
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gcom20

Download by: [Bibliotheek TU Delft] Date: 06 January 2016, At: 06:28

International Journal of Computer Mathematics

ISSN: 0020-7160 (Print) 1029-0265 (Online) Journal homepage: http://www.tandfonline.com/loi/gcom20

GPU acceleration of the stochastic grid bundling
method for early-exercise options

Álvaro Leitao & Cornelis W. Oosterlee

To cite this article: Álvaro Leitao & Cornelis W. Oosterlee (2015) GPU acceleration of the
stochastic grid bundling method for early-exercise options, International Journal of Computer
Mathematics, 92:12, 2433-2454, DOI: 10.1080/00207160.2015.1067689

To link to this article: http://dx.doi.org/10.1080/00207160.2015.1067689

Accepted author version posted online: 29
Jun 2015.
Published online: 02 Sep 2015.

Submit your article to this journal

Article views: 45

View related articles

View Crossmark data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301642673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tandfonline.com/action/journalInformation?journalCode=gcom20
http://www.tandfonline.com/loi/gcom20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207160.2015.1067689
http://dx.doi.org/10.1080/00207160.2015.1067689
http://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207160.2015.1067689
http://www.tandfonline.com/doi/mlt/10.1080/00207160.2015.1067689
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2015.1067689&domain=pdf&date_stamp=2015-06-29
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2015.1067689&domain=pdf&date_stamp=2015-06-29

International Journal of Computer Mathematics, 2015
Vol. 92, No. 12, 2433–2454, http://dx.doi.org/10.1080/00207160.2015.1067689

REVIEW

GPU acceleration of the stochastic grid bundling method for
early-exercise options

Álvaro Leitaoa,b∗ and Cornelis W. Oosterleea,b

aDelft Institute of Applied Mathematics (DIAM), TU Delft, Delft, The Netherlands; bCentrum Wiskunde &
Informatica (CWI), Amsterdam, The Netherlands

(Received 30 October 2014; revised version received 4 June 2015; accepted 4 June 2015)

In this work, a parallel graphics processing units (GPU) version of the Monte Carlo stochastic grid
bundling method (SGBM) for pricing multi-dimensional early-exercise options is presented. To extend
the method’s applicability, the problem dimensions and the number of bundles will be increased dras-
tically. This makes SGBM very expensive in terms of computational costs on conventional hardware
systems based on central processing units. A parallelization strategy of the method is developed and
the general purpose computing on graphics processing units paradigm is used to reduce the execution
time. An improved technique for bundling asset paths, which is more efficient on parallel hardware is
introduced. Thanks to the performance of the GPU version of SGBM, a general approach for comput-
ing the early-exercise policy is proposed. Comparisons between sequential and GPU parallel versions are
presented.

Keywords: computational finance; early-exercise derivatives; basket Bermudan options; high-
dimensional pricing; stochastic grid bundling method (SGBM); Monte Carlosimulation; least-squares
regression; high performance computing; parallel programming; GPGPU; compute unified device
architecture (CUDA)

2010 AMS Subject Classifications: 91G60; 91G70; 65Y05; 65C05; 65C10

1. Introduction

In recent years, different techniques for pricing early-exercise option contracts, as they appear
in computational finance, were developed. In the wake of the recent financial crisis, accurately
modelling and pricing these kinds of options gained additional importance, as they also form the
basis for incorporation of the so-called counterparty risk premium to an option value, which can
be seen as an option covering the fact that a counterparty may go into default before the end of a
financial contract, and thus cannot pay possible contractual obligations.

The early-exercise pricing methods can be classified into different kinds of techniques depend-
ing on whether they are based on simulation and regression, transition probabilities or duality
approaches. Focusing on the first class of methods, Monte Carlo (MC) path generation and
dynamic programming to determine an optimal early-exercise policy and the option price are
typically combined. Some representative methods were developed by Longstaff and Schwartz
[23] and Tsitsiklis and Van Roy [33].

*Corresponding author. Email: a.leitaorodriguez@tudelft.nl

© 2015 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

mailto:a.leitaorodriguez@tudelft.nl

2434 Á. Leitao and C.W. Oosterlee

The pricing problem becomes significantly more complex when the early-exercise options are
multi- or even high-dimensional. One of the recent simulation–regression pricing techniques for
early-exercise (Bermudan) options with several underlying assets, on which we will focus, is the
stochastic grid bundling method (SGBM), proposed by Jain and Oosterlee [17]. The method is a
hybrid of regression and bundling approaches, as it employs regressed value functions, together
with bundling of the state space to approximate continuation values at different time steps. A high
biased direct estimator (DE) and an early-exercise policy are first computed in SGBM. The early-
exercise policy is then used to determine a lower bound to the true option price which is called the
path estimator (PE). The early-exercise policy computation involves the computation of expec-
tations of certain basis functions. Usually, these basis functions are chosen by experience in such
a way that an analytic solution for the expectations appearing in the pricing method is available.

In this paper, we extend SGBM’s applicability by drastically increasing the problem dimen-
sionality, the number of bundles and, hence, the number of MC asset paths. As the method
becomes much more time-consuming then, we parallelize SGBM taking advantage of the general
purpose computing on graphics processing units (GPGPU) paradigm. It is known that GPGPU is
very well suitable for financial purposes and MC techniques. In the case of pricing early-exercise
options, several contributions regarding graphics processing units (GPU) implementations of
different techniques appeared recently [1,2,11,12,15,26]. All these papers are based on a com-
bination of a MC method and dynamic programming, except the Dang et al. paper, which uses
partial differential equation (PDE) based pricing methods and the Pagès and Wilbertz paper,
which employs MC simulation together with a quantization method. Our GPU version of SGBM
is based on parallelization in two steps, according to the method’s stages, i.e. forward in time
(MC path generator) followed by the backward stage (early-exercise policy computation). This
is a novelty with respect to other methods since, although the parallelization of a MC method is
immediate, the parallelization of the backward stage is not trivial for other methods, for example
not for the least-squares MC method (LSM) by Longstaff and Schwartz [23] where some load
balancing issues for parallel systems can appear as only the in-the-money paths are considered.
Due to some timing and distribution issues observed in the original bundling procedure caused
by an increasing number of bundles, we present another bundling technique for SGBM which is
much more efficient and more suitable on parallel hardware.

Thanks to the performance of our SGBM GPU version, we can explore different possibilities
to compute the expectations appearing within the SGBM formulation, generalize towards differ-
ent option contracts and, in particular, more general underlying asset models. A general approach
to compute the expectations needed for the early-exercise policy is proposed and evaluated. This
approach is based on the computation of a characteristic function for the discretized underlying
stochastic differential system. Once this discrete characteristic function is determined, we can
use it for the expectations calculation, for example, for multi-dimensional local volatility asset
models.

The paper is organized as follows. In Section 2, the Bermudan option pricing problem is intro-
duced. Section 3 describes the SGBM. The new approach to compute the expectations for the
early-exercise policy is explained in Section 4. Section 5 gives details about the GPU implemen-
tation. In Section 6, numerical results and central processing unit (CPU) /GPU time comparisons
are shown. Finally, we conclude in Section 7.

