rd = 0 for d ≥ 6, and thus 10 =

r3/2 + r4 + 3r5/2. If r5 6= 0, then r5 = 5, r4 = 0 and r3 = 5, so the cardinality

of each vertex orbit is 5. Of the remaining cases

r4 10 7 6 5 0
r3 0 6 8 10 20

the second and the third cannot occur, because Γ̃ would be solvable according

to Lemma 4.10. In the first and the fourth cases we can argue as in the proof

of Lemma 7.1. Assume that we are in the fifth case, and there is a vertex orbit

whose size is not divisible by 5. Were there three vertex orbits, that is, V [5, 6, 9],

V [5, 7, 8], V [6, 6, 8] or V [6, 7, 7], Lemma 4.10 would again yield to contradiction

as well as in the cases of two orbits V [6, 14], V [8, 12] and V [9, 11]. Finally, the

case V [7, 13] can be excluded by Lemma 4.4. �
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Lemma 7.5. Let G be a stable simple graph of cyclomatic number c(G) = 15,

and assume that the group Γ acts on G without solvable orbits. Then there is no

vertex orbit whose cardinality is a power of 2.

Proof. It follows from Proposition 4.8 that rd = 0 for d ≥ 7, and thus 14 =

r3/2 + r4 + 3r5/2 + 2r6. If r5 = r6 = 0, then the statement follows immediately

from Lemma 4.10. Therefore we only review the possibilities when there exists a

d ≥ 5 with rd 6= 0.

r6 7 5 0 0 0 0
r5 0 0 7 6 6 5
r4 0 0 0 5 0 0
r3 0 8 7 0 10 13

Assume that there is a vertex orbit whose cardinality k is a power of 2. Since

k ≥ 5, it should be k = 8, which can only happen in the second or sixth case,

meaning either V [5, 8] or V [5, 5, 8]. According to Corollary 4.5, the degree of the

orbit of size 8 would be at least 5, a contradiction. �

Lemma 7.6. Let G be a stable simple graph of cyclomatic number c(G) = 16,

and assume that the group Γ acts on G without solvable orbits. Then there is

no vertex orbit whose cardinality is of the form 2α or 2α7 for some nonnegative

integer α.

Proof. If there is a d ≥ 7 such that rd 6= 0, then it follows from Proposition 4.8

that either G is an 8-regular graph on 5 vertices (nonsense), or a 7-regular graph

on 6 vertices (ditto), or has exactly two vertex orbits, each of size 5, of degree 7

and 3, respectively. In the remaining cases we have 15 = r3/2+ r4 +3r5/2+2r6.

If r6 6= 0, then there are only 3 possibilities: either r6 = r3 = 6, r5 = r4 = 0, or

r6 = r4 = 5, r5 = r3 = 0, or r6 = 5, r5 = r4 = 0, r3 = 10, and there is indeed no

vertex orbit of cardinality 2α or 2α7. We summarize the remaining cases below.

If r5 6= 0, then these are

r5 10 8 7 6 6 5 5
r4 0 0 0 6 0 5 0
r3 0 6 9 0 12 5 15

∗ ∗ ∗ ∗

The cases marked with ∗ cannot occur, because then Γ̃ would nevertheless be

solvable, according to Lemma 4.10. We will use this convention throughout the
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rest of the paper without any further explanation. The claim is obvious in the

first and sixth cases. In the last case the only possibility to have a vertex orbit of

size 2α or 2α7 would be V [5, 7, 8], which is impossible by Corollary 4.5. If r5 = 0,

that is

r4 15 12 11 10 9 8 7 6 5 0
r3 0 6 8 10 12 14 16 18 20 30

∗ ∗ ∗ ∗ ∗ ∗

then in each case not excluded by Lemma 4.10, |V(G)| is not divisible by 7. Were

there a vertex orbit whose cardinality is divisible by 7, the size of each orbit

would be divisible by 7 by Lemma 4.3, a contradiction. According to Lemma

4.10, there cannot be an orbit of size 2α either. �

Now it is easy to prove Lemma 6.5. Let R : G = G0 → G1 → . . . → Gn = G̃

be a reduction sequence, then c(G) ≥ c(G̃). G̃ is a stable graph on which Aut(G)

acts without solvable orbits. Assume first that c(G̃) is either 6 or 11. In G̃, the

cardinality of each vertex orbit is divisible by p = 5, according to Lemmas 7.1

and 7.4. It follows from Proposition 4.7 that 5 divides the cardinality of every

orbit in G̃. According to Lemma 6.4, each ci is divisible by 5. Consequently,

c(G) ≡ 1 (mod 5) and thus c(G) 6∈ {7, 9, 12, 13, 14, 17, 18, 23}.

