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ABSTRACT

With the rise of multi-core CPU platforms, their optimal utilization
for in-memory OLAP workloads using column store databases has
become one of the biggest challenges. Some of the inherent limi-
tations in the achievable query parallelism are due to the degree of
parallelism dependency on the data skew, the overheads incurred by
thread coordination, and the hardware resource limits. Finding the
right balance between the degree of parallelism and the multi-core
utilization is even more trickier. It makes parallel plan generation
using traditional query optimizers a complex task.

In this paper we introduce adaptive parallelization, which ex-
ploits execution feedback to gradually increase the level of paral-
lelism until we reach a sweet-spot. After each query has been exe-
cuted, we replace an expensive operator (or a sequence) by a faster
parallel version, i.e. the query plan is morphed into a faster one. A
convergence algorithm is designed to reach the optimum as quick
as possible.

The approach is evaluated against a full-fledged column-store
using micro-benchmarks and a subset of the TPC-H and TPC-DS
queries. It confirms the feasibility of the design and proofs to be
competitive against a statically optimized heuristic plan generator.
Adaptively parallelized plans show optimal multi-core utilization
and up to five times improvement compared to heuristically paral-
lelized plans on the workload under evaluation.

1. INTRODUCTION

Column store databases are designed with a focus on analytical
workloads. Almost all database vendors these days have a column
store implementation. A recent study by Microsoft showed that a
majority of real world analytic jobs process less than 100 GB of
input [3]. This can be accommodated by an in-memory solution on
a single high-end server. They come with an abundance of CPU
power using tens of cores [27, 23]. Query parallelization is one of
the ways to utilize multi-cores. This calls for a renewed look at the
traditional query parallelization techniques, such as the exchange
operator based parallelization [15], since the state of the art column
store systems such as IBM BLU accelerator [24], HyPer [30] use
work stealing based approach for multi-core scalability.

(©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

WOODSTOCK 97 El Paso, Texas USA

Martin Kersten
CWI, Amsterdam
martin.kersten@cwi.nl

8 1 8threads mmmm |
= 16 threads m==mm
32 threads messeem

[ |
13 17

TPC-H Queries

Time (Seconds)
~
L

Figure 1: Response time variations due to varying degree of par-
allelism under concurrent workload (32 hyper-threaded cores).

An important issue is the degree of parallelism (DOP) of a plan
which reflects the maximum number of parallel operator execu-
tions. With tens of cores on CPUs, finding the optimal degree of
parallelism of a query plan using heuristic and cost model based
exchange operator approach is difficult [2]. Some of the promi-
nent problems are a huge multi-core aware plan search space, par-
allelism aware accurate cost model estimations, and the optimal
placement of exchange operators in the plan. The degree of par-
allelism problem becomes even more difficult under a concurrent
workload due to competition for shared resources, such as CPU
cores, memory, and memory controllers. This forces many sys-
tems to take a conservative approach towards plan parallelization
decisions, as a sub-optimal parallel plan could often degrade per-
formance. Often a serial plan is preferred as long as it ensures a
robust performance [1].

For example, consider Figure 1, which shows execution of three
TPC-H heuristically parallelized queries for different DOP under
a heavy concurrent CPU bound workload, which ensures 0% CPU
core idleness (Scale factor 10 on 256 GB RAM with 32 hyper-
threaded cores). The queries show varying performance under dif-
ferent DOP. The traditional plan generation approaches based on
heuristic and cost model [10] fall short, as the plans do not reflect
runtime resource variations, making them suboptimal under a con-
current workload.

We introduce adaptive parallelization, a new mechanism to gen-
erate range partitioned parallel plans using query execution feed-
back, while taking into account the run-time resource contention.
Adaptive parallelization generates a better plan (P1) from an old
plan (PO) in a greedy manner, by parallelizing the most expensive
operator from PO, under repeated query invocations. The inspi-
ration is derived from the observation that in real world systems
the same query templates get reused multiple times only changing
some parameters. Starting with a serial plan, each successive query
invocation results in a new parallel plan, until a near minimal exe-
cution time parallel plan is detected, which ensures a near optimal
DOP. Adaptive parallelization under concurrent workload reflects
resource contention, making adaptive parallelized plans resource
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contention aware [11]. The success of adaptive parallelization de-
pends on its ability to converge quickly, while ensuring a near min-
imal execution parallel plan.

Adaptive parallelization also allows to analyze the relation be-
tween DOP and multi-core utilization. Multi-core utilization rep-
resents the fraction of actual CPU cores used versus the available
cores during query processing. Maximum multi-core utilization
however need not improve performance, as it might lead to mem-
ory bandwidth pressure due to parallel operator executions [22].
Hence, finding the right balance between the DOP and multi-core
utilization is important. Since adaptive parallelization generates
new parallel plans incrementally, it enables us to analyze the rela-
tion between DOP and multi-core utilization. Adaptive parallelized
plans have minimal multi-core utilization and a near optimal degree
of parallelism, which helps in achieving better response time during
concurrent workloads.

We summarize our main contributions as follows.

e We introduce adaptive parallelization, a new execution feed-
back based parallel plan generation technique, that ensures
near optimal degree of parallelism.

e We introduce an adaptive parallelization convergence algo-
rithm for different scenarios.

e We analyze the parameters affecting the speedup of the core
relational algebra operators.

e A near optimal DOP allows adaptive parallelized plans to
show up to five times response time improvement compared
to heuristically parallelized plans.

Paper outline: The paper is structured as follows. In Section 2 we
describe the architecture of adaptive parallelization. We also pro-
vide parallelization heuristics for operators and illustrate the dy-
namic partitioning scheme and discuss related problems. Section
3 describes the convergence algorithm to find the near minimal
execution parallel plan along with various convergence scenarios.
In Section 4 we provide a detailed experimental evaluation. Re-
lated work is described in Section 5. We conclude citing the major
lessons learned in Section 6.

2. ARCHITECTURE
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Figure 2: Adaptive parallelization workflow.

Adaptive parallelization could be used by any columnar database
system as long as its plan representation allows identification of
individual expensive operators.

Run-time environment: It consists of a scheduler, an interpreter,
and a profiler. The scheduler uses a data-flow graph based schedul-
ing policy, where an operator is scheduled for execution once all its
input sources are available. While an interpreter per CPU core exe-
cutes the scheduled operators, the profiler gathers performance data
on an executed operator basis. The profiling overhead is minimal
due to vectorized nature of execution. The profiled data consists
of operator’s execution time, memory claims, and thread affiliation
id. Cost model based plan generation approaches often suffer from
incorrect cardinality estimates. We use a heuristic plan generation
approach where parallelization decisions are based on execution
time feedback, without a need for operator’s cardinality statistics.
The execution time is a good metric for parallelization deci-
sions as it reflects the system state such as the memory bandwidth
pressure and the processor usage. Though the presence of system
noise might affect execution time, such disturbances level out dur-
ing adaptation.
Infrastructure components: The Adaptive Parallelization (AP)
infrastructure is implemented using the following components a)
operator stubs to morph a plan based on past behavior, b) the plan
administration policies to choose a suitable plan from the plan his-
tory, and c) the AP convergence algorithm, which we describe in
Section 3.

Workflow: The adaptive parallelization work-flow is summarized
in Figure 2. The first phase is similar to most systems [16] where
an optimal serial plan (Figure 3 Plan 1) is generated. Our approach
differs in the second phase where the the query is cached, plan is fed
to the framework, executed, and the profiling information such as
the query execution time, the operator execution time, the number
of invocations, etc. are stored. On the next query invocation a new
parallel plan (Figure 3 Plan 2) is derived from the immediate old
plan (Plan 1) by parallelizing the most expensive operator (Select
on input A). The AP process iterates by invoking the same query
again and generating parallel plans in an incremental manner by
parallelizing the most expensive operators in successive steps. The
number of iterations to find the minimal execution time parallel
plan is controlled by a convergence algorithm described in Section
3. As the book keeping and compilation time is minimal we only
report the execution time.