2. Bermudan options

This section defines the Bermudan option pricing problem and sets up the notations used.
A Bermudan option is an option where the buyer has the right to exercise at a number of

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2435

times, t ∈ [t0 = 0, . . . , tm, . . . , tM = T], before the end of the contract, T. St = (S1
t , . . . , Sd

t) ∈ R
d

defines a d-dimensional underlying process which here follows the dynamics given by the system
of stochastic differential equations (SDEs)

dS1
t = μ1(St) dt + σ1(St) dW 1

t ,

dS2
t = μ2(St) dt + σ2(St) dW 2

t ,

...

dSd
t = μd(St) dt + σd(St) dW d

t ,

(1)

where W δ
t , δ = 1, 2, . . . , d , are correlated standard Brownian motions. The instantaneous corre-

lation coefficient between W i
t and W j

t is ρi,j. The correlation matrix is thus defined as

C =

⎛
⎜⎜⎜⎝

1 ρ1,2 · · · ρ1,d

ρ1,2 1 · · · ρ2,d
...

...
. . .

...
ρ1,d ρ2,d · · · 1

⎞
⎟⎟⎟⎠ ,

and the Cholesky decomposition of C reads

L =

⎛
⎜⎜⎜⎝

1 0 · · · 0
ρ1,2 L2,2 · · · 0

...
...

. . .
...

ρ1,d L2,d · · · Ld,d

⎞
⎟⎟⎟⎠ . (2)

Let ht := h(St) be an adapted process representing the intrinsic value of the option, i.e. the
holder of the option receives max (ht, 0), if the option is exercised at time t. With the risk-free
savings account process Bt = exp(

∫ t
0 rs ds), where rt denotes the instantaneous risk-free rate of

return, we define

Dtm = Btm

Btm+1

.

We consider the special case where rt is constant. The problem is then to compute

Vt0(St0) = max
τ

E

[
h(Sτ)

Bτ

]
,

where τ is a stopping time, taking values in the finite set {0, t1, . . . , T}. The value of the option
at the terminal time T is equal to the option’s payoff

VT (ST) = max(h(ST), 0).

The conditional continuation value Qtm , i.e. the expected payoff at time tm, is given by

Qtm(Stm) = DtmE[Vtm+1(Stm+1)|Stm]. (3)

The Bermudan option value at time tm and state Stm is then given by

Vtm(Stm) = max(h(Stm), Qtm(Stm)).

We are interested in finding the value of the option at the initial state St0 , i.e. Vt0(St0).

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2436 Á. Leitao and C.W. Oosterlee

3. Stochastic grid bundling method

The SGBM [17] is a simulation-based MC method for pricing early-exercise options (such as
Bermudan options). SGBM first generates MC paths forward in time, followed by determining
the optimal early-exercise policy, moving backwards in time in a dynamic programming frame-
work, based on the Bellman principle of optimality. The steps involved in the SGBM algorithm
are briefly described in the following paragraphs:

Step I: Generation of stochastic grid points
The grid points in SGBM are generated by MC sampling, i.e. by simulating independent

copies of sample paths, {St0(n), . . . , StM (n)}, n = 1, . . . , N , of the underlying process St, all start-
ing from the same initial state St0 . The nth grid point at exercise time step tm is then denoted
by Stm(n), n = 1, . . . , N . Depending upon the underlying stochastic process an appropriate dis-
cretization scheme (�t, the discretization step), e.g. the Euler scheme, is used to generate sample
paths. Sometimes the diffusion process can be simulated directly, essentially because it appears
in closed form, like for the regular multi-dimensional Black–Scholes model.

Step II: Option value at terminal time
The option value at the terminal time tM = T is given by

VtM (StM) = max(h(StM), 0),

with max(h(StM), 0) the payoff function.
This relation is used to compute the option value for all grid points at the final time step.
The following steps are subsequently performed for each time step, tm, m ≤ M , recursively,

moving backwards in time, starting from tM .
Step III: Bundling
The grid points at tm−1 are clustered or bundled into Btm−1(1), . . . ,Btm−1(ν) non-overlapping

sets or partitions. SGBM employs bundling to approximate the conditional distribution using
simulation. The method samples this distribution by bundling the grid points at tm−1 and then
uses those paths that originate from the corresponding bundle to obtain a conditional sample
for time tm, see also in [17]. Different approaches for partitioning can be considered. Due to its
importance in the parallel case, this decision is discussed in more detail in Section 3.1.

Step IV: Mapping high-dimensional state space to a low-dimensional space
Corresponding to each bundle Btm−1(β), β = 1, . . . , ν, a parameterized value function Z :

R
d × R

K �→ R, which assigns values Z(Stm ,αβtm) to states Stm , is computed. Here αβtm ∈ R
K is

a vector of free parameters. The objective is then to choose, for each tm and β, a parameter
vector αβtm so that

Z(Stm ,αβtm) ≈ Vtm(Stm).

After some approximations, Z(Stm ,αβtm) can be computed by using ordinary least-squares
regression.

Step V: Computing the continuation and option values at tm−1

The continuation values for Stm−1(n) ∈ Btm−1(β), n = 1, . . . , N , β = 1, . . . , ν, are approxi-
mated by

Q̂tm−1(Stm−1(n)) = E[Z(Stm ,αβtm)|Stm−1(n)].

The option value is then given by

V̂tm−1(Stm−1(n)) = max(h(Stm−1(n)), Q̂tm−1(Stm−1(n))).

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2437

3.1 Bundling

One of the techniques proposed (in [17]) to partition the data into ν non-overlapping sets is the
k-means clustering technique. The algorithm uses an iterative refinement algorithm, where, given
an initial guess of cluster means, first of all the algorithm assigns each data item to one specific
set (i.e. bundle) by calculating the distance between the item and the cluster mean (under some
measure) and subsequently updates the sets and the cluster means. This process is repeated until
some stopping condition is satisfied. The procedure needs a pre-bundling step to set approxi-
mated initial cluster means. The bundles obtained by using the k-means technique can be very
irregular, i.e. the number of data items within each bundle can vary a lot. This fact can be a
problem when many bundles are considered, and parallel load balancing can be an issue too.

Since our goal is to drastically increase the number of bundles used and, in particular, the
problem dimensionality, the k-means algorithm becomes too expensive in terms of computational
time and memory usage in high dimensions because the iterative process of searching new sets
(of high dimension) takes much time and d-dimensional data points for each MC path and for
each time step have to be stored. In addition, it may happen that some bundles do not contain
a sufficient number of data points to compute an accurate regression function when the number
of bundles increases. In order to overcome these two problems of the k-means clustering, we
propose another bundling technique in the SGBM context which is much more efficient when
taking into account our goal of efficiency in high dimensions: it does not involve an iterative
process, distributes the data equally and does not need to store the d-dimensional points. The
details are given in the next section.

3.1.1 Equal-partitioning technique

The equal-partitioning bundling technique is particularly well-suited for parallel processing; it
involves two steps: sorting and splitting. The general idea is to sort the data first under some
convenient criterion and then split the sorted data items into sets (i.e. bundles) of equal size.
A schematic representation of this technique is shown in Figure 1.

With this simple approach, the drawbacks of the iterative bundling in the case of very high
dimensions and an enormous number of bundles can be avoided. The sorting process is indepen-
dent of the dimension of the problem, more efficient and less time-consuming than an iterative

Figure 1. Equal-partitioning scheme.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2438 Á. Leitao and C.W. Oosterlee

search and, furthermore, it is highly parallelizable. In addition, the storage of all MC simula-
tion data points can be avoided since only a reduced part is needed in the bundling stage with
equal-partitioning. This is possible because the criterion is known in advance and its computa-
tion inside the MC generator allows to reduce a dimension of the stored data, i.e. storing a 2D
matrix (N × M) instead of storing a 3D matrix (N × M × d). The split stage assigns directly the
portions of data to bundles which will contain the same number of similar (following some cri-
terion) data items. Hence, the regression can be performed accurately even though the number of
bundles increases in a significant way. Furthermore, the equally sized bundles allow for a better
load balancing within the parallel implementation.