If c(G̃) = 8, then it follows from Lemma 7.2 along the same lines that c(G) ≡ 1

(mod 7) and thus c(G) 6∈ {7, 9, 12, 13, 14, 17, 18, 23}. If c(G̃) = 10, then based

on Lemma 7.3 we have c(G) ≡ 1 (mod 3). Note that if c(G) 6= c(G̃), then

c(G) ≥ c(G̃) + 5. Thus once again, c(G) 6∈ {7, 9, 12, 13, 14, 17, 18, 23}.

Assume finally that c(G̃) = 15 or 16, and c(G) ∈ {7, 9, 12, 13, 14, 17, 18, 23}.

The only possibility is c(G) = 23. In the first case there is an index 0 ≤ i ≤ n−1

such that ci = 8 and all the other cj are zero. It follows from Lemma 6.4 that G̃

has an orbit of size 2β for some nonnegative integer β. According to Proposition

4.7, there is a vertex orbit whose size is 2α for some nonnegative integer α,

contradicting Lemma 7.5. In the second case there is an index 0 ≤ i ≤ n − 1

such that ci = 7 and all the other cj are zero. In this case we find by a similar

argument that there is a vertex orbit in G̃ whose size is 2α or 2α7 for some

nonnegative integer α, which contradicts Lemma 7.6.
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8. The case analysis

In order to prove Lemma 6.6, we assume that G is a stable simple graph without

solvable orbits such that c(G) ∈ {4, 5, 7, 9, 12, 13, 14, 17, 18, 23}. In most cases we

will arrive at a contradiction by concluding that Aut(G) is solvable. Note that

throughout this section we will always apply Lemmas 4.10 and 4.11 under the

assumption that Γ = Γ̃ = Aut(G).

If c(G) ≤ 9, then at most r3 and r4 can be non-zero. Lemma 4.10 applies to

all the seven possible cases:

c(G) 4 5 7 7 9 9 9

r4 0 0 6 0 8 5 0
r3 6 8 0 12 0 6 16

It follows that G cannot be without solvable orbits.

When c(G) = 12, the equation 11 =
∑

(d/2 − 1)rd immediately implies that

rd = 0 for d > 5 and leaves us with the following possibilities.

r5 5 0 0 0 0 0 0
r4 0 11 8 7 6 5 0
r3 7 0 6 8 10 12 22

7 ∗ ∗ ∗ ∗

In the first case we get into contradiction with Lemma 4.3 when it is applied

with the prime number p = 7. This we marked with the number 7 in the last

row of the table. We will also apply this convention later on without any further

explanation. Whenever Lemma 4.3 can be applied in a similar way with a specific

prime number p, it will appear in the bottom line.

In the second and in the last case it follows from Lemma 4.11 that |Aut(G)|

divides 2α3β · 11 for some nonnegative integers α, β, and thus solvable either by

Burnside’s theorem, or by Corollary 3.3.

Assume next that c(G) = 13. The relation 12 =
∑

(d/2 − 1)rd again implies

that rd = 0 for d > 5. The complete list of possibilities

r5 8 6 5 0 0 0 0 0 0 0
r4 0 0 0 12 9 8 7 6 5 0
r3 0 6 9 0 6 8 10 12 14 24

∗ ∗ ∗ ∗ ∗ 7 ∗ 5 ∗
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reveals that, apart from the first case, either Lemma 4.10 or Lemma 4.3 can be

applied. In the missing case it follows from Lemma 5.3 that Aut(G) is solvable.

