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In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options
under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step
Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math. Comput.
2017, 293, 461–479], for pricing European options in the context of the model calibration. A highly
efficient method results, with many very interesting and nontrivial components, like Fourier inversion
for the sum of log-normals, stochastic collocation, Gumbel copula, correlation approximation, that
are not yet seen in combination within a Monte Carlo simulation. The present multiple time step
Monte Carlo method is especially useful for long-term options and for exotic options.

Keywords: SABR model; Exact simulation; Monte Carlo methods; Copulas; Stochastic collocation;
Fourier techniques; Exotic options

JEL Classification: C15, C63

1. Introduction

The Stochastic Alpha Beta Rho (SABR) model (Hagan et al.
2002) is an established stochastic differential equation (SDE)
model which, in practice, is often used for interest rates and
foreign-exchange (FX) modelling. It is based on a parametric
local volatility component in terms of a model parameter, β,
and reads

dS(t) = σ(t)Sβ(t)dWS(t), S(0) = S0 exp (rT ) ,

dσ(t) = ασ(t)dWσ (t), σ (0) = σ0.
(1)

Here, S(t) = S̄(t) exp (r(T − t)) denotes the forward price of
the underlying asset S̄(t), with r an interest rate, S0 the spot
price and T the maturity. Further, σ(t) represents a stochastic
volatility process, with σ(0) = σ0, WS(t) and Wσ (t) are corre-
lated Brownian motions with constant correlation coefficient
ρ (i.e. WS Wσ = ρt). The parameters of the SABR model
are α > 0 (the volatility of volatility, vol-vol), 0 ≤ β ≤ 1
(the variance elasticity) and ρ (the correlation coefficient).
Because of a practically very useful closed-form expression for
the implied volatility, Hagan et al. (2002) and Obloj (2008), the
model has gained its popularity. However, since this expression
is derived by perturbation theory, the formula is not always
accurate for small strike values or for long time to maturity.
By the one time step SABR method in Leitao et al. (2017), we
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can efficiently calculate accurate implied volatilities for any
strike, however, only for short times to maturity (less than two
years). This fits well to the context of FX markets.

Here, we extend the one time step Monte Carlo method
from Leitao et al. (2017), and propose a multiple time step
Monte Carlo simulation technique for pricing options under
the SABR dynamics. We call it the mSABR method. With this
new simulation approach, we can price options with longer
maturities, payoffs relying on the transitional distributions and
exotic options (like path-dependent options) under the SABR
dynamics, overcoming the limitations of Hagan’s formula in
the mentioned situations.

Because a robust and efficient SABR simulation scheme
may be involved and quite expensive, we aim for using as
few time steps as possible. This fact, together with the long-
time horizon assumption, implies that we focus on larger time
steps. In this context, the important research line is called
exact simulation, where, rather than Taylor-based simulation
techniques, the probability density of the SDE under consider-
ation is highly accurately approximated. Point-of-departure is
Broadie and Kaya’s exact simulation for the Heston stochastic
volatility model (Broadie and Kaya, 2006). That method is,
however, time-consuming because of multiple evaluations of
Bessel functions and the use of Fourier inversion techniques
on each Monte Carlo path. Inspired by this approach, in Smith
(2007) and van Hasstrecht and Pelsser (2010), computational
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improvements were proposed. Furthermore, Andersen (2008)
presented two efficient alternatives to the Broadie and Kaya
scheme, the so-called Truncated Gaussian and the Quadratic
Exponential (QE) schemes.

For the SABR model, exact Monte Carlo simulation is non-
trivial because the forward process in (1) is governed by con-
stant elasticity of variance (CEV) dynamics (Cox 1996,
Schroder 1989). In Islah (2009), the connection between the
CEV and a squared Bessel processes was explained, and an
analytic approximation for the SABR conditional distribution
based on the non-central χ2 distribution was presented. The
expression relies on the stochastic volatility dynamics, but also
on the integrated variance process (which itself also depends
on the volatility).

An (approximately) exact SABR simulation can then be
subdivided in to the simulation of the volatility process, the
simulation of the integrated variance (conditional on the volatil-
ity process) and the simulation of the underlying CEV pro-
cess (conditional on the volatility and the integrated variance
processes). Based on this, Chen et al. (2012) proposed a low-
biased Monte Carlo scheme with moment-matching (following
the techniques of the QE scheme by Andersen (2008)) and
a direct inversion approach. For the simulation of the inte-
grated variance, they also employed moment-matching based
on conditional moments that were approximated by a small
disturbance expansion. In Cai et al. (forthcoming), the authors
employed direct inversion for the forward distribution and
used a Laplace transform inversion technique to simulate the
integrated variance. Kennedy and Pham (2014) provided the
moments of the integrated variance for specific SABR models
(like the normal, log-normal and displaced diffusion SABR
models) and derived an approximation of the SABR distribu-
tion. In Lord and Farebrother (2014), a summary of different
approaches was presented.

In this work, we approximate the distribution of the inte-
grated variance conditional on the volatility dynamics by join-
ing the two involved marginal distributions, i.e. the stochastic
volatility and integrated variance distributions, by means of
copula techniques. With both marginal distributions available,
we use the Archimedean Gumbel copula to define a multivari-
ate distribution which approximates the conditional distribu-
tion of the integrated variance given the stochastic volatility.

An approximation of the cumulative distribution function
(CDF) of the integrated variance can be obtained by a recur-
sive procedure, as described in Zhang and Oosterlee (2013),
originally employed to price arithmetic Asian options. This
iterative technique is based on the derivation of the character-
istic function of the integrated variance process and Fourier
inversion to recover the probability density function (PDF).

The fact that we need to apply recursion and compute the
corresponding characteristic function, PDF and CDF of the
integrated variance for each Monte Carlo sample at each time
step, makes this approach however computationally very ex-
pensive (even with the improvements already made in Leitao
et al. (2017)), like the Heston exact simulation. In order to
reduce the use of this procedure as much as possible, highly
efficient sampling from the CDF of the integrated variance is
proposed, which is based on the so-called Stochastic Colloca-
tion Monte Carlo sampler (SCMC), see Grzelak et al. (2015).
The technique employs a sophisticated interpolation (based

on Lagrange polynomials and collocation points) of the CDF
under consideration.

As will be seen, the resulting ‘almost exact’ Monte Carlo
SABR simulation method that we present here (the mSABR
method), contains several interesting (and not commonly used)
components, like the Gumbel copula, a recursion plus Fourier
inversion to approximate the CDF of the integrated variance
and efficient interpolation by means of the SCMC sampler. The
proposed mSABR scheme allows for fast and accurate option
pricing under SABR dynamics, providing a better ratio of
accuracy and computational cost than Taylor-based simulation
schemes. Compared to the other approaches mentioned in this
introduction, we provide a highly accurate SABR simulation
scheme, based on only a few time steps.

The paper is organized as follows. In section 2, SABR model
simulation is introduced. In section 3, the different parts of
the multiple time step copula-based technique are described,
including the derivation of the marginal distributions and the
application of the copula. Some numerical experiments are pre-
sented in section 4. We conclude in section 5. In the derivation
of the CDF of the integrated variance, we need to perform sev-
eral approximations, which comes with approximation errors.
In appendix 1, we list and discuss these errors.

2. ‘Almost exact’ SABR simulation

The SABR model with dependent Brownian motions was
already given in (1). The multiple time step Monte Carlo SABR
simulation is based on the corresponding SDE system with
independent Brownian motions dŴS(t) and dŴσ (t), i.e.

dS(t) = σ(t)Sβ(t)

(
ρdŴσ (t)+

√
1 − ρ2dŴS(t)

)
,

S(0) = S0 exp (rT ) ,

dσ(t) = ασ(t)dŴσ (t),

σ (0) = σ0. (2)

The forward dynamics are governed by a CEV process.
Based on this fact and the work by Schroder (1989) and Islah
(2009), an analytic approximation for the CDF of the SABR
conditional process has been obtained. For some generic time
interval [s, t], 0 ≤ s < t ≤ T , assuming S(s) > 0, the condi-
tional cumulative distribution for forward S(t)with an absorb-
ing boundary at S(t) = 0, given σ(s), σ(t) and

∫ t
s σ

2(z)dz, is
given by

Pr

(
S(t) ≤ K |S(s) > 0, σ (s), σ (t),

∫ t

s
σ 2(z)dz

)
= 1 − χ2(a; b, c), (3)

where

a = 1

ν(t)

(
S(s)1−β

(1 − β)
+ ρ

α
(σ(t)− σ(s))

)2

,

c = K 2(1−β)

(1 − β)2ν(t)
,

b = 2 − 1 − 2β − ρ2(1 − β)

(1 − β)(1 − ρ2)
,

ν(t) = (1 − ρ2)

∫ t

s
σ 2(z)dz,

and χ2(x; δ, λ) is the non-central chi-square CDF.
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This formula is exact in the case of ρ = 0 and constitutes
an approximation otherwise (because the CEV process is ap-
proximated by a shifted process with an approximated initial
condition for ρ �= 0 in the derivation). Based on equation
(3), an approximately exact simulation of SABR model is
feasible by inverting the conditional SABR cumulative distri-
bution when the conditional integrated variance is known, see
section 2.1.