3.2 Parameterizing the option values

As we aim to increase the dimensions of the problem drastically, the option pricing problem
may become intractable and requires the approximation of the value function. This can be
achieved by introducing a parameterized value function Z : R

d × R
K �→ R, which assigns a

value Z(Stm ,α) to state Stm , where α ∈ R
K is a vector of free parameters. The objective is to

choose, corresponding to each bundle β at time point tm−1, a parameter vector αβtm := α so that

Vtm(Stm) ≈ Z(Stm ,αβtm).

As in the original SGBM paper, we follow the approach of Tsitsiklis and Van Roy [33] and
we use basis functions to approximate the values of the options. Hence, two important decisions
have to be made: the form of the function Z and the basis functions. For each particular problem
we define several basis functions, φ1,φ2, . . . ,φK , that are typically chosen based on experience,
as in the case of the LSM method [23], aiming to represent relevant properties of a given state,
Stm . In Section 3.2.2 and Section 4, we present two possible choices, one specific and the other
one more generally applicable. In our case, the form of Z(Stm ,αβtm) depends on Stm only through
φk(Stm). Hence, for some function f : R

K × R
K �→ R, we can write Z(Stm ,αβtm) = f (φk(Stm),α

β
tm),

where

Z(Stm ,αβtm) =
K∑

k=1

α
β
tm(k)φk(Stm). (4)

An exact computation of the vector of free parameters, αβtm , is generally not feasible. Hence,
Equation (4) can be approximated by

Z(Stm , α̂βtm) =
K∑

k=1

α̂
β
tm(k)φk(Stm), (5)

satisfying

arg min
α̂
β
tm

|Btm−1 (β)|∑
n=1

(
Vtm(Stm(n))−

K∑
k=1

α̂
β
tm(k)φk(Stm(n))

)2

,

for the corresponding bundle Btm−1(β). The parameterized function in Equation (5) is computed
by using ordinary least-squares regression, so that

Vtm(Stm(n)) = Z(Stm(n), α̂
β
tm)+ ε

β
tm ,

where Stm−1(n) ∈ Btm−1(β). The regression error, εβtm , can be neglected here, as we have a
sufficiently large number of paths in each bundle.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2439

3.2.1 Computing the continuation value

Using the parameterized option value function Z(Stm , α̂βtm) corresponding to bundle Btm−1(β), the
continuation values for the grid points that belong to this bundle are approximated by

Q̂tm−1(Stm−1(n)) = Dtm−1E[Z(Stm , α̂βtm)|Stm−1 = Stm−1(n)],

where Stm−1(n) ∈ Btm−1(β). Using Equation (5), this can be written as

Q̂tm−1(Stm−1(n)) = Dtm−1E

[(
K∑

k=1

α̂
β
tm(k)φk(Stm)

)∣∣∣∣∣Stm−1 = Stm−1(n)

]

= Dtm−1

K∑
k=1

α̂
β
tm(k)E[φk(Stm)|Stm−1 = Stm−1(n)].

(6)

The continuation value will give us a reference value to compute the early-exercise policy and
it will be used by the estimators in Section 3.3.

3.2.2 Choice of basis functions

The basis functions φk should be chosen such that the expectations E[φk(Stm)|Stm−1 = Stm−1(n)]
in Equation (6) are easy to calculate, i.e. they are preferably known in closed form or otherwise
have analytic approximations. The intrinsic value of the option, h(·), is usually an important and
useful basis function, especially in high problem dimensions. In this section, we describe the
choices of basis functions for different basket Bermudan options with the underlying processes
following geometric Brownian motion ; we thus choose in Equation (1)

μδ(St) = (rt − qδ)S
δ
t , σδ(St) = σδS

δ
t ,

where rt is the risk-free rate and qδ and σδ , δ = 1, 2, . . . , d, are the dividend yield rates and the
volatility, respectively.

In the case of a geometric basket Bermudan option, the intrinsic value of the option is defined
by

h(Stm) =
(

d∏
δ=1

Sδtm

)1/d

− X , h(Stm) = X −
(

d∏
δ=1

Sδtm

)1/d

,

for call or put options, respectively, where X is the strike value of the option contract.
Then, basis functions that make sense are given by

φk(Stm) =
⎛
⎝(d∏

δ=1

Sδtm

)1/d
⎞
⎠

k−1

, k = 1, . . . , K. (7)

The expectation in Equation (6) requires the computation of the expectations of the expression
in Equation (7), given Stm−1 ,

E[φk(Stm)|Stm−1(n)] = (Ptm−1(n)e
(μ̄+(k−1)σ̄ 2/2)�t)k−1, k = 1, . . . , K, (8)

where

Ptm−1(n) =
(

d∏
δ=1

Sδtm−1
(n)

)1/d

, μ̄ = 1

d

d∑
δ=1

(
rt − qδ − σ 2

δ

2

)
, σ̄ 2 = 1

d2

d∑
i=1

⎛
⎝ d∑

j=1

L2
ij

⎞
⎠

2

,

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2440 Á. Leitao and C.W. Oosterlee

with Lij-matrix element i, j of L, the Cholesky decomposition of the correlation matrix, given by
Equation (2).

For the arithmetic basket Bermudan options, the intrinsic values of the call and put options are

h(Stm) =
(

1

d

d∑
δ=1

Sδtm

)
− X , h(Stm) = X −

(
1

d

d∑
δ=1

Sδtm

)
.

The basis functions are chosen as

φk(Stm) =
(

1

d

d∑
δ=1

Sδtm

)k−1

, k = 1, . . . , K.

Again, the continuation value, as given by Equation (6), requires us to compute

E[φk(Stm)|Stm−1(n)] = E

⎡
⎣
(

1

d

d∑
δ=1

Sδtm

)k−1
∣∣∣∣∣∣Stm−1(n)

⎤
⎦ , k = 1, . . . , K. (9)

The expectation in Equation (9) can be expressed as a linear combination of moments of the
geometric average of the assets [17], i.e.

(
d∑
δ=1

Sδtm

)k

=
∑

k1+k2+···+kd=k

(
k

k1, k2, . . . , kd

) ∏
1≤δ≤d

(Sδtm)
kδ ,

where (
k

k1, k2, . . . , kd

)
= k!

k1! k2! · · · kd !
,

which can be computed in a straightforward way by Equation (8).

3.3 Estimating the option value

The estimation of the option value is the final step in SGBM. In this work, we follow the original
proposed idea in [17] and we consider the so-called DE and PE, which can give us a confidence
interval for the option price. SGBM has been developed as a so-called duality-based method, as
originally introduced by Haugh and Kogan [16] and Rogers [27]. Using a duality-based methods
an upper bound on the option value for a given exercise policy can be obtained, by adding a non-
negative quantity that penalizes potentially incorrect exercise decisions made by the sub-optimal
policy. The SGBM DE is typically biased high, i.e. it is often an upper bound estimator. The
definition of the DE is

V̂tm−1(Stm−1(n)) = max(h(Stm−1(n)), Q̂tm−1(Stm−1(n))),

where n = 1, . . . , N . The final option value reads

E[V̂t0(St0)] = 1

N

N∑
n=1

V̂t0(St0(n)).