Turning to the case c(G) = 14, it follows from Proposition 4.8 that rd = 0 for

d ≥ 6, unless r6 = 5, r5 = r4 = 0 and r3 = 6, which is not possible according to

Lemma 4.3 (p = 5). Therefore 13 = r3/2 + r4 + 3r5/2, and we have the following

cases:

r5 7 6 5 0 0 0 0 0 0 0 0
r4 0 0 0 13 10 9 8 7 6 5 0
r3 5 8 11 0 6 8 10 12 14 16 26

7 ∗ ∗ ∗ ∗ ∗ ∗ ∗

In the third and in the last case it follows from Lemma 4.11 that |Aut(G)| either

divides 2α3β · 11 or 2α3 · 13 for some nonnegative integers α, β, and thus solvable

either by Burnside’s theorem, or by Corollary 3.3. In the fourth case Aut(G)

acts transitively on the vertices, otherwise we would have V [5, 8] or V [6, 7] which,

according to Lemma 4.4, cannot occur. In particular, the order of Aut(G) is

divisible by 13, and thus there is a π ∈ Aut(G) of order 13. This automorphism

permutes the vertices of G cyclically. Since 13 is a prime, the orbit of any edge

with respect to the subgroup Γ = 〈π〉 generated by π is a cycle of length 13. A

suitable power of π then shifts the vertices by 1 along this cycle. Consider any

edge e not contained in this cycle, its length is k for some 2 ≤ k ≤ 6. The orbit

of e under the action of Γ is the set of all edges of length k, thus G is the graph

C13(k), whose group of automorphisms is solvable according to Corollary 5.2.

When c(G) = 17, it follows from Proposition 4.8 that rd = 0 for d ≥ 7, unless

r7 = 5 and r3 = 7 (and every other ri is zero), which nevertheless contradicts

Lemma 4.3. We have 16 = r3/2 + r4 + 3r5/2 + 2r6 otherwise. It is then easy to

overview the cases when r6 = r5 = 0:

r4 16 13 12 11 10 9 8 7 6 5 0
r3 0 6 8 10 12 14 16 18 20 22 32

∗ ∗ ∗ 5 ∗ ∗ ∗ ∗ ∗ 5 ∗

The reason why we could indeed refer to Lemma 4.3 in the fourth case is that

either there is one orbit of degree 3 vertices (of size 10), or there are two such

orbits, each of size 5. The remaining cases are
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r6 8 6 5 5 0 0 0 0 0 0 0 0
r5 0 0 0 0 9 8 7 6 6 5 5 5
r4 0 0 6 0 0 0 0 7 0 6 5 0
r3 0 8 0 12 5 8 11 0 14 5 7 17

5 5 ∗ 7 7 7∗ 5 5 5

The explanation for the case marked with 7∗ is the following. Either there is a

vertex orbit of degree 3 whose cardinality is divisible by 7, contradicting Lemma

4.3, or there is a vertex orbit of degree 3 whose cardinality is of the form 2a3b,

and thus Aut(G) is solvable by Lemma 4.10. This convention will be also used

later without any explanation.

The first case can be excluded by Lemma 5.3. In the second case we have

V [6, 8]. According to Corollary 5.4, each vertex orbit is an independent set.

Thus, there are 36 edges connecting V1 to V2 and 24 edges connecting V2 to V1, a

contradiction. In the fifth case we have V [5, 9], and we arrive at a contradiction

with Lemma 4.4.

Assume next that c(G) = 18. It follows from Proposition 4.8 that rd = 0

for d ≥ 7, unless or r7 = 5 and r3 = 9, which case can be excluded by an

application of Lemma 4.3 with p = 5. In the remaining cases we have 17 =

r3/2 + r4 + 3r5/2 + 2r6. First we overview the cases when at least one of r5 and

r6 is nonzero.

r6 7 6 6 5 5 0 0 0 0 0 0 0 0 0 0 0
r5 0 0 0 0 0 9 8 8 7 6 6 6 5 5 5 5
r4 0 5 0 7 0 0 5 0 0 8 5 0 7 6 5 0
r3 6 0 10 0 14 7 0 10 13 0 6 16 5 7 9 19

7 5 5 7 7 ∗ ∗ ∗ 5 ∗ ∗ 5

In the first missing case each degree 4 vertex should be incident to at least 6 edges

by Lemma 4.4, which is not possible. The third missing case can be excluded

by a similar argument. In the fourth missing case we use Corollary 4.6, when it

is V [5, 5, 8] to find a degree 3 vertex incident to at least 8 edges. Otherwise it

is V [8, 10], and it follows from Lemma 4.4 that each degree 3 vertex is incident

to at least 8/(8, 10) = 4 edges, which is again impossible. In the second missing

case it is either V [6, 10] or V [5, 5, 6].

