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1 • INTRODUCTION 

For the numerical integration of the first-order initial value problem 

d 
dt y(t) = f(t,y(t))' (I.I). 

explicit Runge-Kutta (RK) methods are frequently used. These methods are 

defined by 

c. 
1 

= y + h y b.k<i), 
n i=l 1 n 

f(t ,y ), 
n n 

= f(t +c.h, 
n 1 

i-1 
l a .. ' 

j=l 1] 

y +h 
n 

i-1 
\' a .. k(j» 
l 1J n ' j=l 

i=2, ••• ,m 
(I. 2) 

where yn is an approximation to y(tn)' his the step size and tn = t 0+nh, 

n=l,2, •••• Explicit Runge-Kutta methods unquestionably have obtained great 

popularity and this is easily understood if we consider their properties: 

(i) the straightforward implementation on a computer and (ii) the one-step 

nature of the scheme is preserved whilst an arbitrarily high order can be 

achieved. However, included in the disadvantages of explicit RKmethods is the .. 
necessity of (relatively) many evaluations of the right-hand side function f 
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of (I.I) in order to achieve a certain order of accuracy. It is well-known 
(see e.g.[2]) that an RK method of order p~4 requires at least p f-evaluat­
ions and for p>4 this number increases rapidly. Here, we propose methods in 
which the number of f-evaluations can be reduced whilst retaining the order of 
of accuracy. This is achieved by using 
computed in the previous step(s). More 

some of the f-evaluations already 
precisely, in (1.2) some of the k(i) 

are replaced by k~~1 with both i and j E {I, •.• ,m}, i*j and l~I. 
n 

It is not clear in advance how many k-vectors should be used from the 
previous step(s) and what the best values for i,j and l are. However, it is 
possible to make some general remarks: 

First, concerning the value of j we see that if the values of c. are 
1 

increasing (with increasing i)-which is the case in many RK schemes - we 
should choose j as large as possible; this results in the use of a "recent" 
f-evaluation which will reduce the local truncation error of the new schemes. 

Next, if in stage i, k(i) is replaced by k(j) the free parameters a .. n n-l' 1J 
disappear and can no longer be used to satisfy the consistency conditions. 
Therefore, a low value of i will leave us with more free parameters than a 
large value of i. 

Furthermore, in this paper we concentrate on l=l, viz. only k-vectors of 
the preceding step are employed. 

Finally, we have to decide how many k-vectors will be used from the 
preceding step. First of all, we remark that we will perform at least one 
f-evaluation in each step, because a saving of all k(i),s will result in n 
an integration process which evaluates the derivative only in the initial 
part of the integration interval and this, of course, cannot be considered 
as a serious way of integrating (I.I). The question remains: how many 
f-evaluations are necessary to obtain a particular order of accuracy. As a 
guidance, let us consider the following Table: 

order of accuracy 2 3 4 5 6 

~-~~~~~~~~~~~-~~~~~~!~~~-------------------------!--~--~---~--!L_~z_ ______ _ 
# stages 

# free parameters in the classical case 
attainable order in the classical case 
# free parameters if il) is replaced 
# fre~parameters if kYl) k( 2) are replaced Y ' n 
#free parameters if kl) , ••• ,k(J) are replaced 
#free parameters if kYl} , ••• ,kY4> are replaced n n 

2 3 4 

3 6 10 

2 3 4 

3 6 lO 

5 9 

7 

5 6 7 8 

15 21 28 36 

4 5 6 6 

15 21 28 36 

14 20 27 35 

12 18 25 32 

9 15 22 29 
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As the consistency conditions are nonlinear equations in the parameters 

of the scheme, it is certainly not. possible to deduce from this Table con­

clusions concerning the optimal order; on the other hand, this Table indicates 

that we may hope for the existence of an RKE(nf=J,p=2,m=2) method, an 

RKE(nf=l,p=3,m=3) method, an RKE(nf=2,p=4,m=4) method, an RKE(nf=l,p=4,m=5) 

method, an RKE(nf=3,p=5,m=6) method, etc. where we introduced the shortened 

notation RKE(nf,p,m) to denote an m-stage, p-th order economized RK method 

requiring nf f-evaluations per step. 