Why feedback based approach? Like parallel databases, multi-
core CPUs make the parallel plan search difficult [19]. The main
problem is finding the optimal number of partitions per operator for
an optimal input serial plan. Finding an optimal input serial plan is
out of the scope of this paper. During parallelization when an oper-
ator’s data is partitioned, there are combinatorial possible choices
for the partition size. For example, in the worst case, each opera-
tor’s data could be partitioned in a single tuple, such that the total
number of operators equal the number of tuples. In the best case
a single operator could work on the entire non-partitioned input.
The possible partition size choices for different operators represent
multiple parallel plans with different execution times, making this
a combinatorial plan search problem. The plan search space explo-
ration is usually done using a combination of both the heuristic and
the cost model based approach. It allows to prune the search space
for an efficient search. Overall, finding an optimal multi-core aware
parallel plan using traditional approaches is difficult. In compari-
son the feedback based approach we propose is relatively easy, as
the assumption is the input serial plan we start with is an optimal
plan. Since the approach explores the search space in a guided way



by parallelizing only the most expensive operator, we avoid a large
space of uninterested plans.

2.1 Plan mutation

We refer to the process described in the workflow as plan muta-
tion. Plan mutation could be guided by different policies. In this pa-
per we use parallelization of the expensive operator in a plan as the
guiding principle. An operator is considered expensive if its execu-
tion time is the highest amongst all operators. Based on the com-
plexity, we categorize mutation in three types as Basic, Medium,

and Advanced. )
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asic: Basic mutation involves paral- S o
lelization of an expensive operator by | |
introducing two new operators of the A AL A2
same type, called expensive operator’s Plan 1 Plan 2

cloned operators. The cloned opera- ] .
tors work on the expensive operator’s Figure 3: Basic mutation.
partitioned data. Partitioning is cheap when it involves no data
copy, but introducing range partitioned sliced view of the colum-
nar data. (Value / hash based partitioning needs the presence of a
partition operator, about which we discuss in Section 5.) An ex-
change union operator (either a newly introduced or an existing
one) combines the result of the cloned operators. In Figure 3 we
see one such example for select operator parallelization.

The two most popular al- X )
7\
X X
/N /N
A

gorithms for the join oper-
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ator are the hash join and
the sort merge join. We an-
alyze the hash join imple-
mentation as it suits most
workloads due to the om-
nipresence of non-sorted
data. We consider adaptive
parallelization of the join operator plan (Figure 4 Plan 1) when only
the larger (outer) input is split into equi-range partitions on consec-
utive runs. Figure 4 Plan 2 shows the parallelized plan with the two
new join cloned operators. An exchange union operator combines
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Figure 4: Join parallelization.
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to low selectivity input. This mutation stage
arises, when the exchange union operator is
introduced as a result of the basic mutation.
Figure 5 shows one such example where Figure 5: Medium
Plan 1 with an expensive exchange union op- mutation.
erator is mutated into Plan 2. The mutation process involves prop-
agating the inputs to the exchange union operator, to its data flow
dependent operators. The data flow dependent operators are cloned
to match the exchange union operator’s input. Finally a newly in-
troduced exchange union operator combines the result of the cloned
operator’s output. Usum
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mutation.  The expensive operator

(group-by) is parallelized by introduc- Figure 6: Advanced mu-
tation.

Figure 7: Complex operator dependencies in TPC-H Q14 par-
allel plan. Rectangles represent operators, and edges between
them represent the dependencies. The graph is only meant to
give a high level perspective of the plan’s complexity, abstract-
ing individual operator details. [12] shows graphs where oper-
ators are visible.

ing two cloned operators on its equi-

range partitioned data. Next the aggregation operators such as sum
and average are parallelized by introducing two aggregation cloned
operators. The cloned operators (group-by) result is propagated
to the aggregation cloned operators (sum). Finally, an exchange
union operator combines the parallelized aggregation operators re-
sult. Since the aggregation cloned operators always show very high
filtering property, the exchange union operator combining their re-
sult is cheap.

Summary: A relational operator gets parallelized in two cases. In
the first case, the operator itself might be expensive and gets par-
allelized using either the basic or the advanced mutation. In the
second case, operator parallelization occurs as a result of using the
medium mutation, where the operator is in the data flow dependent
path of the expensive exchange union operator. In both cases identi-
fying and resolving the parallelizable operator’s output propagation
dependency across the entire plan is an essential step.

The three mutation schemes we described cover all possible mu-
tations as an operator could either get parallelized due to its own
expensiveness or as a result of its presence in the data flow path of
another parallelizable operator.

2.2 Making plans simpler to mutate

Most columnar systems [1, 4, 7, 18] use a simple representa-
tion of plan with operators represented using physical algebra. The
operators use standardized interfaces for individual columnar data
and related argument passing. Column store specific functional-
ity such as operations on multiple columns and tuple reconstruc-
tion are mostly hidden away as the internal logic in the execution
engine framework. Some column stores like the open-source sys-
tem MonetDB, however use an abstract language to represent plans
[6], where column store specific functionality such as the tuple re-
construction and other columnar operations is exposed in the plan
representation itself. Use of operators with different semantics and
specialized operators such as the tuple reconstruction operators is
common. Figure 7 shows one such plan with complex data flow
dependencies.

Plan mutations using either the medium or advanced mutation in-
volves resolving parallelized operator’s propagation dependencies.
Hence, care has to be taken to resolve parallelized operator’s prop-
agation dependencies. To make plan mutations simpler, modifica-
tion of some of the operator’s semantic representation is needed.
We describe the related aspects in the rest of the section.

Adaptive parallelization and operator semantics: Operators can
have different semantics depending on primitives being used. Adap-
tive parallelization could further add more information such as as
the partition under use, total number of partitions, etc. Plan muta-
tions thus generate combination of different operator semantics.
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Figure 8: Column A dynamically partitioned with iterations.

For example, consider the case of the filter operator which can
have two representations. One which accepts normal columnar in-
put and the other which accepts column and also a bit vector from
another selection operator’s output. Hence, the filter operator could
be represented using two primitives depending on the number and
the type of inputs. Depending on the data flow dependency, a suit-
able filter operator gets parallelized during plan mutations.

Adaptive parallelization uses different parallelization rules catered
to different operator semantics. Since any operator could be ex-
pensive, resulting in its parallelization, the challenge for different
mutation schemes lies in how well they are able to resolve the data
flow dependencies across different operator semantics.

Plan rewriting: One of the techniques to ease the mutation process
is to modify the original input serial plan from the SQL compiler
using a query rewriter. The rewriter substitutes original operators
(for example, aggregation operators and tuple reconstruction oper-
ators) with new adaptively parallelization aware operators. These
new operators use modified implementation of operators such as
group-by, aggregation operators (sum, avg), and sort, by keeping
their original semantics, but with changed arguments ordering, to
resolve possible operator propagation dependencies. For systems
with simple plan representations the operator propagation depen-
dencies due to multiple columns could be handled in the execution
engine framework logic.