Suppose that we have V [6, 10]. According to Lemma 4.4, each vertex in V1

is connected to 5 vertices in V2, each vertex in V2 is connected to 3 vertices in

V1, V2 is an independent set and G induces a 1-regular graph H on V1. This
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contradicts Corollary 5.4. The possibility of V [5, 5, 6] can be easily excluded by

Corollary 4.6. It remains to study the cases when rd = 0 for d ≥ 5. These are

r4 17 14 13 12 11 10 9 8 7 6 5 0
r3 0 6 8 10 12 14 16 18 20 22 24 34

∗ ∗ ∗ ∗ 5 ∗ ∗ 7 ∗ ∗

In the last case it follows from Lemma 4.11 that |Aut(G)| divides 2α3 · 17 for

some nonnegative integer α, and thus solvable either by Burnside’s theorem, or by

Corollary 3.3. In the first case Aut(G) acts transitively on the vertices, otherwise

we would have V [5, 12], V [6, 11], V [7, 10], V [8, 9], V [5, 5, 7] or V [5, 6, 6], neither of

which can occur according to Lemma 4.4 and Corollary 4.5. In particular, the

order of Aut(G) is divisible by 17, and thus there is a π ∈ Aut(G) of order 17.

This automorphism permutes the vertices of G cyclically. Since 17 is a prime,

the orbit of any edge with respect to the subgroup Γ = 〈π〉 generated by π is a

cycle of length 17. A suitable power of π then shifts the vertices by 1 along this

cycle. Consider any edge e not contained in this cycle, its length is k for some

2 ≤ k ≤ 8. The orbit of e under the action of Γ is the set of all edges of length k,

thus G is the graph C17(k), whose group of automorphisms is solvable according

to Corollary 5.2.

We investigate finally the most complicated case, when c(G) = 23. It is easily

seen from Proposition 4.8 that rd = 0 for d ≥ 8, except for the following four

possibilities: either r9 = 5 and r3 = 9, or r8 = 6 and r3 = 8, or r8 = 5 and r4 = 7,

or r8 = 5 and r3 = 14. In the first, third and fourth cases Lemma 4.3 can be

applied with p = 5. In the second case it is V [6, 8] and it follows from Corollary

5.4 that both V1 and V2 are independent sets. Accordingly, 48 edges leaves V1

for V2, whereas there are only 24 edges leaving V2 for V1, a contradiction.

In the sequel we may assume that rd = 0 for d ≥ 8, and accordingly 22 =

r3/2+ r4 +3r5/2+2r6 +5r7/2. First we discuss the cases when rd = 0 for d ≥ 5:

r4 22 19 18 17 16 15 14 13 12 11 10 9
r3 0 6 8 10 12 14 16 18 20 22 24 26

∗ ∗ 5 ∗ 7∗ ∗ ∗ ∗ ∗ ∗

r4 8 7 6 5 0
r3 28 30 32 34 44

∗ 7 ∗ 5
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In each of the missing cases it follows from Lemma 4.11 that |Aut(G)| divides

2α3β ·11 for some nonnegative integers α, β, and thus solvable either by Burnside’s

theorem, or by Corollary 3.3.

Next we consider the cases when rd = 0 for d ≥ 6 and r5 6= 0, then 22 =

r3/2+r4+3r5/2. It is not possible that each ri is divisible by 5, so we immediately

get into a contradiction by Lemma 4.3 when r5 = 5. The cases when r5 = 7 can

be excluded in similar way. We have the following cases when r5 = 6:

r5 6 6 6 6 6 6 6 6
r4 13 10 9 8 7 6 5 0
r3 0 6 8 10 12 14 16 26

∗ ∗ ∗ ∗ ∗ ∗

In the first case it is either V [5, 6, 8], V [6, 6, 7] or V [6, 13], each contradicting

Corollary 4.5. In the last case the cardinality of each orbit of degree 3 must be

in the form 2a3b5c, otherwise we get a contradiction with Lemma 4.3. Since not

all of them can be divisible by 5, Lemma 4.10 implies that Aut(G) is solvable.