Note that for RKE schemes in which m-nf>nf (i.e. in which the number of 

"saved" k-values is larger than the number of evaluations actually performed 

in one step),more than one back-step is involved. 

It should be observed that these schemes bear some resemblance to hybrid 

linear multistep methods (see for example Gragg and Stetter[lO], Gear[9], 

Butcher[3], Kohfeld and Thompson[l5], Danchick[S] and Lyche[l8]). The RKE 

methods can be regarded as hybrid methods with more than one "off-step" 

point and applied in predictor-corrector (PC) mode using different predictors. 

However, following this PC view-point, the RKE schemes do not end up with an 

evaluation of the final result, because in all RKE schemes,k(l) will be 
(') n 

replaced by k J 1• On the other hand, most of the methods discussed by the 
n-

above authors do perform this final evaluation (the so-called P
1
EP2

E •.. Pm_
1
ECE-

mode; see (17]). 

Moreover, it is this lack of f-evaluations at step points (t ,y ) , which 
n n 

prevents the RKE scheme to fit into the multistep RK methods as defined by 

van der Houwen (12] and by Byrne and Lambert[4]. To see this, let us consider 

the most simple RKE scheme: 

k(2) 
n-1' 

f(t +c
2
h,y +c

2
hk{l)); 

n n n 

+ h(b k(l) + b k(Z)) 
Yn+l = Yn I n 2 n 

which can be reformulated (using y n+c 
2 

:= y + c hk(l)) as 
n 2 n 

Yn+c
2 

= yn + c2hf(tn-l+c2h'yn-l+c
2
), 

Yn+l = yn + blhf(tn-l+c2h'yn-l+c2) + b2hf(tn +c2h'yn+c2). 
( l. 3) 
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Obviously, two sequences of approximations are generated; one sequence 
in the step points and another in the off-step points, and, as a consequence, 
y I cannot be expressed in terms of preceding approximations y ,y I'""" at n+ n n-
the step points. 

Using this formulation, there appears also a resemblance to cyclic multi­
step methods (or block methods); see, for example, Donelson and Hansen [6]. 
However, in this type of methods all formulae within one cycle (or block) 
are applied with the same step size and have (approximately) the same order 
of accuracy. In (I.3), these features are not necessarily fulfilled. 

2. CONSTRUCTION OF RKE SCHEMES 

Here we will derive RKE schemes of orders 2, 3 and 4. Special attention 
is paid to the first integration step in which, of course, no k-values from 
preceding steps can be used. Occasionally, this first step will require even 
more f-evaluations than in the original RK scheme. Furthermore, we will show 
possibilities to exploit the free parameters and, finally, the (linear) 
stability of the schemes will be discussed. For reasons of notational 
convenience, the ODE (I.I) will be treated in its autonomous form. 

2.1 An RKE(nf=I,p=2,m=2) scheme 

Let us start with the most simple RKE scheme 

k(I) = k(2 ) 
n n-1' 

f (y +c
2
hk (I)) ; 

n n (2. I) 

Yn+I = Yn + h(bikn(I) + b2kn(2)). 

In deriving the consistency relations for RKE schemes we substitute, as 
often as necessary, the expression for k~~i into the "economized" k~i)..,.yectors; 
or, more precisely, until sufficient high powers of h are involved. For (2.1)_ 
we find 

Then, as usual, we make a Taylor expansion (of all k(i)) about (t ,y ) and, n n n 
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straightforwardly, find the order conditions 

= 1 2 • 

This yields the one-parameter family of RKE(1,2,2) schemes giving by 

(adopting the Butcher-array notation[2]) 

(2.3) 

(2.4) 

where c2 is a free parameter. For the scheme (2.4), the principal term in the 

local truncation error (cf. [17]) is given by (using tensor notation, see [11, 

p.118]) 

12
5 h3fJ.fkjfk + (152 - C2 I 2)h3f fjfk + 2c2 jk • (2.5) 

Hence, by choosing c2=(6-/6)/6, the second term in this expression vanishes. 