2.1. SABR Monte Carlo simulation

In order to apply an ‘almost exact’ multiple time step Monte
Carlo method for the SABR model, several steps need to be
performed, that are described in the following:

• Simulation of the SABR volatility process, σ(t) given
σ(s). By equation (2), the stochastic volatility process
of the SABR model exhibits a log-normal distribution.
The solution is a geometric Brownian motion, i.e. the
exact simulation of σ(t)|σ(s) reads

σ(t) ∼ σ(s) exp

(
αŴσ (t)− 1

2
α2t

)
. (4)

• Simulation of the SABR integrated variance process,∫ t
s σ

2(z)dz|σ(s), σ (t). This conditional distribution is
not available in closed form. We will therefore derive
an approximation of the conditional distribution of the
SABR integrated variance given σ(t) and σ(s). The
integrated variance sampling can be done by simply
inverting it.

• Simulation of the SABR forward price process. The for-
ward price S(t) can be simulated by inverting the CDF in
equation (3). By this, we avoid negative forward prices
in the simulation, as an absorbing boundary at zero is
considered. There is no analytic expression for the
inverse distribution and therefore this inversion has to be
computed by means of some numerical approximation.

The multiple time step Monte Carlo simulation for the SABR
model is thus summarized in algorithm 1. Input parameters are
the initial conditions (S0 and σ0), the maturity time, T , the
SABR parameters α, β and ρ, the number of Monte Carlo
samples (n) and the number of time steps (m).

Algorithm 1: Multiple time step SABR Monte Carlo
simulation.

Data: S0, σ0, T, α, β, ρ, n,m.
S(0) = S0 exp (rT ), σ(0) = σ0
for Path p = 1 . . . n do

for Step k = 1 . . .m do
s = (k − 1) T

m
t = k T

m
Sampling σ(t) given σ(s).

Sampling
∫ t

s σ
2(z)dz given σ(s) and σ(t).

Sampling S(t) given S(s), σ(s), σ(t) and
∫ t

s σ
2(z)dz.

In section 3.3, we propose a procedure to sample
∫ t

s σ
2(z)dz|

σ(s), σ (t) based on the Gumbel copula. For this, the CDF of
the integrated variance given the initial volatility, σ(s), (as
a marginal distribution) must be derived. In section 3.1, a
recursive technique to obtain an approximation of this CDF is

presented. Because we need to apply this recursion to
approximate the characteristic function, the PDF and the CDF
of
∫ t

s σ
2(z)dz|σ(s) for each sample of σ(s) at each time step,

this approach is expensive in terms of computational cost.
To overcome this drawback, an efficient alternative will be
employed here, based on Lagrange interpolation, as in the
SCMC (Grzelak et al., 2015). In section 2.2, this methodology
is briefly described.

2.2. Stochastic collocation Monte Carlo sampler

In a multiple time step exact simulation Monte Carlo method
we need to perform a significant number of computations each
time step on each Monte Carlo path. This often hampers the
applicability of the exact simulation for systems of SDEs. One
of the important components of the multiple time step Monte
Carlo SABR simulation is therefore an accurate and highly
efficient interpolation, as proposed in the SCMC sampler in
Grzelak et al. (2015).

In this section, we will introduce the SCMC technique. The
details in the SABR conditional integrated variance context
will be presented in section 3.2.

The SCMC technique relies on the property that a CDF of a
distribution (if it exists) is uniformly distributed.Awell-known
standard approach to sample from a given distribution, Y , with
CDF FY reads

FY (Y )
d= U thus yn = F−1

Y (un),

where
d= means equality in distributional sense, U ∼ U([0, 1])

and un are samples from U([0, 1]). The computational cost of
this approach highly depends on the cost of the inversion F−1

Y ,
which is assumed to be expensive.

We therefore consider another, ‘cheap’, random variable X ,
whose inversion, F−1

X , is computationally much less expen-
sive. In this framework, the following relation holds

FY (Y )
d= U

d= FX (X).

The samples yn of Y , and xn of X , are thus related via the
following inversion,

yn = F−1
Y (FX (xn)).

However, this does not yet imply any improvement since the
number of expensive inversions F−1

Y remains the same. The
goal is to compute yn using a function g(·) = F−1

Y (FX (·)),
such that

FX (x) = FY (g(x)) and Y
d= g(X),

where evaluations of function g(·) do not require many
inversions F−1

Y (·).
In Grzelak et al. (2015), function g(·) is approximated by

means of Lagrange interpolation, which is a well-known in-
terpolation also used in the Uncertainty Quantification (UQ)
context. The result is a polynomial, gNY (·), which approxi-
mates function g(·) = F−1

Y (FX (·)), and the samples yn can be
obtained by employing gNY (·) as
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yn ≈ gNY (xn) =
NY∑
i=1

yi
i (xn), 
i (xn) =
NY∏

j=1, j �=i

xn − x̄ j

x̄i − x̄ j
,

where xn is a vector of samples from X and x̄i and x̄ j are
so-called collocation points. NY represents the number of col-
location points and yi the exact inversion value of FY at the
collocation point x̄i , i.e. yi = F−1

Y (FX (x̄i )). By applying this
interpolation, the number of inversions is reduced and, with
only NY expensive inversions F−1

Y (FX (x̄i )), we can generate
any number of samples by evaluating the polynomial gNY (xn).
This constitutes the 1D version of SCMC sampler in Grzelak
et al. (2015).

According to the definition of the SCMC technique, a crucial
aspect for the computational cost is parameter NY : the fewer
collocation points are required, the more efficient will be the
sampling procedure. The collocation points must be optimally
chosen in a way to minimize their number. For any random
variable X , the optimal collocation points will be based on the
moments of X . The optimal collocation points are here chosen
to be Gauss quadrature points that are defined as the zeros
of the related orthogonal polynomial. This approach leads to
a stable interpolation under the probability distribution of X .
The complete procedure to compute the collocation points is
described in Grzelak et al. (2015).

In section 3.2, the application of SCMC technique to gen-
erate samples from the CDF of

∫ t
s σ

2(z)dz|σ(s) is presented.
Since we deal with a conditional distribution, the 2D version
of SCMC needs to be used.

3. Components of the mSABR method

In this section, we will discuss the different components of
the mSABR method. For simplicity, hereafter, we denote the
SABR’s integrated variance process by Y (s, t) := ∫ t

s σ
2(z)dz.

We will explain how to efficiently sample the integrated vari-
ance given the initial and the final volatility, i.e. Y (s, t)|σ(t),
σ (s), as well as its use in a complete SABR simulation. Since
the distribution is not available in closed form, some approxi-
mations need to be made. In section 3.3, we propose an accurate
sampling method based on copula theory (Sklar, 1959), which
is employed to approximate the required conditional distri-
butions. The copula relies on the availability of the marginal
distributions to simulate the joint distribution. As the marginal
distributions, Y (s, t)|σ(s) and σ(t)|σ(s) appear as the natural
choices. In section 3.1, a procedure to recover the CDF of
the integrated variance process given the initial volatility is
presented.

3.1. CDF of
∫ t

s σ
2(z)dz|σ(s) using the COS method

We present a technique to approximate the CDF of Y (s, t)|
σ(s), i.e. FY |σ(s). We will work in the log-space, so an ap-
proximated CDF of log Y (s, t)| log σ(s), Flog Y | log σ(s), will
be derived. We have employed this technique in the one time
step SABR method (Leitao et al. 2017), but the multiple time
step version is more involved. We approximate Y (s, t) by its
discrete equivalent, i.e.

Y (s, t) :=
∫ t

s
σ 2(z)dz ≈

M∑
j=1

�tσ 2(t j ) =: Ŷ (s, t) (5)

where M is the number of intermediate or discrete time points,†
�t = t−s

M and t j = s + j�t , j = 1, . . . ,M . Ŷ (T ) is subse-
quently transformed to the logarithmic domain, with

Flog Ŷ | log σ(s)(x) =
∫ x

−∞
flog Ŷ | log σ(s)(y)dy, (6)

and flog Ŷ | log σ(s) the PDF of log Ŷ (s, t)| log σ(s).
Density flog Ŷ | log σ(s) is, in turn, found by approximating the

associated characteristic function, φlog Ŷ | log σ(s), and applying
a Fourier inversion procedure. The characteristic function and
the desired PDF of log Ŷ (T )| log σ(s) form a Fourier pair.
Based on the work in Benhamou (2002) and Zhang and Oost-
erlee (2013), we can define a recursive procedure to recover
the characteristic function of flog Ŷ | log σ(s).