The cases with r5 ≥ 8 are

r5 13 12 11 10 10 9 9 9 8 8 8 8 8
r4 0 0 0 7 0 6 5 0 10 7 6 5 0
r3 5 8 11 0 14 5 7 17 0 6 8 10 20

∗ 7 7∗ ∗ 7 ∗ ∗

Of the missing cases, in the first one it is either V [5, 5, 8], V [5, 6, 7] or V [5, 13],

each contradicting Corollary 4.6. In the second case it follows from Lemma 4.11

that |Aut(G)| divides 2α3β · 11 for some nonnegative integers α, β, and thus

solvable either by Burnside’s theorem, or by Corollary 3.3. Consider now the

third case. If there is an orbit of degree 3 whose cardinality is either 6,8 or 12,

then we are done by Lemma 4.10. Otherwise it is either V [9, 17], V [7, 9, 10] or

V [5, 5, 7, 9], each of which contradicts Corollary 4.5. In the fifth case we can

exclude V [5, 5, 5, 8] immediately by Corollary 4.6, and if it is V [5, 8, 10], then

by Lemma 4.4, neither V1 nor V3 can be connected to V2, contradicting the

assumption that G is connected.

The fourth case is more delicate. V [5, 5, 8] can be excluded by Corollary 4.6,

so it must be V [8, 10]. It follows from Lemma 4.4 that each vertex in V1 is

connected to 5 vertices in V2, each vertex in V2 is connected to 4 vertices in V1,

and both V1 and V2 are independent sets, thus it is a bipartite graph. Aut(G)
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acts on V1 through a quotient Γ that we can identify with a transitive subgroup

of the symmetric group acting on V1. We define a graph H on V1 as follows:

we connect u, v ∈ V1 with an edge for each common neighbour of u and v in

V2. Since |V2| = 10 and each vertex of V2 is connected to 4 vertices in V1, the

non-simple graph H has 60 edges. By transitivity, each vertex of H has a degree

15. For 1 ≤ i ≤ 15, let Hi be the subgraph of H such that E(Hi) consists of the

edges whose multiplicity is i; most of these graphs are of course empty. Let H ′
i

be the simple graph underlying Hi on the vertex set V1, Then Aut(H ′
i) can be

viewed as a subgroup of the symmetric group acting on V1, it contains Γ as a

subgroup. H ′
i is a ki-regular graph for some 0 ≤ ki ≤ 7. Since the numbers iki

add up to 15, not all of them are divisible by 7. Therefore the solvability of Γ

follows immediately from Lemma 5.3.

In the sixth case the cardinality of each orbit of degree 3 must be in the form

2a3b5c, otherwise we get a contradiction with Lemma 4.3. In view of Lemma

4.10 we may assume that the cardinality of each such orbit is divisible by 5. The

orbit of the 8 degree 5 vertices must be connected to at least one of them, thus

we immediately get into contradiction with Lemma 4.4, unless it is V [8, 20]. It

then follows from Lemma 4.4 that each vertex in V1 is connected to 5 vertices in

V2, each vertex in V2 is connected to 2 vertices in V1, and V1 is an independent

set. Define a graph H on V1, as in the previous case. This time H has 20 edges,

thus it is 5-regular. The solvability of Γ follows as in the previous case.

Next we consider the cases when rd = 0 for d ≥ 7 and r6 6= 0, then 22 =

r3/2+ r4 +3r5/2+2r6. It is not possible that each ri is divisible by 5, so we can

apply Lemma 4.3 when r6 = 5 and r5 = 0. The cases when r6 = 7 and r5 = 0

can be excluded in similar way. The remaining cases are

r6 11 9 8 8 6 6 6 6 6 6 5 5 5
r5 0 0 0 0 5 0 0 0 0 0 8 6 5
r4 0 0 6 0 0 10 7 6 5 0 0 0 0
r3 0 8 0 12 5 0 6 8 10 20 0 6 9

(a) (b) (c) (d) (e) (f) 7 (g) (h) (i) (j) (k) (l)

Cases (b) and (j) can be excluded by Lemma 4.4, whereas in cases (e) and (l) we

get a contradiction to Corollary 4.6. In case (k) the orbit V1 of degree 3 cannot

be connected to the orbit V2 of degree 6 in view of Lemma 4.4. Thus V2 must

be connected to the orbit V3 of degree 5, and another application of Lemma 4.4
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gives that in that case each vertex in V3 must send 5 edges to V2, hence cannot

connect to V1, contradicting the assumption that G is connected.