Now, let us consider the (linear) stabilty of scheme (2.1) by applying 

it to the scalar test equation y'=Ay (cf.[17]). Introducing z:=Ah and 

defining A(z) and B(z) by y 1=:A(z)y and hk(2)=:B(z)y , we have 
n+ n n n 

hk ( 1) 
n 

= hk( 2) = B(z)y I = B(z)/A(z) 
n-1 n- Yn' 

hk(Z) = z(1+c
2
B(z)/A(z))y g B(z)y , 

n n n 

d 
= (1+b 1

B(z)/A(z)+b 2B(z))yn = A(z)yn. 

From these last equations A(z) and B(z) can be solved and we find the 

characteristic equation 

(2.6) 

(2. 7) 

As usual, the stability region in the complex z-plane is defined as the region 

for which the roots A(z) of (2.7) are less than 1 in modulus. On substituting 

b 1=c
2
-1/2, b2=3/2-c2, (2.7) reduces to 

2 
A(z) - A(z)[1+3z/2] + z/2 = O. (2.7') 
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Consequently, the parameter c2 cannot be exploited to enlarge the stability 
region. Notice, that the characteristic equation (2.7') is identical to 
that of the two-step (second-order) Adams-Bashforth method, the stability 
region of which can be found in [19,p.135]. 

Finally, the treatment of the first step has to be specified. We suggest 
to perform a classical two-stage RK method (hence, kb

1
) is obtained by f(y0)) 

using the same value of c
2, i.e. c

2=(6-/6)/6. Requiring this step to be 
second-order accurate, we have to satisfy the classical order conditions 
b 1+b

2=1, b2c
2=!. 

Sunnnarizing, we have the method 

and 

0 

(6-16) /6 

(6-16) /6 

(6-16) /6 

(4-16) /10 

(6-16) /6 

(3-16) /6 

2.2 RKE(nf ,p=3,m=3) schemes 

(6+16)/10 

(3+16) /6 

for n=O (2.8a) 

for n;::.J • (2.8b) 

In this section we will derive 3-stage RKE methods, using 1 and 2 f­
evaluations. The "cheapest" scheme which maintains third-order accuracy is 
given by 

k(I) = k(2) 
n n-1' 

k( 2) k(3) 
n n-1' 

(2.9) 

+ h(b k( 1) + b k(2) + b
3

kn(3)). Yn+1 = Yn I n 2 n 

Again, repeatedly substituting the expression for k(3) into k(2) and 
k( 1) (=k(3)) and Taylor expansion about (t ,y ), (2.9) ~s of thir~-order if n n-2 n n 
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b1 + b2 + b3 =I, 

b 1(c3-2) + b2(c3-t) + b3c3 = !, 
2 c

3 
+ a32 + b 1(2-4c3) + b2(!-3c

3
) - 2b

3
c3 = 1/6, 

2 2 2 
b 1(c3-2) + b2(c3-I) + b3c3 = 1/3. 

Choosing c3 as a free parameter we easily find 

bl 
I 2 c

3 
+5/12, ~c3 -

b2 
2 + 3c3 - 4/3, = -c3 
2 

b3 = !c3 - 2c3 + 23/12, 

-le 2 2c3• a32 = 2 3 + 

(2. I O) 

(2. 11) 

Let us first derive the characteristic equation corresponding to the 

scheme (2.9).Again using yn+l:=A(z)yn and hk~3):=B(z)yn and solving for A(z) 

(and B(z)), we find 

If the relations given by (2.11) are substituted, (2.12) reduces to 

3 2 23 4 5 
A (z) - A (z)(l+ 12z) + A(z) 3z - ~ = O, (2.12') 

which is identical to the characteristic equation of the three-step (third­

order) Adams-Bashforth method. The corresponding stability region can be 

found in [19,p.136]. 