3.1.1. Recursive procedure to recover φlog Ŷ | log σ(s). We
start by defining the sequence,

R j = log

(
σ 2(t j )

σ 2(t j−1)

)
, j = 1, . . . ,M, (7)

where R j is the logarithmic increment of σ 2(t) between t j

and t j−1, j = 1, . . . ,M . As the volatility process follows
log-normal dynamics, and increments of Brownian motion are
independent and identically distributed, the R j are also inde-

pendent and identically distributed, i.e. R j
d= R. In addition,

the characteristic function of R j is well known and reads,∀u, j ,

φR j (u) = φR(u) = exp(−iuα2�t − 2u2α2�t), (8)

with α as in (1) and i = √−1 the imaginary unit. By the
definition of R j in equation (7), we write σ 2(t j ) as

σ 2(t j ) = σ 2(t0) exp(R1 + R2 + · · · + R j ). (9)

At this point, a backward recursion procedure in terms of R j

will be defined by which we can recover φlog Ŷ | log σ(s)(u). We
define

Y1 = RM , Y j = RM+1− j + Z j−1, j = 2, . . . ,M.
(10)

with Z j = log(1 + exp(Y j )).
By equations (9) and (10), the discrete integrated variance

can be expressed as follows:

Ŷ (s, t) =
M∑

i=1

σ 2(ti )�t = �tσ 2(s) exp(YM ). (11)

From equation (11) and by applying the definition of char-
acteristic function, we determine φlog Ŷ | log σ(s), as follows:

†So, we have the m large time steps, for the multiple time step Monte
Carlo simulation, and we have M intermediate dates for the integrated
variance, M >> m. We suggest to prescribe �t , and use M = t−s

�t ,
in order to avoid over-discretization issues. This makes the value of
M dependent on the interval size, t − s.
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φlog Ŷ | log σ(s)(u)

= E[exp(iu log Ŷ (s, t))| log σ(s)]
= exp

(
iu log(�tσ 2(s))

)
E[exp (iuYM ) | log σ(s)]

= exp
(

iu log(�tσ 2(s))
)
φYM (u). (12)

We have reduced the computation of φlog Ŷ | log σ(s) to the
computation ofφYM .As YM is defined recursively, its character-
istic function can be obtained by a recursion as well.According
to the definition of the (backward) sequence Y j in equation
(10), the initial and recursive characteristic functions are given
by the following expressions,

φY1(u) = φRM (u) = φR(u) = exp(−iuα2�t − 2u2α2�t),

φY j (u) = φRM+1− j (u)φZ j−1(u) = φR(u)φZ j−1(u),
(13)

where equation (8) is used in both expressions and the indepen-
dence of RM+1− j and Z j−1 is also employed. By definition,
the characteristic function of Z j−1 reads

φZ j−1(u) :=
∫ ∞

−∞
(exp(x)+ 1)iu fY j−1(x)dx .

PDF fY j−1 is not known. To approximate it, the Fourier
cosine series expansion on fY j−1 is applied. We first truncate
the integration range to [a, b]. The calculation of integration
boundaries a and b follows the cumulant-based approach as
described in Zhang and Oosterlee (2013) and Fang and Oost-
erlee (2008). After truncation of the integral and by applying
a cosine series expansion to fY j−1 , we have

φZ j−1(u) ≈ 2

b − a

N−1∑′

l=0

Bl

∫ b

a
(exp(x)+ 1)iu

× cos

(
(x − a)

lπ

b − a

)
dx =: φ̂Z j−1(u),

Bl = �
(
φ̂Y j−1

(
lπ

b − a

)
exp

(
−ia

lπ

b − a

))
, (14)

with N the number of cosine expansion elements, and where

φ̂Y1(u) := φR(u),

φ̂Y j (u) := φR(u)φ̂Z j−1(u).

We wish to compute φ̂YM (
kπ

b−a ), for k = 0, . . . , N −1. Con-
sidering equation (14), we rewrite φ̂Y j (u) = φR(u)φ̂Z j−1(u)
in matrix–vector form, as follows:

� j−1 = MA j−1, (15)

where

� j−1 = [� j−1(k)
]N−1

k=0 ,

� j−1(k) = φ̂Z j−1(uk),

M = [M(k, l)]N−1
k=0 ,

M(k, l) =
∫ b

a
(exp(x)+ 1)iuk cos ((x − a)ul) dx,

A j = 2

b − a

[
A j (l)

]N−1
l=0 ,

A j (l) = �
(
φ̂Y j−1 (ul) exp (−iaul)

)
, (16)

with

uz = zπ

b − a
. (17)

By the recursion procedure in equation (15), we obtain the
approximation φ̂YM of the characteristic function φYM of YM .

3.1.2. Numerical approximation of integral. For the
approximation in equation (15), we must compute matrix M
in equation (16) highly efficiently. The fast computation of
the integral occurring for each element of M is a key aspect
for the performance of the mSABR method. The number of
elements in matrix M can be large, as it corresponds to the
number of elements in the cosine series expansion, i.e. N 2.
The efficiency also depends on the required accuracy. In this
work, we take advantage of the performed analysis in Leitao
et al. (2017). Among several options, the authors have shown
that a numerical approximation based on a piecewise linear
approximation provides a good balance between performance
and accuracy. Following this approximation, we rewrite the
considered integral as follows:

IM :=
∫ b

a
exp (iukh(x)) cos ((x − a)ul) dx,

h(x) = log((exp(x)+ 1)), (18)

with uk and ul as in (17). Although function h(x) is not linear,
it is smooth and monotonic (see figure 1). Hence, the proposed
numerical technique is to define sub-intervals of the integration
range [a, b] in which h(x) is almost constant or linear, i.e.

IM =
L∑

j=1

∫ b j

a j

exp(iukh(x)) cos ((x − a)ul) dx,

so that we can perform a first-order expansion in each sub-
interval [a j , b j ], j = 1, . . . , L . In order to guarantee conti-
nuity of the approximation, h(x) is approximated by a linear
function in each interval as follows:

h(x) ≈ c1, j + c2, j x, x ∈ [a j , b j ].
This gives us an approximation ÎM, as follows

ÎM =
L∑

j=1

exp(iukc1, j )

∫ b j

a j

exp(iukc2, j x) cos ((x − a)ul) dx︸ ︷︷ ︸
I j

.

(19)
In each sub-interval [a j , b j ], we need to determine a simple

integral, I j , which can be computed analytically.
The optimal integration points a j and b j in equation (19)

are found by differentiation of h(x) w.r.t. x , i.e.

H(x) := ∂h(x)

∂x
= exp(x)

exp(x)+ 1
= 1

1 + exp(−x)
,

giving a relation between the derivative of h(x) and the logistic
distribution. This representation indicates that H(x) is the CDF
of the logistic distribution, with a so-called location parameter
μ = 0 and a scale parameter η = 1. In order to determine the
optimal integration points so that their positions correspond to
the logistic distribution, we need to compute the quantiles. The
quantiles of the logistic distribution are analytically available
and given by

q(p) = log

(
p

1 − p

)
.
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The algorithm for the optimal integration points, given
integration interval [a, b] and the number of intervals L , is
then as follows:

• Determine an interval in the probability space: Ph =
[H(a), H(b)].

• Divide the interval Ph equally into L parts: P j
h =

[p j , p j+1], j = 0 . . . L − 1.
• Determine a j and b j by calculating the quantiles, a j =

q(p j ) and b j = q(p j+1), j = 0 . . . L − 1.

The algorithm above ensures that integration points are opti-
mally distributed (see figure 1(a)). However, for the particular
problem, the integration interval can be rather large. As the
integration points are typically concentrated near the function’s
curved part, the errors in the outer sub-intervals dominate
the overall error and more points at the beginning and at the
end of the interval are required to reduce this error. A more
evenly distribution of the integration points can be achieved
by introducing a scale parameter, η �= 1, which implies that
the integration points correspond to a CDF with increased
variance. In figure 1(b), the case of η = 3 is presented. When
η �= 1, the expression for the quantiles reads,

q(p) = η log

(
p

1 − p

)
.

Through the experiments in Leitao et al. (2017), we concluded
that the choice η = 3 provided accurate results in this context.

3.1.3. Recovering flog Ŷ | log σ(s) by COS method. Once the

approximation of φYM , φ̂YM , has been efficiently derived, we
can recover flog Ŷ | log σ(s) from φlog Ŷ | log σ(s) by employing the
COS method (Fang and Oosterlee 2008), as follows:

flog Ŷ | log σ(s)(x) ≈ 2

b̂ − â

N−1′∑
k=0

Ck cos

((
x − â

) kπ

b̂ − â

)
,

(20)
with

Ck = �
(
φlog Ŷ | log σ(s)

(
kπ

b̂ − â

)
exp

(
−i

âkπ

b̂ − â

))
,

and

φlog Ŷ | log σ(s)

(
kπ

b̂ − â

)

= exp

(
i

kπ

b̂ − â
log
(
�tσ 2(s)

))
φYM

(
kπ

b̂ − â

)

≈ exp

(
i

kπ

b̂ − â
log
(
�tσ 2(s)

))
φ̂YM

(
kπ

b̂ − â

)
,

where N is the number of COS terms, [â, b̂] is the support† of
log Ŷ (s, t)| log σ(s) and the prime ′ and � symbols in equation
(20) mean division of the first term in the summation by two
and taking the real part of the complex-valued expressions in
the brackets, respectively. CDF Flog Ŷ | log σ(s) can be obtained
by integration, plugging the approximated flog Ŷ | log σ(s) from
equation (20) into equation (6).