In case (a), if there are two vertex orbits, then it must be V [5, 6]. According to

Lemma 4.4, each vertex in V2 is connected to 5 vertices in V1, thus G induces a

1-factor on V2, in contradiction with Corollary 5.4. Otherwise Aut(G) = Aut(G)

has only one vertex orbit, on which Aut(G) acts transitively. Consequently, all

connected components of G have the same cardinality, thus G is a connected

4-regular graph on 11 vertices. Therefore c(G) = 12 and G cannot be without

solvable orbits, contradicting Claim 4.1.

In cases (f) and (h), except of the orbit V of 6 degree 6 vertices, the size of

every orbit is either 5 or 10, so it follows from Corollary 4.5 that each vertex of

V sends 5 edges to one of them and G induces a 1-factor on V , contradicting

Corollary 5.4. In case (c) it is V [6, 8], so in view of Lemma 4.4, G induces a

3-regular graph on V2 whose automorphism group is solvable by Lemma 5.3. In

case (d) it cannot be V [5, 7, 8] or V [6, 6, 8] by corollaries 4.5 and 4.6, so it must

be V [8, 12]. But then G would induce a 3-regular graph on V1, just like in case

(c). In case (g) it is V [6, 6, 8], where V1 is the orbit of degree 6 vertices. It follows

from Corollary 5.4 that each orbit is an independent set. V2 cannot be connected

to V3 in view of Lemma 4.4, so V3 must be connected to V1, meaning that each

vertex of V1 is connected to 4 vertices in V3. Thus each vertex of V1 must be

connected to exactly 2 vertices in V2, and vice versa. Consequently, G induces a

2-factor on V2, a contradiction.

It remains to discuss case (i). We get a contradiction with Lemma 4.3, unless

the cardinality of each orbit is of the form 2a3b5c. If each orbit of degree 3

vertices has a cardinality divisible by 5, then it follows from Corollary 4.5 that

G induces a 1-factor on the orbit of 6 degree 6 vertices, contradicting Corollary

5.4. So it must be either V [6, 5, 6, 9], V [6, 6, 6, 8] or V [6, 8, 12], where V1 stands

for the orbit of degree 6, of which the first case can be immediately excluded

by Lemma 4.5. If it is V [6, 6, 6, 8], then it follows from Corollary 5.4 that G

induces an independent set on each orbit. According to Lemma 4.4, V4 can only

be connected to V1, each vertex in V1 sending 4 edges to V4. The only possibility

then is that each vertex in V1 is connected to exactly 1 vertex both in V2 and in

V3, and the orbits V2, V3 form the colour classes of a 2-regular bipartite graph H .

The graph H can be easily understood, and it follows that Aut(G) acts on V2

through a quotient that is a subgroup of either S2 ≀S3, S2×D4, D3 ≀S2 or D6, thus
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solvable. In the third case V [6, 8, 12] G must induce an independent set on V1

and on V2. According to Lemma 4.4, each vertex of V1 is connected to 4 vertices

in V2 and thus to 2 vertices in V3. Consequently, each vertex in V3 sends exactly

1 edge to V1 and G induces a 2-regular graph H on V3. Thus Aut(G) acts on V3

through a quotient, which is a subgroup of Aut(H), but the latter must be one

of D3 ≀ S4, (D3 ≀ S2) × D6, D3 × D4 × D5, D4 ≀ S3, D3 × D9, D4 × D8, D5 × D7,

D6 ≀ S2, or D12, thus solvable.

Finally we assume that r7 6= 0. We have 5 possibilities (r6 = r5 = 0 in each of

them):

r7 7 6 6 5 5
r4 0 7 0 5 0
r3 9 0 14 9 19

7 5 5

In the missing cases, it is either V [6, 7], V [5, 6, 9], V [6, 7, 7], V [6, 6, 8], or V [6, 14].