Obviously, the free parameter c3 cannot be used to enlarge the stability 

region of this RKE method; therefore we consider its influence on the local 

truncation error. The principal term in this error is of the form 

where q 1, q2 and q
3 

are functions of the 

c
3
!:::!.63397 ••• , we achieve that the sum of 

mini1:nized (see also [l 6]}. This value of 

(2.13) 

free parameter c3• Now, by choosing 

the absolute values Elq.I is 
1 

c
3 

yields q
1
.1:2.42, q

2
1:::1. O, q3t:::1. O. 
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Finally, we have to specify the scheme for the first two steps. Here, 

however, we have some additional constraints on these first steps: in the 

derivation of the order conditions, we used the expression of k(3l for i~I, 
(I) (3) (2) (3) n-

because k2 is defined by k0 and k2 by k 1 . Therefore, we must take 

care that k(3) and k(3) (which are obtained by a classical RK method) have 
0 I 

the same expansion as we have for k(J) (which is obtained by an RKE method). 
n 

This expansion is given by 

f + hf f j (3 2 ) 2 fj k I 2 2 fj k + 0(h3), c3 j + zc3 -c3 h fj kf + 2c3 h fjk f (2.14) 

Moreover, we want the first steps to be of third-order accuracy. It turns out 

that it is not possible to achieve this goal with a classical RK method using 

only three stages. Therefore, we propose the following four-stage third-order 

scheme for the first two stages 

0 

~ l 
2 

-I 2 (2. 15) 2 2 
CJ -3c3 +3c3 3c3 -2c3 0 

1/6 2/3 1/6 0 

Notice that this is in fact Kutta's third-order method, extended with kb4) 

which serves merely to provide the correct expansion (2.14) in the RKE scheme. 

Summarizing, apply (2.15) in the first and second integration step and save 

kci4) and k~4 ); rename them to kci3) and k~3 ), respectively and apply, for n~2, 
the RKE scheme (2.9). In the numerical tests we used c

3
=0.634. 

Finally, we briefly mention another third-order RKE scheme, given by 

f(yn)' 

= k(3) 
n-1' 

+ h(b k(I) + b k(2) + b
3

kn(3)). 
Y n+ I = Y n I n 2 n 

(2.16) 

Although this scheme is not optimal with respect to the number of f-evaluations, 

it will turn out that this method possesses a rather large imagina;py stability 

boundaP-y a. ' which is defined as the point where the boundary of the ' imag 
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stability region intersects the imaginary axis (cf.[12]). The reason for 

mentioning this result is the following: since the introduction of vector­

computers, there is a renewed interest in explicit methods, for example in 

the field of hyperbolic differential equations. For this type of problems, 

a relatively large value of S. is of great importance (see e.g. [20]). imag 
The third-order consistency conditions for (2.16) are solved by 

2 - 3c3 
6(1-c

3
) 

I - b 2 (3-6c3) 
= ~,....--..,.....,.,.----..,..-

6 ( c 3 -1)(b2+b3) ' 

where c
3 

is free. Selecting c
3=0.52 yields S. =1.63, which is optimal. imag 

(2.17) 

Although this value is smaller than the "classical" value 13, the effective 
imaginary stability boundary (i.e. S. /nf) is 40% larger than the classical imag 
value. Moreover,it is 15% larger than the effective imaginary stability 

boundary of the classical fourth-order RK method, which has !12. However, 

in this connection we remark that Kinnmark and Gray [14], recently have 

indicated how to construct RK methods of orders 3 (for m=3,5, ••• ) and 4 

(for m=4,6, ••• ) possessing an effective imaginary stability boundary equal 

to [(m-1) 2-1]! Im, which approaches I - l/m, form large. This last value 

was proven by Vichnevetsky [21] to be the limit for any consistent RK method.· 

Finally, to achieve the appropriate expansion for k(3) in the first step, 
0 

the RK scheme (2.15) can be used. 

2.3 An RKE(nf=2,p=4,m=4) scheme 

Finally, we give a fourth-order RKE scheme, requiring 2 f-evaluations. 