The DE corresponds to Step V in the initial description.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2441

Once the optimal early-exercise policy has been obtained, the PE, which is typically biased
low, can be developed based on the early-exercise policy. The resulting confidence interval is
useful, because, depending on the problem at hand, sometimes the PE and sometimes the DE
is superior. The obtained confidence intervals are generally small, indicating accurate SGBM
results. In order to compute the low-biased estimates, we generate a new set of paths, as in
common for duality-based MC methods, S(n) = {St1(n), . . . , StM (n)}, n = 1, . . . , NL, using the
same scheme as followed for generating the paths in the case of the DE and the bundling stage
is performed considering the new set of paths. Along each path, the approximate optimal policy
exercises at

τ̂ ∗(S(n)) = min{tm : h(Stm(n)) ≥ Q̂tm(Stm(n)), m = 1, . . . , M },
where Q̂tm(Stm(n)) is previously computed using Equation (6). The PE is then defined by v(n) =
h(Sτ̂ ∗(S(n))). Finally, the low-biased estimate given by the PE is

V t0(St0) = lim
NL

1

NL

NL∑
n=1

v(n),

where Vt0(St0) is the true option value.
To summarize and clarify the general idea behind SGBM, in Algorithm 1 we show the

corresponding algorithm considering both, DE and PE.

Algorithm 1: SGBM
Data: St0 , X ,μδ , σδ , ρi,j, T , N , M
Pre-Bundling (only in k-means case).
Generation of the grid points (Monte Carlo). Step I.
Option value at terminal time t = M . Step II.
for Time t = (M − 1) · · · 1 do

Bundling. Step III.
for Bundle β = 1 · · · ν do

Exercise policy (Regression). Step IV.
Continuation value. Step V.
Direct estimator. Step V.

Generation of the grid points (Monte Carlo). Step I.
Option value at terminal time t = M . Step II.
for Time t = (M − 1) · · · 1 do

Bundling. Step III.
for Bundle β = 1 · · · ν do

Continuation value. Step V.
Path estimator. Step V.

4. Continuation value computation: new approach

In Section 3.2.2, we showed that, for certain derivative contracts (geometric and arithmetic
basket Bermudan options) and underlying processes (GBM), analytic solutions were available
for the expectations that we needed to compute within SGBM. However, finding suitable basis
functions resulting in analytic expressions for the expectations is not always possible for all

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2442 Á. Leitao and C.W. Oosterlee

underlying models. For that, in this work, we propose a different way to compute the expected
value in Equation (6) which is more generally applicable, for example, we can also work with
local volatility models with this approach. The approach consists of, first, discretizing the asset
process and then obtaining the multi-variate characteristic function of the discrete process. This
procedure is based on the work of Ruijter and Oosterlee [28]. Once we have this discrete
characteristic function, we can compute the required expectations for certain choices of basis
functions.

4.1 Discretization, joint discrete characteristic function and joint moments

Taking into account the correlation between Brownian motions and the Cholesky decomposition
given by Equation (2) and using an Euler scheme with time step �t = tm+1 − tm, we can dis-
cretize the general system of SDEs defined by Equation (1), with independent Brownian motions,
�W̃ δ

tm+1
= W̃ δ

tm+1
− W̃ δ

tm , δ = 1, 2, . . . , d , as follows:

S1
tm+1

= S1
tm + μ1(Stm)�t + σ1(Stm)�W̃ 1

tm+1
,

S2
tm+1

= S2
tm + μ2(Stm)�t + ρ1,2σ2(Stm)�W̃ 1

tm+1
+ L2,2σ2(Stm)�W̃ 2

tm+1
,

...

Sd
tm+1

= Sd
tm + μd(Stm)�t + ρ1,dσd(Stm)�W̃ 1

tm+1
+ L2,dσd(Stm)�W̃ 2

tm+1
+ · · · + Ld,dσd(Stm)�W̃ d

tm+1
,

where Stm = (S1
tm , S2

tm , . . . , Sd
tm).

The d-variate discrete characteristic function of process Stm+1 , given Stm , is given by

ψStm+1
(u1, u2, . . . , ud |Stm)

= E

⎡
⎣exp

⎛
⎝ d∑

j=1

iujS
j
tm+1

⎞
⎠ |Stm

⎤
⎦

= E

⎡
⎣exp

⎛
⎝ d∑

j=1

iuj

(
Sj

tm + μj(Stm)�t + σj(Stm)

j∑
k=1

Lk,j�W̃ k
tm+1

)⎞⎠ |Stm

⎤
⎦

= exp

⎛
⎝ d∑

j=1

iuj(S
j
tm + μj(Stm)�t)

⎞
⎠ ·

d∏
k=1

⎛
⎝E

⎡
⎣exp

⎛
⎝ d∑

j=k

iujLk,jσj(Stm)�W̃ k
tm+1

⎞
⎠
⎤
⎦
⎞
⎠

= exp

⎛
⎝ d∑

j=1

iuj(S
j
tm + μj(Stm)�t)

⎞
⎠ ·

d∏
k=1

⎛
⎝ψN (0,�t)

⎛
⎝ d∑

j=k

ujLk,jσj(Stm)

⎞
⎠
⎞
⎠ ,

where i is the imaginary unit and ψN (μ,σ 2)(u) = exp(iμu − 0.5σ 2u2) is the characteristic
function of a normal random variable with mean μ and variance σ 2.

The joint moments of the product of several random variables can be obtained by evaluating
the following expression (more details in [22,34]), based on the discrete characteristic function

MStm+1
= E[(S1

tm+1
)c1(S2

tm+1
)c2 · · · (Sd

tm+1
)cd |Stm]

= (−i)c1+c2+···+cd

[
∂c1+c2+···+cdψStm+1

(u|Stm)

∂uc1
1 ∂uc2

2 · · · ∂ucd
d

]
u=0

,
(10)

being u = (u1, u2, . . . , ud).

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2443

If we take the basis functions, as used in Equation (5), to be a product of the underlying
processes to some power, i.e.

φk(Stm) =
(

d∏
δ=1

Sδtm

)k−1

, k = 1, . . . , K, (11)

the expected value in Equation (6) can be easily computed by means of Equation (10).
The approximation obtained in this way is, in general, worse than the analytic value because

the characteristic function on which the expectations are based is related to the Euler SDE dis-
cretization and thus less accurate. However, since we can increase the number of bundles and,
in particular, time steps drastically (due to our GPU implementation), we can employ a suitable
combination of these to price products without analytic solution for the characteristic function.
More involved models for the underlying asset dynamics can be chosen, for which we do not
have analytic expressions for these expectations. In Section 6.4, more details are given.

5. Implementation details

5.1 GPGPU: compute unified device architecture

GPGPU is the use of graphics hardware (GPUs) in order to perform computations which are
typically performed by CPUs. In this sense, the GPU can be seen as a co-processor of the CPU.

The compute unified device architecture, CUDA, is a parallel computing platform and pro-
gramming model developed by NVIDIA (see [8]) for its GPUs. CUDA eases the coding of algo-
rithms by means of an extension of traditional programming languages, like C. In this section,
we give some basic details about the platform which are necessary to understand the parallel
version of SGBM. More information about CUDA can be obtained from [5,7,14,19,20,29,36].

5.1.1 Programming model

The basic operational units in CUDA are the CUDA threads. The CUDA threads are processes
that are executed in parallel. The threads are grouped into blocks of the same size and blocks of
threads are grouped into grids. Such organization eases the adaptability to different problems.
One grid executes special functions called kernels so that all threads of the grid execute the same
instructions in parallel.