2.3 Adaptive parallelization aware partition-
ing

In a column store the operators operate on an array or vector
representation of the data. For readability, we consider the array
representation with range partitioning. It involves creating read
only slices on the base or the intermediate column. Creating slices
involves marking the boundary ranges for the base or intermedi-
ate columnar data and is cheap, as there is no data copying in-
volved. This technique could be also used during vectorized ex-
ecution where the vectors are derived from the partitioned range of
the base and intermediate input. We briefly describe a value based
partitioning approach use case in Section 5.

Dynamic partitioning: Adaptive parallelization generates dynam-
ically sized partitions on the base or intermediate column, as any
operator could be parallelized during successive iterations. In con-
trast a heuristically parallelized plan often uses a fixed number of
partitions based on the available CPU cores. To explain dynamic
partitioning of a column using a select operator, we use Figure 8.
When the select operator on the column in 8A turns expensive,
the column is sliced in two partitions represented by 8B. When the
select operator on partition 1 in 8B turns expensive, two new parti-
tions are introduced, represented by 2nd and 3rd in 8C. Now there
are three select operators, one on Oth partition of 8B and two on
2nd and 3rd partition of 8C. When the select operator on 2nd par-
tition in 8C becomes expensive, it is divided further and two new
partitions 4th and 5Sth in 8D are introduced. So now there are total
4 select operators working on Oth partition of 8B, 3rd partition of
8C and 4th,5th partition of 8D. Please note that the partitions are
of different sizes and their boundaries are aligned on the base col-
umn in 8A. Maintaining the alignment during dynamic partitioning
is important, as misalignment could lead to problems such as a)
repetition of data b) omission of the data across different operator
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Figure 9: Different alignment scenarios between columns dur-
ing tuple reconstruction due to dynamic partitioning.

partitions. Thus, dynamic partitioning allows the operators to work
on different sized partitions of the same column in parallel.

Dynamic partitioning and tuple reconstruction: Tuple recon-
struction is a well known problem in column stores [17] and is im-
plemented as join lookup. Column stores use either early or late
materialization strategies for column projection using tuple recon-
struction, which involves using row-ids to fetch values from the
column that needs projection. For example, consider the colum-
nar representations in Figure 10, which shows head (H) and tail
(T) columns grouped as Left (L) and Right (R). The head column
(LH / RH) contains row-ids, whereas the tail column contains ei-
ther row-ids (LT) or actual values (RT). The @ indicates a row-id.
When the head column (LH / RH) contains consecutive row-ids, it
is not materialized and used as a virtual column. During tuple re-
construction, the row-ids in the left tail (LT) are used as an index in
(RH) to fetch the corresponding values from the right tail (RT). For
example, row-ids 2, 4, 5, 7 from LT are probed in the RH, whose
corresponding values in RT are 12, 11, 20, and 13.

One important aspect is the effect dynamic partitioning has on
the tuple reconstruction due to possible misalignment between LT
and RH. When row-ids from LT are used as an index to fetch values
from RT, the row-ids in LT should be a subset of row-ids in RH. If
not, then a lookup using row-id in LT, for the row-id index in RH
does not exist, resulting in an inxali%access.

LH LT 10| 15

1@]2@ 2@ 12
2@ 4@ 3@] 44
3@] 5@ 4@ 11
4@ 7@ 5@] 20
5@|8@ 6@] 16
7@] 13

Figure 10: Tuple reconstruction between two columns.

Since adaptive parallelization generates variable sized partitions,
it gives rise to different alignment scenarios as shown in Figure 9
(B,C....F). Consider the mis-alignment example in Figure 10. Here
LT start row-id=2, which is greater than RH start row-id=1, and
LT end row-id=8, which is greater than RH end row-id=7. Hence,
LT’s upper boundary starts after RH’s upper boundary, whereas
LT’s lower boundary extends beyond RH’s lower boundary as rep-
resented in Figure 9D. In Figure 9 the lengths of columns provide
just a logical representation of over and undershooting of bound-
aries, and do not represent the actual content. To maintain the
alignment the lower boundary of LT is adjusted by removing row-
id=8, to match the lower boundary of RH. The correct boundary
alignment is represented by dashed lines in Figure 9D. Adaptive
parallelization depending on the operator semantics uses one of the
alignment scenarios, to make sure that the partitions align correctly.
Fixed size partitions always lead to correct alignment (See Figure
9A), resulting in a valid access.

Another important aspect arises when the output of operators
working on the dynamically partitioned data is packed together.
Here the exchange union operator must maintain the correct or-
dering to avoid the incorrect results. The correct ordering is main-
tained, as the operators whose results are packed follow the muta-
tion sequence order, hence the results being packed together fol-



low the same order. Adaptive parallelized plans could become
very large due to successive partitioning and operator propagation,
which could make partition misalignment related problems, if any,
hard to identify and resolve.

Plan explosion: As adaptive parallelization involves propagating
the parallelized operator’s output on its dependent operators, the
plans could quickly grow large. Plan explosion results as a side
effect of the exchange union operator removal during the medium
mutation. For example, when a descendant of the same type of
operator stays expensive during successive invocations, it gets par-
allelized and a single exchange union operator combines the output
of all such parallelized operators. As a result the number of in-
put parameters to the exchange union operator could become very
large. Eventually if the exchange union operator itself turns ex-
pensive, it is removed using the medium mutation. This leads to a
plan explosion, as the medium mutation propagates inputs of the
exchange union operator on its data flow dependent operators. For
each operator in the data flow path, new instructions (operators)
which equals the number of the exchange union operator inputs are
added in the plan. Hence, if the number of input parameters to the
exchange union operator is large, the plans could grow very large.

The growth of large plans is suppressed by not removing the ex-
change union operator if its input parameters cross a certain thresh-
old. The threshold in the current implementation is 15 parameters,
chosen on the basis of empirical observations from different paral-
lelization cases. Suppressing the exchange union operator removal
however stops further plan parallelization, as the exchange union
operator stays the most expensive operator in all further query in-
vocations.

We have described adaptive parallelization aware infrastructure
changes so far. Obtaining a minimal execution parallel plan how-
ever depends on how fast the adaptive parallelization process con-
verges. In the next section we describe a new algorithm that ensures
convergence in different scenarios.

3. ALGORITHM

In this section we introduce the heuristics for the global mini-
mum execution identification from the set of available plans and
the corresponding convergence algorithm. The algorithm is loosely
inspired by the hill climbing approach [26]. Figure 11 shows dif-
ferent cases of the presence of minima, plateaus, and up-hills in the
execution times, during adaptive parallelized runs of a join opera-
tor plan. We refer to the minimal execution time amongst them as
the global minimum execution (GME). Like most systems that gen-
erate parallel plans, our base assumption is an optimal input serial
plan. Hence, the focus of parallelization is to identify the optimal
number of partitions for operator’s data in the input plan. Problems
such as sub-optimal parallel plans due to poor join ordering which
might require backtracking are not considered, as the input is an
optimal serial plan.

The convergence algorithm should be able to find the GME in
all cases of minima, plateaus, and up-hills in the execution time,
and converge in minimal number of runs. Next we formally define
the GME first, the convergence algorithm next, and then illustrate
different convergence scenarios.

3.1 Global minimum execution (GME)

As the runs progress, the GME is the minimal execution time amongst
so far observed runs, and keeps on changing, during an active adap-
tive parallelization instance.

We denote the current run’s execution time as Cur Exec. The
execution time improvement (CurExeclmprv) at the current run is
calculated with respect to Oth run’s (SerialExec) execution time.

80 1 1 1 1 1 1

60 | | =

40 4 | I L

Time (Seconds)
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Number of runs

Figure 11: Adaptive parallelization convergence algorithm sce-
narios for join operator parallelization.

CurEzecImprv = |(Serial Exec — CurEzxec)|/Serial Exec.