It is defined by 

k(I) k(3 ) 
n n-1' 

k(2) k(4) 
n n-1' 

(I) (2) 
= f(yn + (c3-a32)hkn + a32hkn ), 

(2.18) 

= f(yn + (c4-a42-a43)hk~I) + a42hk~2) + a43hk~3)); 
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Proceeding in the same way as in the preceding Sections, we derive the fourth­

order consistency conditions: 

where 

h 1 + h2 + b
3 

+ b
4 

= I, 

h 1(c3-I) + h2(c4-I) + b
3

c
3 

+ b
4

c
4 

= 1/2, 

blq3 + b2q6 + b3q9 + b4ql2 = l/6 , 
2 2 2 2 

h 1(c3-I) + h 2(c4-I) + b
3

c
3 

+ b
4

c
4 

1/3, 

blq4 + b2q7 + b3ql0 + b4q13 = l/ 24 • 

blqS + b2q8 + b3qll + b4ql4 = l/24 • 

bl(c3-l)q3 + b2(c4-l)q6 + b3c3q9 + b4c4ql2 = 1/8, 

3 3 3 3 b 1(c3-I) + b2(c4-I) + b
3

c
3 

+ b
4

c
4 

= 1/4, 

qi = 2 + (c3-a32)(c3-3) + a32(c4-3), 

q2 2 + (c4-a42-a43)(c3-3) + a42(c4-3) + a43(c4-2), 

q3 ! + (c3-a32)(c3-2) + a32(c4-2), 

q4 = -l/6 + (c3-a32)ql + a32q2, 

2 2 q
5 

= -1/6 + !(c3-a32)(c3-2) + !a32 cc
4
-2) , 

q6 = ! + (c4-a42-a43)(c3-2) + a42(c4-2) + a43(c3-I), 

q7 -l/6 + (c4-a42-a43)ql + a42q2 + a43q3' 
2 2 2 q8 = -1/6 + !(c4-a42-a43)(c3-2) + !a42 (c

4
-2) + !a

43
cc

3
-I) , 

qg = (c3-a32)(c3-I) + a32(c4-I), 

q10= (c3-a32)q3 + a32q6' 

q11= !(c3-a32)(c3-1)2 + !a32<c4-l)2, 

q12= (c4-a42-a43)(c3-I) + a42(c4-l) + a43c3, 

q13= (c4-a42-a43)q3 + a42q6 + a43q9' 
2 2 2 

q14= !(c4-a42-a43)(c3-l) + !a42<c4-l) + !a43c3 • 

There exists a remarkably simple solution to this nonlinear system, which 

(2. I 9a) 

(2.19b) 



reads 

1/2 -1/3 

7/12 

0 

5/6 

-1 

1/6 

11 

(2.20) 

17/12 

2/3 1/6 

For the characteristic equation we find (using the auxiliary functions B(z) 

and C(z) defined by hk(3)=: B(z)y and by hk(4)=: C(z)y ) 
n n n n 

with 
2 

r2(z)=-[z a43(a32+b4)+z(b3+b4+c3-a32+a42)+1], (2.21) 
2 

rl(z)=z [a42c3-a32c4+2a32a43-b2a43-b3(a32-a42)+ 

b4(c3-a32-c4+a42+a43)]+z(c3-a32+a42-bl-b2), 
2 

TO (z}=-.z f a42c3-a32 (c4-a43)+bJ (a32-a42}-b2 (c3.,..a32-c4+a42+a43)]' 

yielding S 1=0.50 and S. =0.64 if (2.20) is substituted, where S 1 is rea imag rea 
the real stability boundary (cf.Section 2.2). 

Again, the first step has to be treated separately. We find that k(3 ) and 
n 

k(4) in (2.18) have the expansions 
n 

and (2.22) 

Using a classical five-stage fourth-order RK method, it appeared to be 

impossible to construct k6i)_vectors having the appropriate expansion. 