5.1.2 Memory hierarchy

CUDA threads may access data from multiple memory spaces during their execution. Each
thread manages its own registers and has private local memory. Each thread block has shared
memory visible to all threads of the block and with the same lifetime as the block. All threads
have access to the same global memory. There are also two additional read-only memory spaces
accessible by all threads: the constant and texture memory spaces. In terms of speed, the registers
represent the fastest memory (but also the smallest) while the global and local memories are the
slowest. In recent GPU architectures (Kepler GK110 and GK110B, for example), several levels
of cache are included to improve the accessibility.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2444 Á. Leitao and C.W. Oosterlee

5.1.3 Memory transfers

A key aspect in each parallel system is the memory transfer. Specifically in a GPU framework, the
transfers between the CPU main memory and the GPU memory space are of great importance for
the performance of the implementation. The number of transfers and the amount of data for each
transfer are important. CUDA provides different ways to allocate and move data. In that sense,
one of the CUDA 5.5 features is unified virtual addressing which allows asynchronous transfers
and page-locked memory accesses by using a single address space for both CPU and GPU.

5.2 Parallel SGBM

The original SGBM implementation [17] was done in Matlab. The first step of our implementa-
tion was to code an efficient sequential version of the method in the C programming language,
because it eases the parallel coding in CUDA. In addition, both implementations can be used
to compare results and execution times. Once we obtained the C-version, we coded the CUDA
version aiming to parallelize the suitable parts of the method. In addition, we also carried out the
implementation of SGBM with the equal-partitioning bundling technique in C and CUDA.

Since SGBM is based on two clearly separated stages, we parallelize them separately. First
of all, the MC path generation is parallelized (Step I). As is well known, MC methods are very
suitable for parallelization, because of characteristics like a very large number of simulations and
data independence. In Figure 2(a), we see schematically how the parallelization is done where
p0, p1, . . . , pN−1 are the CUDA threads. The second main stage of SGBM is the regression and the
computation of the continuation and option values (Steps IV and V) in each bundle, backwards
in time. Due to the data dependency between time steps, the way to parallelize this stage of
the method is by parallelizing over the bundles, performing the calculations in each bundle in
parallel. Schematic and simplified representations with two bundles are given in Figure 2(b)
and 2(c) for the two considered bundling techniques, k-means and equal-partitioning. Note that,
actually, several stages of parallelization are performed, one per time step. Between each parallel
stage, the bundling (Step III) is carried out. This step can be also parallelized in the case of
equal-partitioning. In the case of k-means, bundling has to be done sequentially.

As mentioned, the memory transfers between CPU and GPU are key since we have to move
huge amounts of data. An increase of the number of bundles implies a drastic increase of the
number of MC paths. Data has to be moved to CPU memory between the stages of paralleliza-
tion, MC path simulation and bundle computations. For example, in case of the MC scenario
generator, we need to store in and move from GPU global memory to CPU memory N × M × d
doubles1 (8 bytes).

In the following subsections, we will show more specific details of the CUDA implementation
of the two SGBM versions, the original one (with k-means bundling) and the new one (with
equal-partitioning).

5.2.1 Parallel MC paths

In a GPU very large numbers of threads can be managed, so we launch one CUDA thread per
MC path. The necessary random numbers are obtained ‘on the fly’ in each thread by means of
the cuRAND library [10]. In addition, the intrinsic value of the option and also the computation
of the expectation in Equation (6) are performed within the MC generator, decreasing the num-
ber of launched loops, i.e. we perform all necessary computations for the bundling and pricing
stages taking advantage of the parallel MC simulation. The intermediate results are stored in an
array defined inside the kernel which can be allocated in the registers, speeding up the memory
accesses.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2445

Monte Carlo stage.

Bundling stage using k-means. Bundling stage using equal-partitioning.

(a)

(b) (c)

Figure 2. Parallel SGBM. MC and bundling stages: (a) MC stage. (b) Bundling stage using k-means. (c) Bundling
stage using equal-partitioning.

In the original implementation (using k-means bundling), we need to store all MC data because
it will be used during the bundling stage. This is a limiting factor since the maximum memory
storage in global memory is easily reached. Furthermore, we have to move each value obtained
from GPU global memory to CPU main memory and, with a significant number of paths, time
steps and dimensions, this transfer can become really expensive.

When equal-partitioning bundling is considered, the main difference is that we now also per-
form calculations for the sorting criterion inside the MC generator, avoiding the storage of the
complete MC simulation and the transfer of data from GPU global memory to CPU main mem-
ory. This approach gives us a considerable performance improvement and allows us to increase
drastically the dimensionality and also the number of MC simulations (depending on the number
of bundles).

5.2.2 Bundling schemes

For the k-means clustering the computations of the distances between the cluster means and all
of the stochastic grid points have been parallelized. However, the other parts must be performed
sequentially. The very large number of bundles makes this very expensive, since the bundling
must be done in each time step.

As mentioned, equal-partitioning bundling involves two operations: sorting and splitting. It
is well known that efficient sorting algorithms are a challenging research topic (see [21], for
example). In parallel systems, like GPUs, this is even more important. In recent years, a great
effort has taken place, see, for example, [18,24,30,31], trying to adapt classical algorithms to the

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2446 Á. Leitao and C.W. Oosterlee

new parallel systems and developing new parallel techniques for sorting. Several libraries for
GPU programming appeared in this field, like Thrust [32], CUB [6], Modern GPU [25], clogs
[4] or VexCL [35].

In our work, we take advantage of the CUDA data-parallel primitives (CUDPP) library,
described in [9]. CUDPP is a library of data-parallel algorithm primitives that are important
building blocks for a wide variety of data-parallel algorithms, including sorting. The sorting
algorithms are based on the work of Satish et al. [30]. The authors showed the performance of
several sorting algorithms implemented on GPUs. Following the results of their work, we choose
the parallel Radix sort which is included in version 2.1 of CUDPP. In addition, CUDPP provides
a kernel-level API,2 allowing us to avoid the transfers between stages of parallelization.

Once the sorting stage has been performed, the splitting stage is immediate since the size of the
bundles is known, i.e. N/ν. Each CUDA thread manages a pointer which points at the beginning
of the corresponding region of global memory for each bundle. The global memory allocation is
made for all bundles which means that the bundle’s memory areas are adjacent and the accesses
are faster.

5.2.3 Estimators

When the bundling stage is done, the exercise policy and the final option values can be computed
by means of direct and PEs. In order to use the GPU memory efficiently, the obtained MC paths
(once bundled) are sorted with respect to the bundles and stored in that way. We minimize the
global memory accesses and the sorted version is much more efficient because, again, the bun-
dle’s memory areas are contiguous. For this purpose, we use again the CUDPP 2.1 library. Note
that the data are already sorted in the case of equal-partitioning bundling.

For the DE, one CUDA thread per bundle is launched at each time step. For each bundle,
the regression and option values are calculated on the GPU. All threads collaborate in order to
compute the continuation value which determines the early-exercise policy. As we mentioned
before, T/�t stages of parallelization are performed, i.e. one per time step. Hence, in each stage
of parallelization, we need to transfer only the data corresponding to the current time step from
CPU memory to GPU global memory. This data cannot be transferred at once because we wish
to take advantage of the optimized parallel sorting libraries for the sorting step after the bundling
stage. This allows us to minimize and improve the global memory accesses when the sequential
bundling is employed, i.e. considering k-means clustering. Anyway, this fact does not imply a
reduction of the performance since the total transferred amount is the same. Note again that,
employing equal-partitioning bundling, these transfers are avoided since this bundling technique
is fully parallelizable.

Once the early-exercise policy is determined, the PE can be executed. For that, a new set
of grid points has to be generated following the procedure described in Section 5.2.1. In the
case of the PE, the parallelization can be done over paths because the early-exercise policy is
already known (given by the previous computation of the DE) and is not needed to perform the
regression. One CUDA thread per path is launched and it computes the optimal exercise time
and the cash flows according to the policy. Another sorting stage is needed to assign the paths to
the corresponding bundle. Again, we use the sorting functions of CUDPP 2.1 for that purpose.