The characteristic function φlog Ŷ | log σ(s) and PDF
flog Ŷ | log σ(s) need to be derived for each sample of log σ(s)

†It can be calculated given the support of YM , [a, b].

and this makes the computation of Flog Ŷ | log σ(s) (and also
its subsequent inversion) very expensive. In order to over-
come this issue, the SCMC technique (see section 2.2) will be
employed approximating these rather expensive computations
by means of an accurate interpolation.

3.2. Efficient sampling of log Ŷ | log σ(s)

By employing the SCMC technique, instead of directly com-
puting Flog Ŷ | log σ(s) for each sample of log σ(s), we only have
to compute Flog Ŷ | log σ(s) at the collocation points. In general,
only a few collocation points are sufficient to obtain accu-
rate approximations, which is a well-known fact from the UQ
research field. This fact allows us to drastically reduce the
computational cost of sampling the required distribution.

For the problem at hand, we require samples from the inte-
grated variance conditional on the initial volatility, log
Ŷ (s, t)| log σ(s). Therefore, we need to make use of the 2D
version of the SCMC technique. Two levels of collocation
points need to be chosen, one for each dimension. If we denote
them by NŶ and Nσ , respectively, the resulting number of
inversions equals NŶ · Nσ . The formal definition of the 2D
SCMC technique applied to our context reads

yn|vn ≈ gNŶ ,Nσ
(xn)

=
NŶ∑
i=1

Nσ∑
j=1

F−1
log Ŷ | log σ(s)=v̄ j

(FX (x̄i ))
i (xn)
 j (vn), (21)

where xn are the samples from X ∼ N (0, 1), which is used
as the cheap variable, and vn the samples of log σ(s); x̄i and
v̄ j are the collocation points for approximating variables log Y
and log σ(s), respectively. The Lagrange polynomials 
i and

 j are defined by


i (xn) =
NŶ∏

k=1,k �=i

xn − x̄k

x̄i − x̄k
, 
 j (vn) =

Nσ∏
k=1,k �= j

vn − v̄k

v̄i − v̄k
.

The collocation points x̄i and v̄ j are calculated based on the
moments of the random variables. The two involved variables
in the application of the 2D SCMC technique are the colloca-
tion variables, X ∼ N (0, 1), and log σ(s) ∼ N (log σ0 +
1
2α

2s, α
√

s). The moments of a normal variable, X ∼ N
(μX , sX ) are analytically available, and are given by

E
[
X p] =

{
0 if p is odd,

s p
X (p − 1)!! if p is even,

where p is the moment order and the expression !! represents
the double factorial. In order to compute the optimal colloca-
tion points, v̄ j , the precalculated collocation points by means
of the log σ(s) moments need to be shifted according to the
mean, i.e. log σ0 + 1

2α
2s.

We first test numerically the accuracy of the SCMC tech-
nique for our problem. In figure 2, two experiments are pre-
sented. In figure 2(a), we compare the samples obtained by
direct inversion and by the SCMC technique. The fit is highly
accurate, already with only seven collocation points. In figure
2(b), the empirical CDFs are depicted, where the excellent
match is confirmed.
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Figure 1. Optimal integration points. L = 25.

Figure 2. (a) Points cloud log Ŷ | log σ(s) by direct inversion (DI) sampling (red dots) and SCMC sampling (black circles). (b) Empirical
CDFs of log Y | log σ(s) with and without using SCMC.

In order to show the performance of SCMC technique for the
simulation of log Ŷ | log σ(s), the execution times of generating
different numbers of samples are presented in table 1.

In appendix 1, the different sources of error due to the
approximations made in the sections 3.1 and 3.2 are analysed.

3.3. Copula-based simulation of
∫ t

s σ
2(z)dz|σ(t), σ (s)

In this section, we present an algorithm for the simulation of
the integrated variance given σ(t) and σ(s) by means of a
copula. In order to obtain the joint distribution, we require
the marginal distributions. In our case, the required CDFs are
Flog Y | log σ(s) and Flog σ(t)| log σ(s). In section 3.1, an approxi-
mated CDF of log Y | log σ(s), Flog Ŷ | log σ(s), has been derived.
Since σ(t) follows a log-normal distribution, by definition,
log σ(t) is normally distributed, and the conditional process
log σ(t) given log σ(s), follows a normal distribution,

log σ(t)| log σ(s) ∼ N
(

log σ(s)− 1

2
α2(t − s), α

√
t − s

)
.

(22)

3.3.1. Pearson’s correlation coefficient. For any copula
some measure of the correlation between the marginal dis-
tributions is needed. We will employ the Pearson correlation
coefficient for log Y (s, t) and log σ(t). For this quantity, an
approximated analytic formula can be derived. By definition,
we have

Plog Y,log σ(t) = corr

[
log
∫ t

s
σ 2(z)dz, log σ(t)

]

=
cov

[
log
∫ t

s σ
2(z)dz, log σ(t)

]
√

var
[
log
∫ t

s σ
2(z)dz

]
var [log σ(t)]

.
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Table 1. SCMC time in seconds.

With SCMC

Samples Without SCMC NŶ = Nσ = 3 NŶ = Nσ = 7 NŶ = Nσ = 11

100 1.0695 0.0449 0.0466 0.0660
10000 16.3483 0.0518 0.0588 0.0798
1000000 1624.3019 0.2648 0.5882 1.0940

We employ the following approximation

log
∫ t

s
σ 2(z)dz ≈

∫ t

s
log σ 2(z)dz = 2

∫ t

s
log σ(z)dz.

where the logarithm and the integral are interchanged. Since
the log function is concave, this approximation forms a lower
bound for the true value. This can be seen by applying Jensen’s
inequality, i.e.

log
∫ t

s
σ 2(z)dz ≥

∫ t

s
log σ 2(z)dz.

It has been numerically shown that, under the model settings
with an interval size t − s less than two years, the results based
on this approximation are highly satisfactory (further details
in Leitao et al. (2017)). The correlation coefficient can then be
approximated by

Plog Y (T ),log σ(t) ≈
cov

[∫ t
s log σ(z)dz, log σ(t)

]
√

var
[∫ t

s log σ(z)dz
]

var [log σ(t)]

.

To compute the covariance, we need E
[ (∫ t

s log σ(z)dz
)

log σ(t)
]
, E
[∫ t

s log σ(z)dz
]

and E [log σ(t)]. From equation
(4), the last expectation as well as var [log σ(t)] are known.
We find that

log σ(t) = log σ0 − 1

2
α2t + αW (t) =: η(t)+ αW (t),

and

∫ t

s
log σ(z)dz

= log σ0(t − s)− 1

4
α2(t2 − s2)+ α

∫ t

s
W (z)dz

=: γ (s, t)+ α

(
tW (t)− sW (s)−

∫ t

s
zdW (z)

)
.

Based on these equations, using

E [log σ(T )] = η(t), E

[∫ t

s
log σ(z)dz

]
= γ (s, t),

we obtain the following expressions for the remaining
expectation,

E

[(∫ t

s
log σ(z)dz

)
log σ(t)

]

= E
[(
γ (s, t)+ α

(
tW (t)− sW (s)−

∫ t

s
zdW (z)

))
× (η(t)+ αW (t))]

= η(t)γ (s, t)+ α2
(

t2 − s2 − E
[∫ t

s
zdW 2(z)

])
= η(t)γ (s, t)+ 1

2
α2(t2 − s2).

For the variance of
∫ t

s log σ(z)dz, we first compute

E

[(∫ t

s
log σ(z)dz

)2
]

= E
[(
γ (s, t)+ α

(
tW (t)− sW (s)−

∫ t

s
zdW (z)

))2
]

= γ 2(s, t)+ α2E
[
(tW (t)− sW (s))2

]
+ α2E

[(∫ t

s
zdW (z)

)2
]

− 2α2E

[
(tW (t)− sW (s))

∫ t

s
zdW (z)

]
,

where

E
[
(tW (t)− sW (s))2

]
= t2E

[
(W (t))2

]
+ s2E

[
(W (s))2

]
− 2stE [W (s)W (t)]

= t3 + s3 − 2s2t,

E

[(∫ t

s
zdW (z)

)2
]

=
∫ t

s
z2dz = 1

3
(t3 − s3),

E

[
(tW (t)− sW (s))

∫ t

s
zdW (z)

]

= tE

[
W (t)

∫ t

s
zdW (z)

]
− sE

[
W (s)

∫ t

s
zdW (z)

]

= tE

[∫ t

s
dW (z)

∫ t

s
zdW (z)

]
− sE

[∫ s

s
dW (z)

∫ t

s
zdW (z)

]
= 1

2
t (t2 − s2),
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and the variance reads

var

[∫ t

s
log σ(z)dz

]

= E
[(∫ t

s
log σ(z)dz

)2
]

−
(
E

[∫ t

s
log σ(z)dz

])2

= α2
(

t3 + s3 − 2s2t + 1

3
(t3 − s3)− t (t2 − s2)

)

= α2
(

1

3
t3 + 2

3
s3 − s2t

)
.