Therefore, we suggest the following six-stage fourth-order starting scheme 
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0 

1/2 1/2 

1/2 0 1/2 

0 0 

1/2 -1/6 5/6 1/6 -1/3 (2.23) 
3/4 -5/6 1/2 7/12 0 

1/6 1/3 1/3 1/6 0 0 

This starting scheme is to be used in combination with (2.20). In the first 
four stages the classical fourth-order RK scheme is easily recognized and 
kci5) and kci6) should be renamed to kci3) and k64), respectively before (2.20) 
is used for n~I. 

Finally, we did not try to find other solutions to (2.19) which may have 
better stability characteristics. 

3. ZERO-STABILITY 

As can be seen from the stability polynomials (cf. (2.7 1 ),(2.12 1
) and 

(2.21)), the RKE schemes possess a multistep character. Therefore, we have 
to consider the concept of zero-stability. Following Lambert [17,p.33 and 
p.163], the RKE scheme is said to be zero-stable if no root of its charact­
eristic equation evaluated at z=O, lies outside the unit disc, and those on 
the unit circle being simple. 

It is readily verified that all RKE schemes proposed are zero-stable 
indeed. As is the case in Adams-type methods, they have one (principle) 
root equal to one and all other (parasitic) roots vanish. 

4. NUMERICAL ILLUSTRATION 

As it is to be expected that we sacrified accuracy by the economization 
techniques, it is interesting to see to what extent the reduction in comp­
utational effort per step can compensate for this decrease in accuracy. 
Therefore, we applied the RKE schemes derived in Section 2 to several test 
problems. Each RKE scheme will be compared with a classical RK scheme of 
the same order; for this purpose we choose the (second-order) improved 
Euler method, Kutta's third-order method and the classical fourth~order 
RK method [17]. As the number of £-evaluations is not the same for all 
these methods, the step size in each application is adjusted as to result 
in a fixed computational effort (measured in £-evaluations only). This 
effort ls denoted by Ef in the Tables of results. 
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4.1 Orbit equation 

First, we integrate the two-body gravitational problem (class D in the 

testset of Hull et. al.[13]) 

y' = Y3' y 1 (0) ] - e:' 1 

y' = Yt+' y2(0) = o, 
2 (4. l) 3 I -yl/r ' Y3(0) = o, Y3 

3 I 

y' = -y/r ' Y4(0) = [(I +e:)( 1-e:) p' 4 

where r=(y 2 + y 
2)! and the exccntricity e:=0.5. The exact solution is 

· 1 · 2 
given by 

y 1(t) cos(u) - e:, 

y
3

(t) = -sin(u)/(1-e:cos(u)), 
(4. 2) 

(l-e: 2)! cos(u)/(1-e:cos(u)), 

where 

u - e: sin(u) - t = 0. 

More than three orbital periods are covered by the integration range [0,20]. 

In Table 1, we tabulate the results obtained by the various methods for 

sevP-ral values of Ef. The errors given,are the max:i.mal global errors in the 

endpoint,measured over all components. As can be seen from this Table, the 

Table.-.!..=_ Global errors in the maximum norm for problem (4.1) 

-----T -----------------·----T-------· -------- ··---------y--------- ---------------
: Impr. : Kutta's : 

Lf ' RKE(l ,2,2) E 1 RKE(I ,3,3) th" d d I RKE(2,4,4) RK.4 
, · u er : ir -or er 

1 
method 

1 method 1 method , 
-----~---------------------i------------------------~------------------------

1 I ' 

1200 : 

2400 

4800 

9600 
• 

.5310-1 

.1110-1 

• 2410-2 

.5510-3 

.37 .9910-1 

.1310-1 

.1610-2 

.2010-3 
I I t 

.3810-3 

.8610-5 

.9210-6 

.8210-7 

.2510-2 

.1010-3 

.4810-5 

.2510-6 

-----L---------------------L------------------------i------------------------
RKE schemes yield, for the same computational effort, errors which are smaller 

than those obtained by the classical RK schemes. In the average, the gain 

factors are 7, 3 and 6 for methods of order 2, 3 and 4, respectively. 
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4.2 Euler's equation 