To calculate the first GME improvement, we initialize GME to the
first run’s execution time after the serial execution (Oth run).

GM Eimprv = |(Serial Exec — GME)|/Serial Exec.

As the runs progress, new GME needs to be identified. A new
run’s exuection time becomes the new GME, if the run’s execution
time improvement is better than the current GME’s execution time
improvement by a certain threshold.

GME = CurEzec
{if (CurExecImprv — GM Eimprv) > threshold}.

As the runs progress, the new execution times could be slightly
lower than the existing GME, hence, selecting the correct threshold
is important in discarding such new execution times, which other-
wise could become the new GME. For example, consider a hypo-
thetical adaptive parallelization instance. Let CurExeclmprv at the
8th run be 96%, GMEimprv at the 3rd run = 90%, and threshold =
5%, then (CurExecImprv - GMEimprv) >5. Hence, the Current run
Execution time at the 8th run is considered the new Global Mini-
mum Execution (GME). Correct tuning of the threshold parameter
is thus crucial as it helps to discard multiple possible GMEs and to
chose the optimal execution time amongst them, as the new GME.

Finding GME could be also difficult due to the presence of many
local minima, about which we illustrate next.

The global minimum detection problem: The problem could
be formally stated as finding the global minimum execution from
many local minima that occur as the runs progress. When the exe-
cution time of a run is more than its previous run, a local minimum
results at the previous run. For example, a local minimum occurs
at the 4th run in Figure 11. The convergence algorithm has to over-
come many such local minima during its exploration of the global
minimum. We use the rate of improvement in the execution time of
the runs as a heuristic, to avoid the local minimas.

The execution time of consecutive runs could improve or worsen
depending on the run-time conditions (execution skew, operating
system interference), giving rise to positive or negative rate of ex-
ecution time improvement (ROI). The ROI of a run is defined with
respect to its previous run’s execution time (PrevExec). We define
ROI as follows.

ROI = (PrevExec—CurExec)/MAX (CurExec, PrevExec).

In Section 3.2 while describing the core convergence algorithm,
we illustrate how to use ROI to avoid local minimas. Finding GME
is difficult, however, another equally difficult task is to find it in the
minimal convergence runs, about which we illustrate next.

The minimal run convergence problem: The problem could be
formally stated as finding GME in a minimal number of runs, dur-



ing consecutive query invocations. Too few runs have a risk of non-
occurrence of the global minimum and the algorithm converging on
a local minimum. Too many runs might ensure a global minimum
at the cost of a slow convergence. Hence, finding the right balance
between the minimum convergence runs and the GME is of prime
importance for the convergence algorithm.

3.2 Convergence algorithm

We describe the convergence algorithm using the context de-
scribed so far in Section 3. The aim is to find the GME in minimal
number of convergence runs. We model the number of convergence
runs (Convergence_Runs) using the parameters credit and debit. A
credit reflects the number of runs accumulated at each run due to
a positive ROI. A debit reflects the number of runs accumulated at
each run due to a negative ROL.

Credit = Credit + (ROI x Number_Of_Cores).
Debit = Debit + (|[(ROI)| * Number_Of_Cores).

The value of (credit - debit) at each run reflects the balance (Con-
vergence_Runs) available for the system to converge. Hence, the
next run is allowed only if the balance is positive i.e. ((credit -
debit) >0).

Convergence_Runs = Credit — Debit = f(ROI).

The algorithm starts with the value of credit = 1 and debit = 0.
When parallelism reduces the execution time, the ROI of the first
run is positive and very high (Figure 11 - The algorithm starts with
the Oth run). With an increase in runs, the ROI decreases. During
the initial few runs the algorithm should ensure availability of suf-
ficient runs as a balance, to avoid premature convergence. During
the later runs, as the ROI slows down, the algorithm should ensure
as few balance runs as possible, to ensure fast convergence. From
the formula above, as both credit and debit are dependent on ROI,
they are a function of ROI, which makes the Convergence_Runs
also a function of ROI. The algorithm convergence is hence guaran-
teed, since the heuristic Credit - Debit >0, which decides the avail-
able Convergence_Runs becomes invalid eventually. Next we de-
scribe various convergence scenarios and how the heuristic Credit
- Debit >0 becomes invalid, which guarantees the algorithm’s con-
vergence.

3.3 Convergence scenarios

We identify three scenarios during which the algorithm should
ensure the convergence, 1. No premature convergence in a local
minimum before identifying a global minimum. 2. No extended
convergence, and 3. The convergence in a noisy environment. We
expect these scenarios to cover the entire spectrum as the aim is to
find the global minimum, and the possible problems for the conver-
gence algorithms could be its early termination, late termination,
and termination during noisy environment. We describe these sce-
narios next.

3.3.1 No premature convergence

When parallelism improves the execution time, the first run al-
ways has a very high ROI (Figure 11 - The algorithm starts with the
Oth run). Hence, the credit accumulated after the first run is very
high with an upper limit of (Number_Of_Cores + 1). This ensures
that there are sufficient runs available as a balance in the system
during the initial stages to overcome plateaus and up-hills. Each
run after the first run contributes more credit, ensuring more runs.
This is also analogous to the concept of accumulation of the poten-
tial energy by a body when it falls from great heights. The greater
the height, the higher the potential energy. The energy allows the
body to keep moving in plateaus and climb high hills, as long as

there is a balance energy.

3.3.2 No extended convergence

Accumulation of high credit in the few initial runs on a stable
system could result in a state where the algorithm never converges.
In a stable system the execution time variations are minimal, lead-
ing to fewer debits being made. In such a system, the proportion of
accumulated credit will always be much higher than the accumu-
lated debit after a few initial runs. For example, consider Figure 11.
After 15 runs the ROI is minimal, ensuring that no new significant
credit or debit is introduced. However, the accumulated credit till 7
runs is very high, as the ROI till 7 runs is very high. This situation
leads to non-convergence as there are always balance runs available
i.e. (credit - debit<= 0) is never true.

Leaking debit: To ensure the algorithm converges in a finite num-
ber of runs we introduce the concept of leaking debit. In this
scheme after a threshold on the number of runs is crossed, a con-
stant debit gets deducted from the available credit at each run. /¢
ensures the available credit is drained to 0, so that the algorithm
converges in a finite number of runs. Hence, leaking debit is a func-
tion of the available credit at the threshold run. The threshold run
value is calibrated to be the Number_Of_Cores on the CPU. It en-
sures at least those many runs are used to find the optimal execution
time. The Leaking_Debit is calculated by dividing the available
credit at the threshold run amongst the possible remaining number
of runs during the global minimum search.

Remaining_Runs = Extra_Runs * Number_O f_Cores.
Leaking_Debit = Credit/ Remaining_Runs.

Based on plan complexity, some queries converge early, while
some take longer after crossing the threshold run reference. To
avoid premature convergence, the system specific tunable parame-
ter Extra_Runs is used, which ensures that the remaining number
of runs to search the global minimum are sufficient. Note that Re-
maining_Runs is just an approximate bound. Plan representations
vary considerably across systems. Hence, based on empirical ob-
servations from different parallelization cases, and multiple exper-
imental runs (five), for the current platform, Extra_Runs=eight is
considered a safe boundary value to avoid the premature conver-
gence. Higher values result in an extended convergence.