An approximation of the Pearson correlation coefficient is
then obtained as follows:

Plog Y,log σ(t) ≈ η(t)γ (s, t)+ 1
2α

2(t2 − s2)− η(t)γ (s, t)√
α2
(

1
3 t3 + 2

3 s3 − s2t
) (
α2t
)

= t2 − s2

2

√(
1
3 t4 + 2

3 ts3 − t2s2
) .

(23)
Some copulas do not employ, in their definition, Pearson’s

coefficient as the correlation measure. For example,
Archimedean copulas employ the Kendall’s τ rank correlation
coefficient. However, a relation between both Pearson’s and
Kendall’s τ coefficients is available,

P = sin
(π

2
τ
)
.

3.3.2. Gumbel copula. In this work, we will use
Archimedean Gumbel copula. The Gaussian copula may seem
a natural choice, as σ(t) follows a log-normal distribution and
Y (T ) = ∫ t

s σ
2(z)dz can be seen as summation of squared

log-normal processes. However, in Leitao et al. (2017), we
have empirically shown that the Gumbel copula performs most
accurately in this context for a variety of SABR parameter val-
ues. The formal definition of the Archimedean Gumbel copula,
considering F1 . . . , Fd ∈ [0, 1]d as the marginal distributions,
reads

Cθ (F1 . . . , Fd) = exp

⎛
⎝−

(
d∑

i=1

(− log(Fi ))
θ

)1/θ⎞⎠ , (24)

where (− log(·))θ , θ > 0 is the so-called generator function of
the Gumbel copula. In order to calibrate parameter θ , a relation
between θ and the rank correlation coefficient Kendall’s τ can
be employed, i.e. θ = 1/(1 − τ).

So, we have derived approximations for all the components
required to apply the copula-based technique for the integrated
variance simulation. The algorithm to sample

∫ t
s σ

2(z)dz given
σ(t) and σ(s) then consists of the following steps:

(1) Determine Flog σ(t)| log σ(s) by equation (22).
(2) Determine Flog Ŷ | log σ(s) by equation (6).
(3) Determine the correlation between log Y (s, t) and

log σ(t) by equation (23).
(4) Generate correlated uniform samples, Ulog σ(t)| log σ(s)

and Ulog Ŷ | log σ(s) from the Gumbel copula by equation
(24).

(5) From Ulog σ(t)| log σ(s), invert the CDF Flog σ(t)| log σ(s)
to get the samples σ̃n of log σ(t)| log σ(s). This

procedure is straightforward since the normal distri-
bution inversion is analytically available.

(6) From Ulog Ŷ | log σ(s), invert the CDF Flog Ŷ | log σ(s) to

get the samples ỹn of log Ŷ | log σ(s). We propose an
inversion procedure based on linear interpolation. First,
we evaluate the CDF function at some discrete points.
Then, the insight is that, by rotating the CDF under
consideration, we can interpolate over probabilities.
This is possible when the CDF function is a smoothly
increasing function. The interpolation polynomial pro-
vides the quantiles of the original distribution from
some given probabilities. Since Flog Ŷ | log σ(s) is indeed
a smooth and increasing function, the interpolation-
based inversion is definitely applicable. This procedure
together with the use of 2D SCMC sampler (see section
3.2) results in a fast and accurate inversion.

(7) The samples σn of σ(t)|σ(s) and yn of Y (s, t) =∫ t
s σ

2(z)dz|σ(t), σ (s) are obtained by simply taking
exponentials as follows:

σn = exp(σ̃n), yn = exp(ỹn).

3.4. Simulation of S(t) given S(s), σ(s), σ(t) and
∫ t

s σ
2(z)dz

We complete the mSABR method by the conditional sampling
of S(t). The most commonly used techniques can be classi-
fied in two categories: direct inversion of the SABR distri-
bution function given in equation (3) and moment-matching
approaches. The direct inversion procedure has a higher com-
putational cost because of the evaluation of the non-central
χ2 distribution. However, some recent developments make
this computation affordable. Chen et al. (2012) proposed a
forward asset simulation based on a combination of moment-
matching (Quadratic Gaussian) and enhanced direct inversion
procedures. We employ this technique also here. Note how-
ever that, for some specific values of β, the simulation of the
conditional S(t) given S(s), σ(s), σ(t) and

∫ t
s σ

2(z)dz enables
analytic expressions.

3.4.1. Caseβ = 0. Forβ = 0, it is easily seen from equation
(2) that the asset process (in integral form) becomes

S(t) = S(s)+ρ
∫ t

s
σ(z)dŴσ (z)+

√
1 − ρ2

∫ t

s
σ(z)dŴS(z).

where ∫ t

s
σ(z)dŴσ (z) = 1

α
(σ(t)− σ(s)) , (25)

and∫ t

s
σ(z)dŴS(z)|σ(t), σ (s) ∼ N

⎛
⎝0,

√∫ t

s
σ 2(z)dz

⎞
⎠ . (26)

Since this allows negative asset prices, the simulation of S(t)
with β = 0 must be corrected. If the price at the initial time is
less or equal to zero, i.e. S(s) ≤ 0, the price S(t) must remain
zero for all time. Otherwise,

S(t) = max(S(t), 0).

This correction is performed to be consistent within the whole
simulation procedure, since the distribution of the ‘exact’SABR
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simulation in equation (3) relies on the condition S(s) > 0.
If negative values are permitted, this must be handled in a
different way (see Hagan et al. (2014) orAntonov et al. (2015),
for example).

3.4.2. Case β = 1. In the case of β = 1, the asset dynamics
in equation (1) become log-normal and the solution is given
by

S(t) = S(s) exp

(
−1

2

∫ t

s
σ 2(z)dz + ρ

∫ t

s
σ(z)dŴσ (z)

+
√
(1 − ρ2)

∫ t

s
σ(z)dŴS(z)

)
.

If we take the log-transform,

log

(
S(t)

S(s)

)
= − 1

2

∫ t

s
σ 2(z)dz + ρ

∫ t

s
σ(z)dŴσ (z)

+
√
(1 − ρ2)

∫ t

s
σ(z)dŴS(z),

and by considering again equations (25) and (26), we obtain
the distribution of log

(
S(t)
S(s)

)
| ∫ t

s σ
2(z)dz, σ (t), σ (s), which

reads

N
(

−1

2

∫ t

s
σ 2(z)dz + ρ

α
(σ(t)− σ(s)) ,

×
√
(1 − ρ2)

∫ t

s
σ 2(z)dz

⎞
⎠ . (27)

By employing equation (27), the asset dynamics S(t) can be
sampled from

S(t) ∼ S(s) exp

(
−1

2

∫ t

s
σ 2(z)dz + ρ

α
(σ(t)− σ(s))

+ X

√
(1 − ρ2)

∫ t

s
σ 2(z)dz

⎞
⎠ , (28)

where X is the standard normal.

3.4.3. Case β �= 0, β �= 1. As mentioned before, for the
generic case of β ∈ (0, 1), we employ the enhanced inver-
sion of the SABR asset price distribution in equation (3) as
introduced in Chen et al. (2012). We briefly summarize this
approach. The asset simulation is performed either by a
moment-matched quadratic Gaussian approximation or by an
enhanced direct inversion. The authors in Chen et al. (2012)
proposed a threshold value to choose the suitable technique
among these two. The moment-matching approach relies on
the fact that, for S(s) � 0, the distribution function in equation
(3) can be approximated by

Pr

(
S(t) ≤ K |S(s) > 0, σ (s), σ (t),

∫ t

s
σ 2(z)dz

)
≈ χ2(c; 2 − b, a).

By definition, the mean, μ and the variance, κ2, of a generic
non-central chi-square distribution χ2(x; δ, λ) are μ := δ+ λ

and κ2 := 2(δ+ 2λ), respectively. A variable Z ∼ χ2(x; δ, λ)

is accurately approximated by a quadratic Gaussian distribu-
tion, as follows

Z
d≈ d(e + X)2, X ∼ N (0, 1),

with

ψ := κ2

μ2
, e2 = 2ψ−1 − 1 +

√
2ψ−1

√
2ψ−1 − 1 ≥ 0,

d = μ

1 + e2
.

Applying this to the case in equation (3), we can sample the
conditional asset dynamics, 0 ≤ s < t , by

S(t) =
(
(1 − β)2(1 − ρ2)d(e + X)2

∫ t

s
σ 2(z)dz

) 1
2(1−β)

.

The moment-matching approximation is safely and accurately
applicable when 0 < ψ ≤ 2 and μ ≥ 0 (Chen et al. 2012).
Otherwise, a direct inversion procedure must be employed. A
root-finding Newton method is then used. In order to reduce
the number of Newton iterations (and the expensive evalu-
ation of the non-central chi-square CDF), the first iterations
are based on an approximated formula for the non-central
chi-square distribution, which is based on the normal CDF
and derived by Sankaran (1963). Then, the obtained value is
employed as the initial guess for the Newton algorithm. The
result is a significant reduction in the number of iterations
and, hence, in the computational cost. Furthermore, this root-
finding procedure consists of only basic operations, so that the
whole procedure can be easily vectorized, leading to a further
efficiency improvement.

As in the case of β = 0, the absorbing boundary at zero
needs to be prescribed to avoid negative prices.