In the final stage for both estimators, a summation is necessary to determine the final option
price. We take advantage of the Thrust library [32] to perform this reduction on the GPU.

We present a schematic representation of parallel SGBM in Algorithm 2, highlighting the
parts which have been parallelized and considering the equal-partitioning version. The variables
payoffData, expData and critData correspond to three matrices in which we store the necessary
computations for the pricing, regression and sorting stages, respectively, for each path and each

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2447

exercise time. The αβt values are computed in the regression step and determine the early-exercise
policy, which is later used in the PE calculation.

Algorithm 2: Parallel SGBM
Data: St0 , X ,μδ , σδ , ρi,j, T , N , M
// Generation of the grid points (Monte Carlo). Step I.
// Option value at terminal time t = M. Step II.
[payoffData, critData, expData] = MonteCarloGPU(St0 , X ,μδ , σδ , ρi,j, T , N , M);
for Time t = M · · · 1 do

// Bundling. Step III.
SortingGPU(critData[t-1]);
begin CUDAThread per bundle β = 1 · · · ν

// Exercise policy (Regression). Step IV.

α
β
t = LeastSquaresRegression(payoffData[t]);
// Continuation value. Step V.

CV = ContinuationValue(αβt , expData[t-1]);
// Direct estimator. Step V.
DE = DirectEstimator(CV, payoffData[t-1]);

return DE;
// Generation of the grid points (Monte Carlo). Step I.
// Option value at terminal time t = M. Step II.
[payoffData, critData, expData] = MonteCarloGPU(St0 , X ,μδ , σδ , ρi,j, T , N , M);
for Time t = M · · · 1 do

// Bundling. Step III.
SortingGPU(critData[t-1]);
begin CUDAThread per path n = 1 · · · N

// Continuation value. Step V.

CV[n] = ContinuationValue(αβt , expData[t-1]);
// Path estimator. Step V.
PE[n] = PathEstimator(CV[n], payoffData[t-1]);

return PE;

6. Results

Experiments were performed on the Accelerator Island system of the Cartesius Supercomputer
(more information in [3]) with the following main characteristics:

• Intel Xeon E5-2450 v2.
• NVIDIA Tesla K40m.
• C-compiler: GCC 4.4.7.
• CUDA version: 5.5.

All computations are done in double precision, because a high accuracy is required both in the
bundling as well as in the regression computations. We consider the d-dimensional problem of
pricing basket Bermudan options with the following characteristics:

• Initial state: St0 = (40, 40, . . . , 40) ∈ R
d .

• Strike: X = 40.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2448 Á. Leitao and C.W. Oosterlee

(a) (b)

Figure 3. Convergence with equal-partitioning bundling technique. Test configuration: N = 218 and �t = T/M :
(a) geometric basket put option. (b) Arithmetic basket put option.

• Risk-free interest rate: rt = 0.06.
• Dividend yield rate: qδ = 0.0, δ = 1, 2, . . . , d .
• Volatility: σδ = 0.2, δ = 1, 2, . . . , d .
• Correlation: ρi,j = 0.25, j = 2, . . . , d , i = 1, . . . , j.
• Maturity: T = 1.0.
• Exercise times: M = 10.

Specifically, geometric and arithmetic basket Bermudan put options are chosen in order to
show the accuracy and performance. The number of basis functions is taken as K = 3. As
the stochastic asset model, we first choose the multi-dimensional geometric Brownian motion
(GBM), and for the discretization scheme we employ the Euler SDE discretization.

6.1 Equal-partitioning: convergence test

In the original SGBM paper, the authors have shown the convergence of SGBM using k-means
bundling, in dependence of the number of bundles. For the equal-partitioning bundling, we per-
form a similar convergence study by pricing the previously mentioned options. Regarding the
sorting criterion needed for the equal-partitioning technique, we choose the payoff criterion, i.e.
we sort the MC scenarios following the geometric or arithmetic average of the assets for geo-
metric and arithmetic basket options, respectively. Similar results can be obtained using other
criteria like the product or the sum of the assets. In Figure 3, we show the convergence of the
calculated option prices for both geometric and arithmetic basket Bermudan options with differ-
ent dimensionalities, i.e. d = 5, d = 10 and d = 15. In the case of the geometric basket option,
we can also specify the reference price obtained by the COS method [13], because a multi-
dimensional geometric basket option can be reformulated as a one-dimensional option pricing
problem. In the original paper for SGBM [17], we can also find a comparison with the LSM
method [23].

6.2 Bundling techniques: k-means vs. equal-partitioning

With the convergence of the equal-partitioning technique shown numerically, we now increase
drastically the number of bundles and, hence, the number of MC paths. For the two presented

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2449

Table 1. SGBM stages time (s) for the C and CUDA versions.

k-Means Equal-partitioning

MC DE PE MC DE PE

Geometric basket Bermudan option
C 82.42 234.37 203.77 101.77 41.48 59.16
CUDA 1.04 18.69 12.14 0.63 4.66 1.29
Speedup 79.25 12.88 16.78 161.54 8.90 45.86
Arithmetic basket Bermudan option
C 78.86 226.23 203.49 79.22 39.64 58.65
CUDA 1.36 17.89 11.74 0.83 4.14 1.20
Speedup 57.98 12.64 17.33 95.44 9.57 48.87

Note: Test configuration: N = 222, �t = T/M , d = 5 and ν = 210.

Table 2. SGBM total time (s) for the C and CUDA versions.

k-Means Equal-partitioning

d = 5 d = 10 d = 15 d = 5 d = 10 d = 15

Geometric basket Bermudan option
C 604.13 1155.63 1718.36 303.26 501.99 716.57
CUDA 35.26 112.70 259.03 8.29 9.28 10.14
Speedup 17.13 10.25 6.63 36.58 54.09 70.67
Arithmetic basket Bermudan option
C 591.91 1332.68 2236.93 256.05 600.09 1143.06
CUDA 34.62 126.69 263.62 8.02 11.23 15.73
Speedup 17.10 10.52 8.48 31.93 53.44 72.67

Note: Test configuration: N = 222, �t = T/M and ν = 210.

bundling techniques, we perform a time comparison between the C and CUDA implementa-
tions for multi-dimensional geometric and arithmetic basket Bermudan options. First of all, in
Table 1, we show the execution times for the different SGBM stages, i.e. MC path generation, DE
computation and PE computation, for the C and CUDA versions. We can see an overall improve-
ment of the timing results for SGBM based on equal-partitioning bundling due to more efficient
direct and PEs, which are around four times faster. The performance of the CUDA versions is
remarkable, reaching a speedup of 160 for the MC simulation.

In Table 2, the total execution times for d = 5, d = 10 and d = 15 problems are presented.
We observe a significant acceleration of the CUDA versions for both bundling techniques,
with a special improvement in the case of the equal-partitioning. This is because the iterative
process of k-means bundling penalizes parallelism and memory transfers, especially when the
dimensionality increases, while equal-partitioning handles these issues in a more efficient way.