Next, we solve Euler's equation of motion for a rigid body without external 

forces (see [l], and [13], problem B5) 

y' = Y2 Y3' y l (O) 0, l 

y' = -yl Y3• y2(0) I ' (4.3) 2 

y' 2 y3(0) I , 
2 = -k y Y2' k =0.51 3 I 

on tE[0,20]; its exact solution is given by the Jacobian elliptic functions 

sn(t;k), cn(t;k), y3 (t) = dn(t;k). (4.4) 

Following the same testing procedure as described in the previous Section, we 

obtain the results as given in Table 2. 

Table 2. Global errors in the maximum norm for problem (4.3) 

----~------------------------.--------------------------~----------------------' I I Impr. • Kutta's 1 

RKE(I ,2,2) Euler • RKE(I ,3,3) th" d d • RKE(2,4,4) , • i.r -or er 1 

RK4 
method 

: method . method , 
----~-----------------------~--------------------------~----------------------

' I I 

1200: .9210-3 .1810-2 I .2910-4 .8510-4 : 

24001 .2310-3 .4510-3 .3710-5 .1110-4 
I 

4800 : • 5 7 I O -4 • 11 I O - 3 • 46 1 O -6 • 141 O - 5 
I I I 

----~------------------------'--------------------------~----------------------

Again, the RKE methods are more efficient. Now, gainfactors 2,3 and 6.5 are 

obtained for the methods of the respective orders 2,3 and 4. 

4.3 Restricted three-body problem 

Our last test example describes the restricted problem of three bodies 

(earth-moon-spaceship [7,8]) and reads 

y' 
I 

y' 2 

y' 3 

Y{. = 
" 

where 

Y3• 

Y4• 

Y1 + 2y4 

y -2 2y3 

- µ'(yl+µ)/rl3_ µ(y1-µ')/r23' 

3 3 
- µ'y2/rl - µy2/r2 ' 

y 1(0)=l.2, 

y2(0)=0, (4.5) 

y 3 (0)=0, 

y4 (0)=-l.0493575098304, 
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and 

µ = 1/82.45 ' µI = I-µ. 

The solution (y1 (
t),y2(t)) is known to describe a closed orbit with period 

P=6.192169331396 •••• We integrated over one period and compared the results 

with the initial values. The errors are given in Table 3. For the methods of 

order 2,3 and 4 the global errors are reduced by a factor 2.5, 3 and 1.5, 

respectively. 

Table 3. Global errors in the maximum norm for problem (4.5) 

-----~-----------------------,--------------------------r---------------------
• I I I RK4 

'<'f 1 R.KE(I 2 2) Impr. 1 RKE(l 3 3) Kutta s 1 R.KE(2 4 4) 
'-' 

1 
' ' Euler ' ' third-order • ' ' method 

I 
method , method 1 

-----~----------------------~--------------------------r------------------~--
1 t I 

12000 I .94
10

-1 .47 .17 .95 

I 

24000 I 

I 

48000 I .35
10

-2 .2110-4 

96000! .7710-3 .1510-2 • .2910-3 .8810-3 • 
I t I 

_____ J ______________________ J--------------------------~---------------------

5.CONCLUSIONS 

It has been indicated how RK-type(RKE) schemes can be constructed which 

require less evaluations of the right-hand side function of the differential 

equation to achieve a certain order than classical RK schemes do. 

Several possible ways to exploit the free parameters are discussed: to 

decrease the local truncation error (as is done in the second- and third-order 

case), to increase the stability boundaries (third-order case) or to obtain a 

scheme with simple rational values for the parameters (fourth-order case). 

When comparing RKE schemes and classical RK schemes, the former class 

turns out to be more efficient. For the test problems we used, the global 

errors are reduced by a factor, varying from 1.5 up to 7; or, equivalently, 

requiring the same accuracy for both type of methods (and taking the order 

of consistency into account), the RKE schemes are more efficient by a factor 

1.15 up to 2.65. 
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