3.3.3 Convergence in a noisy environment

Depending on the stability of the run-time environment (oper-
ating system process interference, memory flushes, etc.) the exe-
cution time of an individual run could vary considerably. The ex-
ecution time of some of the runs in a noisy environment is often
greater than the serial plan execution time. One such peak is visi-
ble in Figure 11 at the 30th run. Most peak executions are followed
and preceded by a normal execution. If care is not taken such peaks
will make the algorithm halt immediately as the debit due to peak
ascent will be higher than the accumulated credit. Hence, the algo-
rithm should converge gracefully in such a noisy environment.

Our solution is to mark all such unique peaks as outliers, and
ignore their presence. The algorithm incorporates this by allowing
the immediate next run to execute. This ensures the balance runs
stay unaffected, as the debit made during the peak ascent is com-
pensated by an equivalent credit during the peak descent, during the
next run. Concurrent workload could also affect the convergence,
however, tuning the Extra_Runs parameter to find the leaking debit
should take care of it.

3.3.4  Global minimum plan identification proof

The convergence algorithm should ensure a global minimum plan
while converging in a reasonable number of runs. The lower bound



Table 1: System configuration

CPU Sockets | Threads | L1 cache | L2 cache | Shared L3 cache | Memory | OS
Intel Xeon E5-2650@ 2.00GHz 2 32 32KB 256 KB | 20MB 256GB | Fedora 20
Intel Xeon E5-4657Lv2@ 2.40GHz | 4 96 32KB 256KB 30MB 1TB Fedora 20

on the convergence runs is Number_Of_Cores + 1, while the upper
bound approximates between (Number_Of Cores + 1 + Remain-
ing_Runs) and extra runs added to the previous upper bound, if
any, due to a large credit accumulation. The convergence runs are
directly influenced by the Leaking_Debit, and credit / debit accu-
mulation.

The global minimum plan’s existence beyond the upper bound
of the convergence runs is not possible. We provide a proof by
contradiction. If such a plan exists then its execution should be sig-
nificantly better. In that case the corresponding expensive operator
should have been identified much earlier, even before the first upper
bound on the convergence runs is reached. If multiple such plans
exists, then that indicates improved execution with each run. Such
improvement should then add extra runs (more credit) to the first
upper bound on the convergence runs, which would prolong the
global minimum search further, to find a more optimal plan. Hence,
no matter the situation, a near global minimum plan is identified in
the available convergence runs. In all the convergence scenarios
when the heuristic Credit - Debit >0, that decides available Con-
vergence_Runs, turns invalid, the algorithm converges.

4. EXPERIMENTS

Adaptive parallelization is implemented in MonetDB, being the
only full fledged open-source columnar system, with memory mapped
columnar representation for the base and the intermediate data. The
operators are represented in an intermediate language called Mon-
etDB Assembly Language (MAL) [6], with their implementation
in C. The operators have variable number of arguments depending
on their semantics, and form complex data flow patterns in MAL
plans, as shown in Figure 7.

Table 1 summarizes our experimental hardware platform, which
consists of two types of machines, with two and four socket CPUs
each. All experiments, unless mentioned, use in-memory data (with-
out disk I0) on the two socket machine. Heuristic parallelization
unless mentioned uses 32 threads. Each graph plots an average of
four runs of the same experiment. We use the four socket machine
to test one of the workload’s scalability from NUMA perspective.

The experimental section is divided into two broad categories.
In the first we analyze how parallelization gets affected by vari-
ous operator level parameters. In the second we analyze it at the
SQL query level. We use a mix of micro-benchmarks, simple, and
complex SQL queries to gain parallelization behavior insights.

We use TPC-H and TPC-DS workload for SQL query level per-
formance comparison. We observe the TPC-H isolated execution
of both the adaptive and the heuristic parallelization shows similar
performance. However, adaptive plans are better as they use fewer
number of cores, which helps during concurrent workload. Adap-
tive plans show better performance than the heuristic plans for the
TPC-DS workload isolated execution, due to optimal number of
partitions, and the presence of the skewed data. In the rest of the
section we describe the experimental details.

4.1 Operator level analysis

Adaptive parallelization helps to analyze the role of individual
operators in influencing parallelized execution, as it uses expen-
sive operator parallelization as a heuristic. Getting insights into the
issues such as the execution skew becomes easier. An operator’s
execution time varies on the basis of type of computation, data dis-
tribution, amount of data being read / written, type of data access
(serial / random), and memory hierarchy of the access (cache / main

Static 8 parts, 8 threads E====1
Static 128 parts, 8 threads 272222
Dynamic 8 parts, 8 threads ssssss
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Figure 12: Parallelized select operator execution on skewed
data using static and dynamic (adaptive) sized partitioning.
The second bar indicates a work stealing based approach.

memory / disk 10). We analyze some of these factors next.
4.1.1 Data skew

This experiment highlights the role of dynamic sized partitions
to avoid execution skew during parallelized execution, when the
data distribution is non-uniform (skewed). The execution skew oc-
curs when at least one of the parallelized operators takes longer to
execute than the rest.

Static partitioning (equi-range partitioning) of skewed data leads
to execution skew as some partitions have more matches than the
rest. Adaptive parallelization performs well in skewed data sce-
nario as the operator with the skewed partition turns expensive, and
gets parallelized until expensiveness balances out.

Figure 12 shows the execution time when parallel select op-
erators work on statically or dynamically (adaptively) partitioned
skewed column of type long (8 bytes). The number of tuples in
the input column are 1000 million (M) (size = 8GB). Figure 13
shows the column’s data distribution with 500 million random tu-
ples in the first half. The second half contains skewed data with
5 sequential clusters of 100 million identical tuples. We vary the
select operator’s condition to generate the execution skew.

100M| 100M| 100M|100M |100M
500M Random Numbers lSamelSamel SamelSamelSame

Figure 13: Data distribution for a skewed column.

Figure 12 shows execution with 8 threads on 8 dynamically sized
partitions (blue) is up to 60% better than the execution with 8 threads
on § static partitions (khaki). One may argue that the work steal-
ing approach [5] could solve the problem of execution skew due to
the static partitions. We analyze it by creating a large number of
smaller partitions (128) operated upon by 8 threads. Large number
of smaller partitions allows those threads that finish work early to
operate on remaining partitions, while threads on skewed partitions
stay busy. Identifying the optimal combination of static partitions
and threads is however non trivial, as in some cases more partitions
might lead to plan blow-up resulting in scheduling overheads. In
contrast we observe that the dynamic sized (adaptive) partitioning
approach with 8 threads and just 8 partitions fares competitively
with static 8 threads, 128 partitioned approach.

Summary: Skew handling is a natural property of adaptive paral-
lelization. It is a result of dynamically sized range partition cre-
ation, and a side effect of the expensive operator parallelization
heuristic.

4.1.2  Selectivity, Input size and Exchange union operation

This experiment analyzes the effect of selectivity, input size, and
the exchange union operation on the parallelized execution of select
and join operators, in terms of their speed-up. Speedup is defined
as the ratio of serial to parallel plan execution time. The experi-
ment also allows to analyze the speed-up effect when the number
of threads varies from 1 to 32. This is possible since with each it-
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Figure 14: Effect of variations of data size and selectivity on the

speedup of the adaptively parallelized Select operator plan.

Table 2: Select operator plan speedup (compared to serial execu-
tion) using adaptive and heuristic parallelization.

AP = Adaptive, HP = Heuristic parallelization
Selectivity
0% 50% 100%
Size (GB) | AP HP | AP HP | AP | HP
100 10 10 8.5 10 7 9
20 105 | 12 8.5 12 8 12
10 16 11 145 | 11 12 9.5

eration one more partition gets added and is available for one more
execution thread (from a pool of 32 threads) to operate in parallel.