6.3 High-dimensional problems

The second goal is to drastically increase the problem dimensionality for basket Bermudan option
pricing. In the case of the k-means bundling algorithm, this is not possible because of memory
limitations. However, we save memory using the equal-partitioning technique which enables us
to increase the problem dimensions. We can reduce the total number of MC paths, since by equal-
partitioning each bundle has the same number of paths. This gives us accurate regressions in all
bundles. The SGBM prices for geometric and arithmetic basket Bermudan put options are shown
in Table 3. Again, the reference price for the geometric basket Bermudan option is obtained by
the COS method [13] and we present the prices given by the DE and PE.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2450 Á. Leitao and C.W. Oosterlee

Table 3. Option price for a high-dimensional problem with equal-partitioning.

d = 30 d = 40 d = 50

Geometric basket Bermudan option
COS 1.057655 1.041889 1.032343
SGBM DE 1.057657 1.041888 1.032339
SGBM PE 1.057341 1.041545 1.031797
Arithmetic basket Bermudan option
SGBM DE 0.937436 0.921009 0.911023
SGBM PE 0.934359 0.919695 0.909646

Note: Test configuration: N = 220, �t = T/M and ν = 210.

Table 4. SGBM total time (s) for a high-dimensional problem with equal-partitioning.

ν = 210 ν = 214

d = 30 d = 40 d = 50 d = 30 d = 40 d = 50

Geometric basket Bermudan option
C 337.61 476.16 620.11 337.06 475.12 618.98
CUDA 4.65 6.18 8.08 4.71 6.26 8.16
Speedup 72.60 77.05 76.75 71.56 75.90 75.85
Arithmetic basket Bermudan option
C 993.96 1723.79 2631.95 992.29 1724.60 2631.43
CUDA 11.14 17.88 26.99 11.20 17.94 27.07
Speedup 89.22 96.41 97.51 88.60 96.13 97.21

Note: Test configuration: N = 220 and �t = T/M .

In Table 4, the execution times for pricing geometric and arithmetic basket Bermudan put
options in different dimensions and with different numbers of bundles, ν, are shown. Note that
the number of bundles hardly influences the execution times. With the equal-partitioning tech-
nique, the performance is mainly dependent on the number of paths and the dimensionality.
For that reason, we can exploit the GPU parallelism arriving at a speedup of around 75 for the
50-dimensional problem in the case of geometric basket Bermudan option and around 100 for
the 50-dimensional arithmetic basket Bermudan option.

Taking into account the accuracy and the performance of our CUDA implementation, we can
even increase the dimension of the problem to higher values.

6.4 Experiments with more general approach

Parallel SGBM can thus be used to efficiently price high-dimensional basket Bermudan options
under GBM or other processes for which the continuous characteristic function is available.
However, as presented in Section 4, we can use SGBM also when the continuous characteristic
function is not available. In this case, we first discretize the SDEs system and then determine the
characteristic function, which changes with position and/or time. In order to get accurate approx-
imations when using this discrete characteristic function, we need to improve the approximation
of the expectations resulting from the use of the basis functions in Equation (11). For that, we can
increase the number of time steps, i.e. we can reduce the differences between MC paths within
each bundle (with this, the regression becomes more accurate). We perform a convergence test
to show this behaviour. For the experiment, we choose the GPU version of SGBM with equal-
partitioning bundling, because this is the most efficient implementation and the performance is

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2451

(a) (b)

Figure 4. CEV model convergence, γ = 1.0. Test configuration: N = 216, ν = 210 and d = 2: (a) geometric basket
put option. (b) Arithmetic basket put option.

independent of the number of bundles. An increasing number of time steps makes the C-version
too expensive again.

We consider a parametric local volatility model called the constant elasticity of variance (CEV)
model. This model can be obtained by substituting

μδ(St) = (rt − qδ)S
δ
t , σδ(St) = σδ(S

δ
t)
γ , (12)

in Equation (1). γ ∈ [0, 1] is a free parameter called the variance elasticity, and qδ and σδ , δ =
1, 2, . . . , d, are constant dividend yield and volatility, respectively.

The computation of the derivatives in Equation (10) is performed by using Wolfram
Mathematica 8 [37].

In Figure 4, a convergence test regarding the number of MC time steps is presented. A
two-dimensional problem is considered and γ = 1.0 is used in Equation (12) to compare our
approximation with the reference price given by the COS method (in the case of a geometric
basket Bermudan put option) and the original SGBM following geometric Brownian motion
(for an arithmetic basket Bermudan put option). The figure shows that we can get improved
approximations of the option price by increasing the number of MC time steps.

In Figure 5, the same convergence test as d = 2 case is presented for five-dimensional prob-
lem. Again, we can see that the approximations are better when the number of MC time steps is
increased. In both cases, d = 2 and d = 5, the DE gives a better approximation compared with
the reference price. It is also observed that the direct and PEs for the new approach perform
similarly as in the case of the original SGBM and they can provide a confidence interval for the
option price.

Once we find an appropriate combination of the number of MC paths, bundles and time steps,
we can use our parallel SGBM method to price products under local volatility dynamics. In
Tables 5 and 6, the results of pricing two-dimensional and five-dimensional geometric and arith-
metic basket Bermudan put options are presented. We take a different values for γ in the CEV
model here. Note that we did not encounter any problems with the Euler discretization of the CEV
dynamics in our test cases. The execution times (s) are around 120 and 150 for two-dimensional
and five-dimensional problems, respectively.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

2452 Á. Leitao and C.W. Oosterlee

(a) (b)

Figure 5. CEV model convergence, γ = 1.0. Test configuration: N = 216, ν = 210 and d = 5: (a) geometric basket
put option. (b) Arithmetic basket put option.

Table 5. CEV option pricing.

γ = 0.25 γ = 0.5 γ = 0.75 γ = 1.0

Geometric basket Bermudan option
SGBM DE 0.001420 0.055636 0.411066 1.755705
SGBM PE 0.001395 0.055620 0.410758 1.754869
Arithmetic basket Bermudan option
SGBM DE 0.001417 0.055340 0.404410 1.688609
SGBM PE 0.001346 0.055249 0.400400 1.682956

Note: Test configuration: N = 216, �t = T/4000, ν = 210 and d = 2.

Table 6. CEV option pricing.

γ = 0.25 γ = 0.5 γ = 0.75 γ = 1.0

Geometric basket Bermudan option
SGBM DE 0.000291 0.029395 0.276030 1.342147
SGBM PE 0.000274 0.029322 0.275131 1.342118
Arithmetic basket Bermudan option
SGBM DE 0.000289 0.029089 0.267943 1.241304
SGBM PE 0.000288 0.028944 0.267214 1.225359

Note: Test configuration: N = 216, �t = T/4000, ν = 210 and d = 5.

7. Conclusions

In this paper, we have presented an efficient implementation of the SGBM on a GPU architec-
ture. Through the GPU parallelism, we could speed up the execution times when the number
of bundles and the dimensionality increase drastically. In addition, we have proposed a parallel
bundling technique which is more efficient in terms of memory use and more suitable on parallel
systems. These two improvements enable us to extend the method’s applicability and explore
more general ways to compute the continuation values. A general approach for approximating
expectations based on the so-called discrete characteristic function was presented. This approach
allowed us to use SGBM for underlying asset models for which the continuous characteristic
function is not available.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

International Journal of Computer Mathematics 2453

Several results under the CEV local volatility model were presented to show the performance
and the accuracy of the new proposed techniques.

Compared with other GPU parallel implementations of early-exercise option pricing methods,
our parallel SGBM is very competitive in terms of computational time and can solve very high-
dimensional problems. Furthermore, we provided a new way to parallelize the backward stage,
according to the bundles, which gave us a remarkable performance improvement.

We think that the parallel SGBM technique presented forms a fine basis to deal with credit
valuation adjustment of portfolios with financial derivatives in the near future.