The first three possibilities contradict Corollary 4.6. Assume it is V [6, 6, 8], where

the vertices of degree 7 are in V1, each orbit is an independent set by Corollary

5.4. The orbit V3 cannot be connected to V2 by Lemma 4.4, thus it is connected to

V1. Another application of Lemma 4.4 reveals, that each vertex in V1 is connected

to 4 vertices in V3. Since the independent set V2 must be connected to V1, it

follows from Lemma 4.4 that each vertex in V1 sends exactly 3 edges to V2 and

vice versa. Let H be the graph induced by G on V1 ∪ V2. Aut(G) acts on H

without solvable orbits, and thus H itself is a graph without solvable orbits. If

H is connected, then c(H) = 7, but we have already proved that such graphs do

not exist. It follows that H is the union of two disjoint copies of K3,3, but then

Aut(H) = (S3 ≀ S2) ≀ S2, thus |Aut(H)| = 2α3β, hence Aut(H) is solvable.

It only remains to exclude the case V [6, 14]. According to Lemma 4.4, each

vertex in V1 is connected to 7 vertices in V2, each vertex in V2 is connected to

3 vertices in V1, and both V1 and V2 are independent sets. Aut(G) acts on V1

through a quotient, which is a subgroup of S6. This quotient, being non-solvable,

must contain an element of order 5. Thus there is a π ∈ Aut(G) that cyclically

permutes 5 elements of V1 and leaves the sixth element v fixed. It must leave

the set W of 7 neighbours of v in V2 fixed. If the order of π|W is divisible by 5,

then π2 leaves two elements of W fixed. Otherwise the cycle decomposition of

π|W reveals that π12 fixes every element of W . In any case, there is an element

w ∈ W such that π12(w) = w. Thus π72 also leaves the 3 neighbours of w in
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V1 fixed, which is not possible, since the restriction of π72 to V1 has an order

5/(5, 72) = 5.

9. Projective algebraic curves without solvable points

In this section we formulate the strongest version of one of the main results of

[7] which can be derived using the methods of the above cited paper, taking into

account the new constructions and the non-existence results presented in this

article, for the convenience of the reader.

We say that a finite extension of a field K is solvable if it is separable and the

Galois group of its normal closure over K is solvable. Let X be a quasi-projective

variety over a field K. We say that P is a solvable point of X over K if P is a

rational point of X defined over a finite solvable extension of K.

Theorem 9.1. Let K be a field complete with respect to a discrete valuation.

Assume that the absolute Galois group of the residue field of K has quotients

isomorphic to S5×S7, S5×S8, PGL3(2), and PGL3(3). Then there is a smooth,

projective, geometrically irreducible curve over K without solvable points over K

whose genus is equal to 6, 8, 10, 11, 15, 16, 19, 20, 21, 22 or it is at least 24.

The derivation of the above theorem is the same as that of the corresponding

result in [7]. There we pointed out that S5 acts transitively on the six-element set.

Hence S5 acts without solvable orbits on K ′
6,6 , K5(n), K6(n), and K5,6(n, m)

for every pair of natural numbers n and m. Therefore there is an action of the

absolute Galois group of the residue field of K on each graph appearing in Section

2 without solvable orbits, which is the condition for the argument of [7] to work.

Of course we have some freedom in choosing the groups listed in the theorem

above. For example we may use projective special linear groups instead of the

corresponding general linear groups.

The assumptions of the theorem on the field K are quite general. For example

it is satisfied by the Laurent series ring F ((t)) where F is any field such that every

finite group appears as a Galois group of a finite Galois extension over F . The

latter condition holds for the rational function field L(x) over every algebraically

closed field L by Harbater’s theorem (see [6]), and it is conjectured to be true

for example for every number field. On the other hand the list of groups in the

theorem above only consists of finitely many groups of small order hence it is

possible to verify numerically that they are Galois groups for a given field.
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It was proved in [7] that every smooth, projective, and geometrically irre-

ducible curve whose genus is equal to 0, 2, 3 or 4 over any field K has a solvable

point over K. It is an interesting question whether there is a natural number g

not covered by Theorem 9.1 such that there is a smooth, projective, and geomet-

rically irreducible curve over some field K without solvable points over K whose

genus is equal to g.
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