Exchange union operation: Many systems use the exchange oper-
ator based parallelism [15], where one of the concerns is to iden-
tify the correct placement of the exchange operator in a plan to
minimize its overhead [2]. Most systems use a cost model based
approach for this decision. A good example is [30], where Vec-
torwise is shown to have a limited speed-up due to the exchange
operator overheads.

As the exchange union operator combines parallelized operator’s
result, its expensiveness varies depending on the size of the data
being packed. Low selectivity reflects more matching data, hence
more data to be packed. The packing overhead is minimized by
pushing the exchange union operator as high as possible. It ensures
the final data to be packed is relatively small, as it gets filtered by
the intermediate operators.

Adaptive parallelization (AP) enables to analyze the exchange
union operator’s placement with successive iterations of parallelized
plans, as it directly affects the speed-up. In the next two experi-
ments we observe that the AP plan’s speed-up is comparable to the
speed-up of the heuristically parallelized (HP) plans. The speed-up
gets hindered due to operator dependencies that form critical paths,
which can not be parallelized. However, the AP plans benefit by
their optimal multi-core utilization due to less partitions, which en-
sures improved concurrent execution performance, as described in
Section 4.2.5.

Select operator adaptive parallelization: We use query 6 from the
TPC-H benchmark to analyze the speedup of the select operator
(See Table 2). Query 6 is a simple query with only selection predi-
cates on the Lineitem table. We vary the selectivity by varying the
parameter /_quantity from the selection predicate. Figure 14 plots
the execution time of AP plans on the Y axis with respect to iter-
ations (X axis), when selectivity is varied from 0% (all output) to
100% (no output), and scale factor is varied from 10 GB to 20 GB.
We do not plot the graph for 100GB for readability purpose, and
only list its speedup in Table 2.

From Table 2 as the selectivity increases the speedup decreases.
During low selectivity a single select operator in a serial plan writes
a large number of output tuples, as compared to its parallel plan
counterparts. This results in the large speedup as serial execution
time is much higher, whereas parallel execution time is much lower.
During highest selectivity (100%) since there is no output the serial
execution is less expensive as compared to 0% selectivity serial ex-
ecution. This results in lower speedup. The speedup increases with
a decrease in the input size. This is a result of lower minimum time
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Figure 15: Effect of variations of data size on the speedup of the

adaptively parallelized Join operator plan. Outer input parti-

tioned and inner input used to build hash table.

during parallel execution, due to less input data. With increased
selectivity the speedup for AP is less compared to HP. This is due
to the presence of less expensive exchange union operators, which
do not get pushed higher in the plan.

Table 3: Join operator plan speedup (compared to serial execution)
using adaptive and heuristic parallelization.

AP = Adaptive, HP = Heuristic parallelization
Size (MB) 64 16 (Smaller Input)
(Larger Input) | AP HP AP HP
3200 1575 | 14 18.5 18
2000 15 135 | 17.75 | 17.75
640 1375 | 13 17 15

Join operator adaptive parallelization: For the join operator (hash)
plan parallelization analysis, we partition the outer input and build
up the hash table on the inner input. We use a micro-benchmark
for a fine grained control, where the outer input has 400 M, 250
M, and 80 M (M = Millions) random tuples of type long (8 bytes),
and the inner input has 8 M and 2 M tuples. The outer inputs stay
larger than the inner input of size 16 MB (2 M tuples) even after 32
partitions (threads on CPU). The 16 MB input fits in the shared L3
cache (20 MB).

Figure 15 shows the join operator plan speedup and Table 3

quantifies it. The speedup of 16 MB input join is more than the
64 MB input join, as the 16 MB input join’s hash table fits par-
tially in the L3 cache (20 MB), which improves the probe phase,
due to reduced cache thrashing. Speedup also decreases as the
outer table size decreases, as the serial execution time is directly
proportional to the outer table size. For all sizes the best speedup
is obtained when the number of partitions are 32, with 32 threads
(hyper-threading enabled). Maximum speed-up observed is around
the number of physical cores (16). Both AP and HP show a similar
performance unlike the previous select operator plan analysis case,
as the join plan contains only join and union operators.
Summary: Adaptive parallelization works for both the select and
the join operator and these operators scale linearly with the number
of physical cores. Input size, selectivity, and properties such as
cache consciousness affects the speedup.

Having analyzed how individual operators affect parallel execu-
tion, in the next section we focus on holistic SQL query level anal-
ysis, from execution performance and convergence perspective.

4.2 SQL query level analysis
4.2.1 TPC-H queries

Since the TPC-H benchmark is considered the de-facto work-
load for performance comparison, in this section we use a subset
of queries (see Table 4) from TPC-H (scale factor 10). TPC-H has
uniformly distributed data. The adaptively parallelized group-by
operator implementation at present supports single attribute group-
by queries. Hence, we modify some queries so that they have a
single attribute group-by representation. Since we use the same
set of queries to evaluate multiple parallelization approaches, the
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comparison is fair. We plot an average of four executions using the
experimental set-up described towards beginning of Section 4.
Table 4: TPC-H queries.
[Simple [ Q6 [ QI# | [ |
[ Complex | Q4 | Q8 | Q9 | Q19 | Q22 |

We compare adaptive parallelization (AP) with heuristic paral-
lelization (HP), the default parallelization technique in MonetDB,
under isolated execution setting. HP uses parameters such as the
number of threads, physical memory size, and the largest table size
to identify the number of partitions for the largest table in the se-
rial plan. A plan re-writer generates a parallel plan from a serial
plan by propagating the partitions to data flow dependent opera-
tors. Though both HP and AP start with the same serial plan, the
final parallel plan is different for both techniques as in AP only the
most expensive operator gets parallelized unlike in HP, where all
possible parallelizable operators are parallelized. In Figure 16 the
first two bars show HP vs AP performance when queries execute
in isolation. All AP queries except Q9 and Q19 show similar per-
formance as HP. Q9 and Q19 show a degraded performance due to
the presence of some non-parallelizable operators, which prolong
the query execution. The robustness of individual query execu-
tion could be observed in Figure 18C, where queries show minimal
execution time variations. Though the execution performance of
adaptive plans is similar to the heuristic plans, the adaptive plans
are better as they use much fewer number of partitions (See Table
5). It helps during concurrent workload execution, where adaptive
plans exhibit better execution performance due to better resource
utilization. Table 5: AP and HP Q14 plan statistics.

AP | HP
# Select operators 10 65
# Join operators 16 32
% Multi-core Utilization | 35 75

4.2.2 TPC-DS queries

TPC-DS benchmark has 25 tables, out of which 6 tables are rel-
atively large (above 1GB in size), in a scale factor 100 dataset. The
benchmark supports 99 query templates. We use a few modified
queries. These queries are a subset of the original TPC-DS queries
and are chosen such that they contain the large tables and a few
smaller dimension tables. Since we compare both the adaptive and
the heuristic parallelization technique with the same queries, the
comparison gives a perspective of their respective performance.

We experiment on both the two socket and the four socket ma-
chine (See Table 1 for configuration) with 100GB dataset, to get
a perspective of the NUMA effects. Graphs in Figures 17a and
17b show the comparison. Adaptive plans exhibit a maximum
of 5 times better performance compared to heuristic plans, which
could be attributed to correct partitioning by adaptive paralleliza-
tion compared to heuristic parallelization and the skewed data dis-
tribution. The execution time for both two and four socket machine
shows similar time, which indicates minimal NUMA effects. As
authors in [14] observe, since MonetDB uses a memory mapped
representation for the buffer data, as the number of partitions in-
crease, we expect them to get assigned to the memory modules of
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Figure 17: Isolated execution performance of TPS-DS queries
on a) 2 socket machine with 2.00 GHz CPU b) 4 socket machine
with 2.40 GHz CPU, on 100GB data.
the sockets on which operator execution gets scheduled. We also
observe a limit on the execution improvement, even though a higher
number of cores are used, which indicates increased parallelism
need not improve performance beyond a threshold.