Acknowledgments

The authors would like to thank Shashi Jain, ING Bank, for providing support and the original codes of the SGBM.
Thanks to SURFsara for providing the access to Accelerator Island system of the Cartesius Supercomputer to perform

our experiments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The first author is supported by the European Union in the FP7-PEOPLE-2012-ITN Program [grant number 304617]
(FP7 Marie Curie Action, Project Multi-ITN STRIKE – Novel Methods in Computational Finance).

Notes

1. Double-precision floating-point format.
2. Application programming interface.

References

[1] L.A. Abbas-Turki and B. Lapeyre, American Options Pricing on Multi-core Graphic Cards, 2009 International
Conference on Business Intelligence and Financial Engineering, Beijing, 2009, pp. 307–311.

[2] M. Benguigui and F. Baude, Fast American Basket Option Pricing on a Multi-GPU Cluster, Proceedings of the
22nd High Performance Computing Symposium, April, Tampa, FL, 2014, pp. 1–8.

[3] Cartesius webpage, https://www.surfsara.nl/systems/cartesius.
[4] Clogs webpage, http://sourceforge.net/projects/clogs/.
[5] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs, 1st ed., Morgan Kaufmann

Publishers Inc., San Francisco, CA, 2013.
[6] CUB webpage, http://nvlabs.github.io/cub/.
[7] CUDA programming guide, http://docs.nvidia.com/cuda/cuda-c-programming-guide/.
[8] CUDA webpage, http://www.nvidia.com/object/cuda_home_new.html.
[9] CUDPP webpage, http://cudpp.github.io/.

[10] cuRAND webpage, https://developer.nvidia.com/curand.
[11] V. Cvetanoska and T. Stojanovski, Using high performance computing and Monte Carlo simulation for pricing

American options, CoRR abs/1205.0106 (2012). Available at http://arxiv.org/abs/1205.0106.
[12] D.M. Dang, C.C. Christara, and K.R. Jackson, An efficient graphics processing unit-based parallel algorithm

for pricing multi-asset American options, Concurr. Comput.: Pract. Exp. 24 (2012), pp. 849–866. Available at
http://dx.doi.org/10.1002/cpe.1784.

[13] F. Fang and C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine series
expansions, Numer. Math. 114 (2009), pp. 27–62.

[14] R. Farber, CUDA Application Design and Development, Morgan Kaufmann Publishers Inc., San Francisco, CA,
2011.

[15] M. Fatica and E. Phillips, Pricing American Options with Least Squares Monte Carlo on GPUs, Proceed-
ings of the 6th Workshop on High Performance Computational Finance, WHPCF’13, Denver, CO. Available at
http://doi.acm.org/10.1145/2535557.2535564, ACM, New York, NY, USA, 2013, pp. 5:1–5:6.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

https://www.surfsara.nl/systems/cartesius
http://sourceforge.net/projects/clogs/
http://nvlabs.github.io/cub/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/object/cuda_home_new.html
http://cudpp.github.io/
https://developer.nvidia.com/curand
http://arxiv.org/abs/1205.0106
http://dx.doi.org/10.1002/cpe.1784
http://doi.acm.org/10.1145/2535557.2535564

2454 Á. Leitao and C.W. Oosterlee

[16] M.B. Haugh and L. Kogan, Pricing American options: A duality approach, Oper. Res. 52 (2004), pp. 258–270.
[17] S. Jain and C.W. Oosterlee, The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan Options and

Their Greeks, 2013. Available at http://ssrn.com/abstract = 2293942.
[18] B. Jan, B. Montrucchio, C. Ragusa, F.G. Khan, and O. Khan, Fast parallel sorting algorithms on GPUs, Int. J.

Distrib. Parallel Syst 14 (2012), pp. 107–118.
[19] V. Kindratenko (ed.), Numerical Computations with GPUs, Springer, 2014. Available at http://www.springer.com/

us/book/9783319065472
[20] D.B. Kirk and W.m.W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Elsevier,

Burlington, 2010.
[21] D.E. Knuth, The Art of Computer Programming, Sorting and Searching, Volume 3, 2nd ed., Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA, 1998.
[22] H. Kobayashi, B.L. Mark, and W. Turin, Probability, Random Processes, and Statistical Analysis, Cambridge

University Press, Cambridge, 2012.
[23] F.A. Longstaff and E.S. Schwartz, Valuing American options by simulation: A simple least-squares approach, Rev.

Financ. Stud. 14 (2001), pp. 113–147. Available at http://ideas.repec.org/a/oup/rfinst/v14y2001i1p113-47.html.
[24] M.J. Misic and M.V. Tomasevic, Data sorting using graphics processing units, Telfor J. 4 (2012), pp. 43–48.
[25] Modern GPU webpage, http://nvlabs.github.io/moderngpu/.
[26] G. Pagès and B. Wilbertz, GPGPUs in computational finance: Massive parallel computing for American style

options, Concurr. Comput.: Pract. Exp. 24 (2012), pp. 837–848. Available at http://dx.doi.org/10.1002/cpe.1774.
[27] L.C.G. Rogers, Monte Carlo valuation of American options, Math. Financ. 12 (2002), pp. 271–286.
[28] M.J. Ruijter and C.W. Oosterlee, Numerical Fourier Method and Second-order Taylor Scheme for Backward SDEs

in Finance, Working paper, 2014.
[29] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-purpose GPU Programming, Addison-

Wesley, Michigan, 2011.
[30] N. Satish, M. Harris, and M. Garland, Designing Efficient Sorting Algorithms for Manycore GPUs, Proceedings of

the 23rd IEEE International Parallel and Distributed Processing Symposium, Rome, May 2009.
[31] K. Thouti and S. Sathe, An OpenCL method of parallel sorting algorithms for GPU architecture, Int. J. Exp.

Algorithms 3 (2012), pp. 1–8.
[32] Thrust webpage, http://thrust.github.io/.
[33] J.N. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American-style options, IEEE Trans. Neural

Netw. 12 (2001), pp. 694–703.
[34] N.G. Ushakov, Selected Topics in Characteristic Functions (Modern Probability and Statistics), Mouton De

Gruyter, Utrecht, 1999.
[35] VexCL webpage, http://ddemidov.github.io/vexcl/.
[36] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison-Wesley, Indiana, 2013.
[37] Wolfram Mathematica webpage, http://www.wolfram.com/mathematica/.

D
ow

nl
oa

de
d

by
 [

B
ib

lio
th

ee
k

T
U

 D
el

ft
]

at
 0

6:
28

 0
6

Ja
nu

ar
y

20
16

http://ssrn.com/abstract=2293942
http://www.springer.com/us/book/9783319065472
http://www.springer.com/us/book/9783319065472
http://ideas.repec.org/a/oup/rfinst/v14y2001i1p113-47.html
http://nvlabs.github.io/moderngpu/
http://dx.doi.org/10.1002/cpe.1774
http://thrust.github.io/
http://ddemidov.github.io/vexcl/
http://www.wolfram.com/mathematica/

	1. Introduction
	2. Bermudan options
	3. Stochastic grid bundling method
	3.1. Bundling
	3.2. Parameterizing the option values
	3.3. Estimating the option value

	4. Continuation value computation: new approach
	4.1. Discretization, joint discrete characteristic function and joint moments

	5. Implementation details
	5.1. GPGPU: compute unified device architecture
	5.2. Parallel SGBM

	6. Results
	6.1. Equal-partitioning: convergence test
	6.2. Bundling techniques: k-means vs. equal-partitioning
	6.3. High-dimensional problems
	6.4. Experiments with more general approach

	7. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	Notes
	References