The resulting sampling procedure is robust and efficient.

3.4.4. Martingale correction. As already pointed by
Andersen (2008) and Chen et al. (2012), the almost exact
simulation of the asset price in some stochastic volatility mod-
els can produce a loss of the martingale property, due to the
approximation of a continuous process by its discrete equiv-
alent. This is especially seen, when the size of time step is
large and for certain configurations of the SABR parameters,
like small β values, close-to-zero initial asset values S0, high
vol-vol parameter α or large initial volatility σ0. In order to
overcome this issue, we incorporate to the mSABR method the
use of a simple but effective numerical martingale correction,
as follows:

S(t) = S(t)− 1

n

n∑
i=1

Si (t)+ E[S(t)],

= S(t)− 1

n

n∑
i=1

Si (t)+ S0,

where Si (t) represents the i−th Monte Carlo sample. Note,
however, that, for practical SABR parameters, the martingale
error is very small and can be easily controlled by increasing
the number of overall time steps m.
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4. Numerical experiments

In this section, we benchmark the mSABR method by pricing
options under the SABR dynamics. We will consider several
parameter configurations, extracted from the literature (see
table 2), a zero-correlation set as in Grzelak et al. (2015)
(set I), a set under log-normal dynamics as in Chen et al. (2012)
(set II), a medium long time to maturity set as in Antonov
et al. (2013) (set III) and a more extreme set as in Antonov
et al. (2015) (set IV). The strikes, Ki , are chosen following the
expression

Ki (T ) = S(0) exp(0.1 × T × δi ),

δ = {−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5},
introduced by Piterbarg (2005).

Other parameters include:

• Step size in equation (5): �t = 5 × 10−5.
• Number of terms in equations (14) and (20): N = 150.
• Number of intervals for piecewise linear approximation

in equation (19): L = 100.
• Number of collocation points in equation (21): NŶ =

Nσ = 3.
• Number of samples: n = 1.000.000.

The experiments were performed on a computer with CPU Intel
Core i7-4720HQ 2.6 GHz and RAM memory of 16 Gigabytes.
The employed software package was Matlab r2015b.

As usual, the European option prices are obtained by averag-
ing the maximum of the forward asset values at maturity minus
the strike and zero, i.e. max(S(T ) − Ki (T ), 0) (call option).
Subsequently, the Black–Scholes formula is inverted to deter-
mine the implied volatilities. Note that, once the forward asset
is simulated by the mSABR method, we can price options at
multiple strikes simultaneously.

4.1. Convergence test

We perform a convergence study in terms of the number of time
steps, m and, subsequently, in terms of the number of samples,
n. Set I is considered suitable for this experiment, since an
analytic solution is available by Antonov et al. (2013) when
ρ = 0, and it can be used as a reference. Also, as equation (3)
is employed to sample the forward asset dynamics, the case
ρ = 0 results in an exact simulation.

In table 3, the implied volatilities obtained by the mSABR
method for several choices of the number of time steps m are
presented. We observe by the errors in basis points (bp) that, by
increasing the number of time steps, the technique converges
very rapidly. Furthermore, only a few time steps are required
to obtain accurate results: with only m = 4 time steps (one
per year) the error is already less than ten basis points and
with m = 4T (the time step size is a quarter of year), the
error remains below one basis points. Compared to the low-
bias SABR simulation scheme proposed in Chen et al. (2012),
the mSABR method is more accurate, since it relies on the
exact simulation of the integrated variance, whereas the low-
bias scheme approximates the integrated variance by a small
disturbance expansion and moment-matching techniques. That
scheme performs worse when bigger time steps are considered.

We also perform a convergence test in the number of
samples, n. According to the previous experiment and in
order to guarantee that the errors do not increase by the time
discretization, we set m = 4T . In table 4, the implied volatili-
ties for increasing n are presented. By the relative error (RE),
we can see that, as expected, the error is approximately reduced
by a factor of 1/

√
n. Furthermore, we wish to show how the

number of samples affects the variance of the mSABR method.
In figure 3, the standard deviations† for several choices of
n are presented. Two strikes are evaluated, one in-the-money
strike, K2, and one out-of-the-money strike,‡ K6. An identi-
cal behaviour can be observed for all other strikes as well.
Again, we see a fast convergence and variance reduction in
terms of n.

4.2. Performance test

Next to the convergence of the mSABR method in terms of
m and n, another important aspect is the computational cost.
Specifically, we will measure the execution times of an option
pricing experiment using different alternative Monte Carlo-
based methods and compare them with the mSABR method.
Again, parameter Set I is employed since a reference value is
available for this case. We consider a plain Monte Carlo Euler
(MC Euler) discretization scheme for the forward asset, S(t).
Note that the absorbing boundary at zero must be handled with
care. Since our main contribution here is the exact simulation
of the integrated variance, it is natural to also compare the
performance with other, less involved, techniques. We there-
fore also present a comparison between the mSABR method
and two techniques where the integrated variance is either
approximated by

∫ t
s σ

2(z)dz ≈ σ 2(s)(t − s) (left rectangular
rule) or

∫ t
s σ

2(z)dz ≈ 1
2 (σ

2(t) + σ 2(s))(t − s) (trapezoidal
rule). We denote these alternatives as the Y -Euler and Y -
trpz schemes, respectively. The simulation of S(t) is, in both
cases, carried out as explained in section 3.4. In table 5, we
present execution times (in seconds) of the MC Euler, Y -Euler,
Y -trpz and mSABR schemes, to achieve a certain level of
accuracy (measured as the error of the implied volatilities in
basis points). In addition, the required number of time steps is
presented in parentheses to provide an insight in the efficiency.
Furthermore, the speedup obtained by our method is included
in table 6. We observe that the mSABR method is superior in
terms of the ratio between computational cost and accuracy.
The accuracy of Y -Euler or Y -trpz can be improved by adding
intermediate time steps, but then also the computational cost
increases.

4.3. ‘Almost exact’ SABR simulation by varying ρ

As a next experiment we test the stability of the mSABR
method when correlation parameter ρ varies from negative
to positive values. As stated before, equation (3) is only exact
for ρ = 0. For that, we use Set II since the conditional for-
ward asset simulation enables a closed-form solution (given
by equation (28)) for β = 1. The considered values are ρ =
{−0.5, 0.0, 0.5}. Following the outcome of the previous exper-
iment, we set m = 4T . As a reference, a Monte Carlo (MC)

†Computed by performing 100 realizations.
‡We consider European call options.
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Table 2. Data sets.

S0 σ0 α β ρ T

Set I (Grzelak et al. 2015) 0.5 0.5 0.4 0.5 0.0 4
Set II (Chen et al. 2012) 0.04 0.2 0.3 1.0 −0.5 5
Set III (Antonov et al. 2013) 1.0 0.25 0.3 0.6 −0.5 20
Set IV (Antonov et al. 2015) 0.0056 0.011 1.080 0.167 0.999 1

Table 3. Implied volatility, increasing m: Antonov vs. mSABR. Set I.

Strikes K1 K2 K3 K4 K5 K6 K7

Antonov 73.34% 71.73% 70.17% N/A 67.23% 65.87% 64.59%
m = T/4 73.13% 71.75% 70.41% 69.11% 67.85% 66.64% 65.48%
Error(bp) −21.51 2.54 24.38 N/A 61.71 76.66 89.26
m = T/2 73.30% 71.78% 70.29% 68.86% 67.49% 66.17% 64.93%
Error(bp) −4.12 4.94 12.71 N/A 25.48 30.40 34.73
m = T 73.25% 71.67% 70.14% 68.66% 67.24% 65.89% 64.62%
Error(bp) −9.56 −5.93 −2.79 N/A 0.92 2.21 3.17
m = 2T 73.32% 71.71% 70.16% 68.65% 67.22% 65.85% 64.55%
Error(bp) −2.08 −1.56 −1.20 N/A −1.65 −2.35 −3.36
m = 4T 73.34% 71.73% 70.18% 68.67% 67.24% 65.87% 64.58%
Error(bp) 0.15 0.58 0.78 N/A 0.43 0.04 −0.48

Table 4. Implied volatility, increasing n: Antonov vs. mSABR. Set I.

Strikes K1 K2 K3 K4 K5 K6 K7

Antonov 73.34% 71.73% 70.17% N/A 67.23% 65.87% 64.59%
n = 102 67.29% 65.55% 63.84% 62.20% 60.63% 59.01% 57.65%
RE 8.24 × 10−2 8.61 × 10−2 9.01 × 10−2 N/A 9.82 × 10−2 1.04 × 10−1 1.07 × 10−1

n = 104 73.41% 71.87% 70.36% 68.91% 67.51% 66.19% 64.94%
RE 9.65 × 10−4 1.94 × 10−3 2.75 × 10−3 N/A 4.08 × 10−3 4.93 × 10−3 5.48 × 10−3

n = 106 73.34% 71.73% 70.18% 68.67% 67.24% 65.87% 64.58%
RE 2.04 × 10−5 8.08 × 10−5 1.11 × 10−4 N/A 6.39 × 10−5 6.07 × 10−6 7.43 × 10−5

Figure 3. Convergence of the mSABR method.

simulation with a very fine Euler time discretization (1000T
time steps) in the forward asset process is employed. In table 7,
the resulting implied volatilities are provided. The differences
between the Monte Carlo volatilities and the ones given by
the mSABR method are within 10 basis points for all choices
of ρ.