4.2.3 Concurrent workload execution

This experiment highlights the effectiveness of adaptively paral-
lelized plans compared to heuristically parallelized plans in a con-
current workload setting. Concurrent query executions in batch
workload leads to resource contention, which in turn affects the
degree of parallelism of individual queries under execution. Re-
source contention varies with random workload, however for the
current set-up we consider a homogeneous concurrent workload.
In Figure 16 the 4th and Sth bar shows HP vs AP execution under
a concurrent workload. The workload consists of random simple
and complex queries from the TPC-H benchmark (10GB), where
32 clients invoke queries repeatedly. AP Q8 shows 50% improved
execution compared to HP Q8. Simple queries such as Q6 and Q14
show around 90% execution improvement in AP. HP plans have
too many partitions compared to the AP plans as shown in Table
5. AP plans also reflect the resource contention through execution
feedback. Hence, AP plans are more robust and better performing
under a concurrent workload, compared to statically generated HP
plans. In [11] authors discuss HP vs AP plans comparison under
different concurrent workload resource contention scenarios in a
detailed manner.

4.2.4 Comparison with Vectorwise

We compare the concurrent workload performance of Vector-
wise (version 3.5.1 with histogram build feature enabled to gen-
erate optimized plans), a leading analytical columnar database us-
ing pipelined vectorized execution [7], with adaptive paralleliza-
tion in MonetDB. Vectorwise uses cost model based exchange op-
erator dependent parallel plans. The resources are allocated based
on the number of connected clients and the system load. During
a heavy concurrent workload (32 clients invoking random TPC-H
queries repeatedly on 10GB data), the first client’s query gets all
the resources, while the queries from the remaining clients get less
resources based on an admission control scheme. Figure 16 shows
MonetDB adaptive parallelized query execution performance is bet-
ter than the Vectorwise execution performance, during the concur-
rent workload. MonetDB does not have explicit resource control
based plan generation scheme, which helps in the current case. We
hypothesize that as workload queries are invoked repeatedly, Vec-
torwise queries under analysis execute serially due to lack of re-
sources.

4.2.5 Multi-core utilization

This experiment highlights that an AP plan is better than a HP
plan from the multi-core utilization perspective. Multi-core uti-
lization represents the fraction of actual CPU cores used versus
the available cores during query processing. AP ensures minimal
multi-core utilization as each operator is parallelized with a differ-
ent degree of parallelism unlike HP. Figures 19 and 20 visualize
AP vs HP plan execution of TPC-H Q14, in an isolated execution
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algebra.join

16 calls: 855.109 ms
algebra.subselect
10 calls: 341.978 ms
language.*

18 calls: 22.959 ms
sql.projectdelta

5 calls: 137.170 ms

algebra.leftfetchjoin
4 calls: 78.242 ms
batcalc.ifthenelse

3 calls: 15.320 ms
mat.pack

3 calls: 25.010 ms
sql.tid

3 calls: 2.877 ms

algebra.selectNotNil
2 calls: 153 us

batcalc.*
6 calls: 39.017 ms

- l:l sql.bind
19 calls: 8.461 ms
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Figure 19: Adaptive parallelization multi-core utilization (35 %)
during isolated execution of TPC-H Q14. Green- Select, Blue-
Join, Brown- Exchange union operator.

setting. The length of a colored box represents an operator’s execu-
tion interval (In an operator-at-a-time execution model an operator
executes completely. Blue- join, Green-select, Brown- exchange
union operator.) A whitespace indicates no execution. The amount
of whitespace in Figure 19 is much more than in Figure 20, indicat-
ing lower multi-core utilization for AP. In the HP execution (Figure
20) the length of the join operators is much longer than the corre-
sponding operators in the AP execution (Figure 19), which hints at
the memory bandwidth pressure. In [13] authors analyze parallel
plans in detail using this visual scheme.

The degree of parallelism per operator thus influences the overall
multi-core utilization. For example, while only ten select operators
execute in AP, many more execute in HP (See Table 5). Since AP
shows lower multi-core utilization (35%) during isolated execution,
the spare resources ensure better response time during concurrent
workload, as further elaborated in [11].

4.3 Convergence algorithm robustness

Adaptive parallelization not only should converge in minimal
number of runs, but also should exhibit robustness. The robust-
ness implies during multiple adaptive parallelization invocations of
a query a) the total number of convergence runs b) the run at which
the global minimum occurs, and ¢) the global minimum execution
time should not show much variations. In this experiment we test
the robustness of the convergence algorithm in an isolated execu-
tion setting. Graphs in Figure 18 (A,B,C) show these three cases.

Graph 18(A) shows the number of convergence runs to find the
optimal execution time for three invocations. Except for Q6 and
Q22 all other queries show minimal variations for convergence runs.
Q6 is the most simple query in the given set of queries. It shows the
most speed-up amongst all queries, but that also makes it vulnera-
ble to external factors such as operating system noise interference,
etc. Since the global minimum time is very low, even small inter-
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Figure 20: Heuristic parallelization multi-core utilization (75 %)
during isolated execution of TPC-H Q14. Green- Select, Blue-
Join, Brown- Exchange union operator.
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ference affects its performance. Q22 is a complex query where join
operator is always the most expensive operator.

Graph 18(B) shows the run where the global minimum time oc-
curs during three invocations of the query set under evaluation. De-
pending on the resource contention and the run-time interference
from the operating system we get small variations across different
runs for all queries. The highest difference is observed between the
first and the third run for Q19. However, overall the number of runs
do not show much deviations.

Graph 18(C) shows the global minimum time for adaptively par-
allelized queries for three invocations. The global minimum time
for all queries is almost stable across multiple invocations. This
indicates the robustness of the generated plans.

Graph 18(D) shows that the queries 4, 6, 9, 19 converge quickly

after detection of the global minimum. Different types of queries
show different convergence properties and the algorithm gets tuned
to converge in the least possible number of runs. For example,
Q8, Q14, and Q22 show the global minimum with fewer than 40
runs, while the total convergence runs are around 100. The slow
convergence is a result of the Leaking_Debit being too low, which
leads to the credit getting drained slowly. The convergence runs are
close to 60 for the same global minimum, when the Leaking_Debit
is high.
How to lower number of convergence runs? At present plan par-
allelization introduces only a single new operator per invocation,
which results into a higher number of convergence runs, as the ex-
ecution skew introduced by a single new operator needs to level
out. The number of runs could be made much lower if more and
even number of operators are introduced per invocation. We avoid
it at present to analyze the parallel plan evolution with each new
operator addition.



S. RELATED WORK AND APPLICABILITY
TO OTHER SYSTEMS

The basic optimizer approach of “optimize once and execute
many” as proposed by System R has reached its limits [28]. Hence,
adaptive query processing techniques are being proposed to ad-
dress query optimization problems due to unreliable cardinality es-
timates, data skew, parameterized query execution, changing work-
load, complex queries with many tables, etc. [9]. In this section we
describe some state of the art adaptive techniques.

Adaptive aggregation is used by the authors in [8] to handle dif-
ferent group-by based parallelization cases. The operator performs
a lightweight sampling of the input to choose the best aggregation
strategy with high accuracy, at runtime. Algorithmic approaches
are based on using independent and shared hash tables with lock-
ing and atomic primitives to minimize hash table access contention.
Three cases are identified that affect performance based on the av-
erage run-length of identical group-by values, locality of references
to the aggregation hash table, and frequency of repeated access to
the same hash table location. This work targets adaptivity from a
single operator’s perspective, whereas our work targets it at the plan
level. The approach used here could be combined with our adaptive
approach to improve per operator performance.

Vectorwise uses micro-adaptivity to improve query execution time
by using run-time execution feedback [25]. Micro-adaptivity is de-
fined as the ability to choose the most promising execution primi-
tive at run-time, based on real time statistics. Most methods, like
adaptive parallelization, use plan level modification, whereas micro-
adaptivity uses the available execution primitives at run time. It
chooses primitives based on the platform, instance, and call adap-
tivity using parameters such as compiler, branch prediction, selec-
tivity, loop unrolling, etc.

The Learning Optimizer (LEO) in DB2 uses query execution feed-
back for cardinality estimation corrections [29]. It uses learning
and feedback based infrastructure to monitor query execution and
generates feedback for correction in the cardinality estimation and
related statistics. More learning helps in better cost model predic-
tions. LEO has improved query execution performance by orders
of magnitude. MonetDB does not use cardinality related statistics,
however if used with the statistics correction methods, the selection
of operator’s to parallelize could be improved further.

In [4] authors illustrate adaptive parallel execution in Oracle for
big data analytics. In Oracle problems such as reliance on query
optimizer estimates are handled by changing the data distribution
decisions adaptively, during query execution.

Column store architectures differ in various aspects such as plan
representation, partitioning strategy, scale out support, etc. Encom-
passing all the requirements in a single architecture is not possible
due to their architectural confinements. While describing the re-
lated state of the art column stores, we also describe the possibility
of adaptive parallelization’s application to them.

Vertica uses a value based partitioning approach [18]. It uses a
Read Optimized Store (ROS), where the data is stored in multi-
ple ROS containers on a standard file system. Two files per col-
umn within a ROS container are stored, one with the actual column
data and the other with position index. This representation is very
similar to the representation in Figure 10, where RH is the index,
while RT is the actual value. Vertica also supports grouping mul-
tiple columns together in a file, however this hybrid row-column
storage is rarely used in practice because of the performance and
compression penalty it incurs.

Vertica execution engine uses a multi-threaded pipelined vector-

ized execution where the execution plan consists of standard re-
lational algebra operators. Operators such as StorageUnion are
used for partitioning data across operators. Hence, StorageUnion is
equivalent to a partition operator. Operators such as ParallelUnion
are used for directing execution to multiple threads and to combine
the parallelized operator’s results. Hence, ParallelUnion is equiva-
lent to an exchange union operator.

To understand the feasibility of applying adaptive parallelization
in Vertica, let’s assume that the execution starts with a serial plan
and incrementally introduces value based partitions to partition the
expensive operator’s data. For example, when a select operator be-
comes expensive and needs to be parallelized, a partition operator is
introduced which creates two value based partitions, which would
be consumed by two new select operators. The two new select op-
erator’s output is combined using an exchange union operator. This
is similar to the basic mutation scheme with the addition of a parti-
tion operator that feeds two newly introduced select operators.

When one of the newly introduced select operators itself be-
comes expensive, we further partition that operator’s data into two
more value based partitions, by introducing a new partition opera-
tor in the data flow path after the previous partition operator, and
before the input of the expensive select operator. Thus in a hypo-
thetical case when one of the select operators stays expensive dur-
ing consecutive invocations, new partition operators would keep on
getting added to the existing plan. We expect the cost of the parti-
tioning operator to be small considering its presence in the existing
Vertica execution plans. Quantifying the exact cost is difficult due
to lack of sufficient references. Similar logic could be applied for
other operator’s parallelization.

Apollo creates column store indexes in a traditional row store database
like SQL server [20]. It is the first database which uses the existing
row store to create new column store indexes. The method involves
creation of batches of rows to create segments from which individ-
ual columns are stored in individual column representations. The
column segments information is stored in the directory structure,
with a catalog.

The columns are compressed and encoded using different types
of encoding. New operators called batch operators are introduced
which get called if there is bulk data to be processed. The valid
rows to process are noted down in bitvector formats.

Apollo uses range partitioning of data. Since traditional SQL
server uses cost model based exchange operator induced paralleliza-
tion, Apollo leverages the existing SQL server parallelization tech-
nique using the exchange operator based parallelization.

To understand how adaptive parallelization might be applied in
Apollo type of column store, we need to find similarities between
adaptive parallelization and Apollo architecture. Both do range par-
titioning of data, hence the fundamental assumption of range parti-
tioned access stays the same, and could change in the way individ-
ual operators are implemented. For example, the operations like the
join operator consists of separate build and probe operators, where
build uses a shared hash table, where all threads build a hash table,
and then probe operator probes it in parallel. As Apollo extends the
exchange operator based parallelization as used in SQL server, we
expect adaptive parallelization to be useful, due to its dependence
on the exchange operator based parallelization.

Hyper uses LLVM [21] generated Just In Time (JIT) compiled
plans. The longest pipeline in a plan is identified, by looking for a
pipeline breaker operator. The operators in the longest pipeline are
fused using JIT compilation such that their highly efficient machine
language code represents a single task. The fusing allows tuples to
be kept in registers to process them without generating intermedi-



ate results. Hyper’s morsel driven parallelism uses work stealing
based approach to assign the fused pipeline tasks to a fixed number
of pre-created threads. The task allocation based approach allows
controlling the number of tasks executing in parallel dynamically,
at run-time, and allows better control over resource allocation dur-
ing concurrent execution of queries.

Adaptive parallelization technique is based on the fundamental
assumption that an expensive operator is always identifiable in an
execution plan. This is a basic requirement since plan paralleliza-
tion is a result of incrementally parallelizing the expensive operator
during successive query invocations, until a global minimum plan
is identified.

Identification of a single expensive operator is not feasible in
Hyper’s execution plans due to the JIT compiled fused nature of
operator’s pipeline, which prevents a direct application of adaptive
parallelization. However, in a broader sense if the entire task is
considered to be expensive and treated as an expensive operator,
application of the adaptive parallelization logic could be possible.
Hence, the feasibility of adaptive parallelization technique in Hyper
depends on how to categorize the expensiveness metric.

DB2 BLU accelerator [24] uses evaluator chains, which comprises
DB2 BLU operators working on columnar data. The data is ac-
cessed in strides. It uses novel data structures that minimize latch-
ing allowing seamless scaling with multi-cores. Parallelism in-
volves cloning of evaluator chains once per thread, where the num-
ber of threads is decided by cardinality estimates, system resources
and system load. Each thread requests strides for its evaluator
chains until no more strides are available. DB2 BLU also uses
work stealing based approach where worker threads operate on
tasks comprising of evaluator chain based work.

6. CONCLUSION

Adaptive parallelization uses query execution feedback to gen-
erate resource contention and skew aware range partitioned multi-
core parallel plans. It helps in finding the right balance between
the multi-core utilization and the degree of parallelism for the ex-
change operator based parallel plans. We observe a near linear
speedup with the number of cores while analyzing the parallel plan
evolution using parameters such as the input size and selectivity.
During TPC-DS isolated workload execution, the adaptively paral-
lelized plans show up to five times better performance compared to
heuristically parallelized plans. During TPC-H concurrent work-
load, they show minimal multi-core utilization, allowing better re-
source utilization. They also fare competitively with work stealing
based scheduling approach.

Using different convergence scenarios we show that the adaptive
parallelization convergence algorithm behaves robustly, and con-
verges in a reasonable number of runs.
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