4.4. Pricing barrier options

We will price barrier options with the mSABR method. The
up-and-out call option is considered here, with the barrier level,
B, B > S0, B > Ki . The price of this type of barrier option
reads
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Table 5. Execution times and time steps, m (parentheses).

Error <100 bp <50 bp <25 bp <10 bp

MC Euler 6.85(200) 10.71(300) 27.42(800) 42.90(1200)
Y -Euler 2.18(4) 6.55(16) 11.85(32) 45.12(128)
Y -trpz 2.17(3) 4.24(8) 7.25(16) 14.47(32)
mSABR 3.46(1) 2.98(2) 3.72(3) 4.89(4)

Table 6. Speedups provided by the mSABR method.

Error <100 bp <50 bp <25 bp <10 bp

MC Euler 1.98 3.59 7.37 8.77
Y -Euler 0.63 2.19 3.18 9.22
Y -trpz 0.62 1.42 1.94 2.95

Table 7. Implied volatility, varying ρ: Euler Monte Carlo vs. mSABR. Set II.

Strikes K1 K2 K3 K4 K5 K6 K7

ρ = −0.5
MC 22.17% 21.25% 20.38% 19.57% 18.88% 18.33% 17.95%
mSABR 22.21% 21.28% 20.39% 19.58% 18.88% 18.32% 17.94%
Error(bp) 3.59 2.86 1.78 0.95 −0.19 −0.96 −1.10

ρ = 0.0
MC 21.35% 20.96% 20.71% 20.63% 20.71% 20.96% 21.34%
mSABR 21.35% 20.95% 20.69% 20.60% 20.68% 20.93% 21.32%
Error(bp) 0.04 −1.04 −2.51 −3.02 −3.33 −3.19 −2.56

ρ = 0.5
MC 19.66% 20.04% 20.61% 21.34% 22.20% 23.14% 24.16%
mSABR 19.59% 19.96% 20.54% 21.28% 22.15% 23.11% 24.11%
Error(bp) −6.93 −7.36 −6.77 −5.53 −4.35 −3.76 −4.05

Vi (Ki , B, T )

= exp (−rT )E

[
(S(T )− Ki )1( max

0<tk≤T
S(tk) > B)

]
,

where 1(·) represents the indicator function and tk are the
predefined times where the barrier condition (whether or not it
is hit) is checked.

As a reference, a Monte Carlo method with very fine Euler
time discretization is employed, as in the previous experiment.
The number of time steps for the mSABR scheme is again
set to m = 4T . In tables 8, 9 and 10, the obtained prices are
presented for the parameter sets I, II and III, respectively. The
prices are multiplied by a factor of 100.Also, the mean squared
error (MSE) is shown. We define the MSE as

MSE = 1

7

7∑
i=1

(
V MC

i (Ki , B, T )− V mS AB R
i (Ki , B, T )

)2

where V MC
i (Ki , B, T ) and V mS AB R

i (Ki , B, T ) are the barrier
option prices provided by Monte Carlo method and by the
mSABR method, respectively.

The resulting accuracy is very satisfactory. As expected,
higher option prices are obtained for bigger barrier levels, B,
and/or lower strikes, Ki .

4.5. Negative interest rates

The SABR model is very popular in the interest rate context.
One of the most important current features in this market is
the occurrence of negative interest rate values and strikes.
Approaches dealing with this issue have appeared in the litera-
ture, likeAntonov et al. (2015) or Hagan et al. (2014). To apply
the mSABR scheme in the case of negative interest rates, we
will use the shifted SABR model by Schlenkrich et al. (2014).
The shifted SABR model is defined as follows:

dS(t) = σ(t)(S(t)+ θ)βdWS(t),

S(0) = (S0 + θ) exp (rT ) ,

where θ > 0 is a displacement, or shift, in the underlying. The
volatility process, σ(t), remains invariant (see equation (1)).
Parameter θ can be seen as the maximum level of negativity that
is expected in the rates. This generalization of the SABR model
is widely used by market practitioners due to its simplicity,
and, precisely, the advantage of keeping the existing simulation
schemes. In mSABR, the assumption S(t) > 0 is required to
employ the method.

In order to test the mSABR scheme in the context of nega-
tive interest rates, we employ the set IV. The SABR model
parameters were obtained by Antonov et al. (2015) after a
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Table 8. Pricing barrier options with mSABR: Vi (Ki , B, T )× 100. Set I.

Strikes K1 K2 K3 K4 K5 K6 K7
B = 1.2

MC 6.2868 5.4577 4.6330 3.8263 3.0551 2.3358 1.6869
mSABR 6.3264 5.4890 4.6566 3.8436 3.0677 2.3452 1.6953
MSE 5.3196 × 10−8

B = 1.5
MC 10.2271 9.1568 8.0718 6.9856 5.9142 4.8753 3.8899
mSABR 10.2249 9.1507 8.0609 6.9702 5.8960 4.8572 3.8737
MSE 1.8884 × 10−8

B = 1.8
MC 13.5740 12.3571 11.1118 9.8513 8.5910 7.3477 6.1403
mSABR 13.5915 12.3686 11.1174 9.8507 8.5851 7.3380 6.1276
MSE 1.0851 × 10−8

Table 9. Pricing barrier options with mSABR: Vi (Ki , B, T )× 100. Set II.

Strikes K1 K2 K3 K4 K5 K6 K7
B = 0.08

MC 1.1702 0.9465 0.7268 0.5215 0.3423 0.1996 0.0987
mSABR 1.1724 0.9486 0.7285 0.5226 0.3428 0.1997 0.0986
MSE 1.8910 × 10−10

B = 0.1
MC 1.3099 1.0766 0.8462 0.6290 0.4367 0.2794 0.1626
mSABR 1.3092 1.0761 0.8456 0.6282 0.4355 0.2782 0.1618
MSE 7.5542 × 10−11

B = 0.12
MC 1.3521 1.1168 0.8841 0.6644 0.4695 0.3093 0.1891
mSABR 1.3518 1.1166 0.8838 0.6639 0.4686 0.3080 0.1880
MSE 6.3648 × 10−11

Table 10. Pricing barrier options with mSABR: Vi (Ki , B, T )× 100. Set III.

Strikes K1 K2 K3 K4 K5 K6 K7
B = 2.0

MC 29.1174 23.4804 17.2273 10.7825 5.0203 1.1750 0.0036
mSABR 29.2346 23.5828 17.3086 10.8327 5.0385 1.1805 0.0036
MSE 4.8146 × 10−7

B = 2.5
MC 41.3833 34.5497 26.8311 18.6089 10.7281 4.4893 0.9434
mSABR 41.3394 34.5097 26.7948 18.5747 10.6943 4.4546 0.9320
MSE 1.2131 × 10−7

B = 3.0
MC 48.5254 41.1652 32.7980 23.7807 14.9344 7.5364 2.6692
mSABR 48.5008 41.1515 32.7888 23.7655 14.9097 7.5117 2.6549
MSE 3.6201 × 10−8

calibration process to real data† under the shifted SABR model.
Note that this configuration corresponds to an extreme situation
with high values of the correlation, ρ, and vol-vol, α. As a

†1Y15Y Swiss franc swaption from 10 February 2015.

shift parameter, θ = 0.02 is chosen. We compare the normal
implied volatilities‡ obtained by employing Monte Carlo with
very fine (1000T ) time discretization (as a reference) and the

‡Determined using the normal Bachelier model instead of the log-
normal Black–Scholes model.
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(a) (b)

Figure 4. The mSABR method in the context of negative interest rates.

Table 11. Execution times and time steps, m (parentheses).

Error < 25 bp < 10 bp < 5 bp < 1 bp

Y-Euler 2.47(4) 9.64(16) 14.32(24) 19.25(32)
Y-trpz 1.32(2) 4.99(8) 9.75(16) 14.52(24)
mSABR 1.61(1) 2.57(2) 3.52(3) 4.57(4)

Table 12. Speedups provided by the mSABR method.

Error < 25 bp < 10 bp < 5 bp < 1 bp

Y-Euler 1.57 3.75 4.07 4.21
Y-trpz 0.82 1.94 2.77 3.17

mSABR method with m = 4T . In figure 4(a), these curves are
depicted and a perfect fit is observed. The strikes, K are chosen
to permit negative values. We perform an even more extreme
experiment, by setting S0 = 0. The resulting normal implied
volatilities are presented in figure 4(b), again with a excellent
fit.

Due to the complexity of the negative interest rates experi-
ment and this particular set of parameters (ρ ≈ 1), we wish to
test the performance of our method under these conditions. In
tables 11 and 12 the execution times obtained are presented.
Again, the small number of time steps due to the ‘almost’exact
simulation of the mSABR method provides an important gain
in terms of performance.

5. Conclusions

In this work, we have proposed an accurate and robust multiple
time step Monte Carlo method to simulate the SABR model
with only a few time steps. The mSABR method employs
many nontrivial components that have not been seen before
in combination within a Monte Carlo simulation. A copula
methodology to generate samples from the conditional SABR’s
integrated variance process has been introduced. The marginal
distribution of the integrated variance has been derived by
employing Fourier techniques. We have dealt with an increas-
ing computational complexity, due to the multiple time steps
and the almost exact simulation, by applying an interpola-
tion based on stochastic collocation. This has resulted in an

efficient SABR simulation scheme. We have numerically
shown the convergence and the stability of the method. In terms
of convergence, the mSABR method requires only very few
time steps to achieve high accuracy, due to the focus on almost
exact simulation (in contrast to the low-bias SABR scheme
Chen et al. 2012). This fact impacts the performance, obtaining
an excellent ratio between accuracy and computational cost.
As a multiple time step method, it can be employed to price
path-dependent options. As an example, a pricing experiment
for barrier options has been carried out. Furthermore, we have
shown that the mSABR scheme is also suitable in the context
of negative interest rates, in combination with a shifted model.
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Appendix 1. Error analysis of
∫ t

s σ 2(z)dz|σ(s) simulation

A.1. Errors in the CDF of
∫ t

s σ
2(z)dz|σ(s)

In section 3.1, we have proposed a method to compute the approxi-
mated CDF for the conditional integrated variance, i.e. Y (s, t)|σ(s).
Here, we perform an error analysis, indicating how to reduce or bound
the errors. The sources of error in the approximation include εD , the
discretization of Y (s, t) in equation (5), εT , the truncation in equations
(14) and (20), εC , due to the cosine expansion in equations (14) and
(20) and εM , the numerical computation of IM in equation (19).

A.1.1. Error εD . This error occurs because SABR’s time-
integrated variance is approximated by its discrete equivalent, i.e.
Y (s, t) ≈ Ŷ (s, t). Note that the process Y (s, t) = ∫ t

s σ
2(z)dz is the

solution of the SDE

dY (s, z) = σ 2(z)dz, Y (s, s) = 0,

which, by employing the same time discretization as for Ŷ (s, t) in
Equation (5), can be written as follows:

Ȳ (s, t j )− Ȳ (s, t j−1) = σ 2(t j−1)�t.

This is essentially the Euler–Maruyama discretization scheme. In-
deed, it is easy to see that, if we sum the right-hand side of the equality

over the M discrete time points, we recover the discrete approximation
Ŷ (s, t), as follows:

M∑
j=1

σ 2(t j−1)�t =
M∑

j=1

(
Ȳ (s, t j )− Ȳ (s, t j−1)

)
= Ȳ (s, tM )− Ȳ (s, t0) = Ŷ (s, t).

The error (or convergence) of the Euler–Maruyama discretization
scheme has been intensively studied in the literature (see, e.g. Kloeden
and Platen 1992). Two errors can be defined when a stochastic process
is discretized: strong and weak. It was proved by Kloeden and Platen
(1992) that, under some conditions of regularity, the Euler–Maruyama
scheme has strong convergence of orderγ = 1

2 and weak convergence
of order γ = 1. We focus on the strong error between Y (s, t) and
Ŷ (s, t). Then, error εD can be computed and bounded by employing
the usual strong convergence expression as

εD := E
[∣∣∣Ŷ (s, t)− Y (s, t)

∣∣∣] ≤ C

(
t − s

M

)γ
,

for some constant C > 0.
In the actual experiments, we consider log Ŷ (s, t) and log Y (s, t).

This will reduce the error further. In Leitao et al. (2017), we have
presented numerical results that confirm the expected behaviour of
this error.

A.1.2. Error εT . The use of cosine expansions and the COS
method implies a truncation of the integration range to interval [a, b].
This gives rise to a truncation error, which is defined by

εT (H) :=
∫
R\[a,b]

fH (y)dy,

where H corresponds to Y j and log Ŷ (s, t), according to equations
(14) and (20), respectively. By a sufficiently large integration range
[a, b], this error can be reduced and does not dominate the overall
error.

A.1.3. Error εC . The convergence due to the number of terms
N in the cosine series expansion was derived in Fang and Oosterlee
(2008). For any f (y|x) ∈ C∞[a, b], εC can be bounded by

|εC (N , [a, b])| ≤ P∗(N ) exp(−(N − 1)ν),

being ν > 0 a constant and P∗(N ) a term which varies less than
exponentially with respect to N . As the integrated variance is a very
smooth function, εC will decay exponentially with respect to N .

A.1.4. Error εM . When the piecewise approximation in equation
(19) is employed, the convergence in terms of the number of sub-
intervals, L , is numerically tested. In table A1, we observe a reduction
of the error by a factor four, when going from L = 25 to L = 50
integration points. However, with L = 100 the error reduces more
drastically due to the choice of optimal integration points.

A.2. Error in the application of SCMC to
∫ t

s σ
2(z)dz|σ(s)

In Grzelak et al. (2015), where SCMC sampler was proposed, an
error analysis of the technique was carried out. Here we summarize
the most important results related to our context and refer the reader
to the original paper for further details.

To measure the error which results from the collocation method
in a more general case (see section 2.2), we can consider either the
difference between functions g(X) and gN (X) (X the cheap variable)
or the error associated with the approximated CDF. The first type of
error is due to Lagrange interpolation, so the corresponding error
estimate is well known. The error ε(ξn) with NY collocation points
is given by the standard Lagrange interpolation reads

http://ssrn.com/abstract=2529691
http://ssrn.com/abstract=1489428
http://ssrn.com/abstract=1489428
http://www.rogerlord.com/fiftyshadessabrwbs.pdf
http://www.rogerlord.com/fiftyshadessabrwbs.pdf
http://arxiv.org/abs/0708.0998v3
http://ssrn.com/abstract=685084
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Table A1. MSE vs. L for ÎM in equation (19).

L = 25 L = 50 L = 75 L = 100

Equidistant 2.4075 × 10−3 2.6743 × 10−4 3.1064 × 10−4 2.9547 × 10−6

Optimal (η = 1) 1.3273 × 10−2 2.5343 × 10−3 9.5959 × 10−4 4.7953 × 10−4

Optimal (η = 3) 3.4837 × 10−5 1.1445 × 10−6 2.1506 × 10−7 6.7114 × 10−8

εX (ξn) = ∣∣g(ξn)− gNY (ξn)
∣∣ =

∣∣∣∣∣∣
1

NY !
∂NY g(x)

∂x NY

∣∣∣
x=ξ

NY∏
i=1

(ξn − x̄i )

∣∣∣∣∣∣ ,
(A1)

where x̄i are the collocation points, and ξ̂ ∈ [min(x),max(x)], x =
(x̄1, . . . , x̄NŶ

)T . The error can be bounded by defining ξ as the point

where
∣∣∣∂NY g(x)/∂x NY

∣∣∣ has its maximum. A small probability of
large errors in the tails can be observed by deriving the error εU (ξn),
by substituting the uniformly distributed random variable un in the
previous equation, using ξn = F−1

X (un),

εU (un) =
∣∣∣g(F−1

X (un))− gNY (F
−1
X (un))

∣∣∣
=
∣∣∣∣∣∣

1

NY !
∂NY g(x)

∂x NY

∣∣∣
x=ξ

NY∏
i=1

(F−1
X (un)− x̄i )

∣∣∣∣∣∣ .
A ‘close-to-linear’ relation between the involved stochastic vari-

ables, meaning ∂NY g(x)/∂x NY being small, gives a small approxi-
mation error. On the other hand, when approximating the CDF of the
expensive variable Y , we have FY (y) = FY (g(x)) ≈ FY (gNY (x)),
which is exact at the collocation points x̄i ,

FY (yi ) = FY (g(x̄i )) = FY (gNY (x̄i )).

A deeper analysis can be found in the original paper of SCMC
(Grzelak et al., 2015), including a theoretical convergence in L2 and
the convergence within the distribution tails.

We have chosen X to be standard normal, and Y = log Ŷ | log σ(s)
can be seen as the logarithm of a sum of log-normal variables. There-
fore, it is a ‘close-to-normal’ distribution which can be efficiently
approximated by a linear combination of standard normal distribu-
tions. In order to measure the error when SCMC is applied to the
sampling of

∫ t
s σ

2(z)dz|σ(s) (see section 3.2), we can consider the
difference between the functions g(x) = F−1

log Ŷ | log σ(s)
(FX (x)) and

gNŶ ,Nσ
(x) in equation (21). By following the same derivation as in

equation (A1), we have

εŶ (ξn) =
∣∣∣g(ξn)− gNŶ ,Nσ

(ξn)
∣∣∣

=
∣∣∣∣∣∣

1

NŶ !
∂NŶ g(x)

∂x NŶ

∣∣∣
x=ξ

NŶ∏
i=1

(ξn − x̄i )

Nσ∏
j=1

(vn − v̄ j )

∣∣∣∣∣∣ ,
where NŶ and Nσ are the number of collocation points in each
dimension and v̄ j are the collocation points corresponding to the
conditional random variable log σ(s).
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