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Abstract: Workload-aware physical data access structures are crucial to achieve short response time with (exploratory)
data analysis tasks as commonly required for Big Data and Data Science applications. Recently proposed
techniques such as automatic index advisers (for a priori known static workloads) and query-driven adaptive
incremental indexing (for a priori unknown dynamic workloads) form the state-of-the-art to build single-
dimensional indexes for single-attribute query predicates. However, similar techniques for more demanding
multi-attribute query predicates, which are vital for any data analysis task, have not been proposed, yet. In
this paper, we present our on-going work on a new set of workload-adaptive indexing techniques that focus
on creating multidimensional indexes. We present our proof-of-concept, the Cracking KD-Tree, an adaptive
indexing approach that generates a KD-Tree based on multidimensional range query predicates. It works by
incrementally creating partial multidimensional indexes as a by-product of query processing. The indexes are
produced only on those parts of the data that are accessed, and their creation cost is effectively distributed
across a stream of queries. Experimental results show that the Cracking KD-Tree is three times faster than
creating a full KD-Tree, one order of magnitude faster than executing full scans and two orders of magnitude
faster than using uni-dimensional full or adaptive indexes on multiple columns.

1 Introduction

Multidimensional range queries (MDRQ) are
queries that select intervals in two or more dimen-
sions of a multidimensional search space (e.g., a
query that searches every person between thirty
and fifty years old and that earns between 100
and 200 thousand dollars per year). They are very
common in OLAP environments [Ho et al., 1997]
and have many exploratory applications, like:
sensor data [Li et al., 2003], geographic infor-
mation systems [Alvanaki et al., 2015] and ge-
nomics [Li, 2011]. Many benchmarks are composed
of at least one MDRQ. For instance, out of the
22 TPC-H [Poess and Stephens, 2004] benchmark
queries, 6 are MDRQ.

In order to boost MDRQ, many multidimen-
sional index (MDI) structures have been proposed.
For instance: the KD-Tree [Bentley, 1975], R-
Tree [Guttman, 1984] and the vector approximation
file [Weber et al., 1998]. They index multiple di-
mensions in a single data structure, avoiding the
need of scanning the whole searched dimensional

space. However, these structures have a high up-
front creation and maintenance cost, in terms of
both computation time and storage space. Select-
ing which MDI to create is one difficult decision that
a database administrator (DBA) must take since the
trade-off between the speed-up of subsequent queries
and creation/maintenance costs must be carefully an-
alyzed [Comer, 1978].

Self-tuning tools [Bruno, 2011] try to alleviate
this problem by automatically selecting the indexes
through a what-if architecture that tricks the query
optimizer into guessing the indexes costs. However,
they only consider uni-dimensional indexes in order
to prune the subset of indexes to be created. They are
also not a good fit for exploratory data analysis where
the workload is unpredictable and where there is no
idle time to invest in a priori index creation.

Adaptive indexing techniques, such as database
cracking [Idreos et al., 2007], attempt to solve the in-
dex selection problem for exploratory data analysis
workloads by presenting an adaptive partial indexing
approach for relational databases. It works by build-
ing a partial index as a co-product of query process-
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Figure 1: Total Time for multidimensional range queries in
8 Columns.

ing. An index is initiated the first time an attribute is
queried, and then continuously refined as subsequent
queries are executed. In this way, the cost of creating
an index is distributed over a stream of queries. How-
ever, database cracking and its variations are designed
to generate uni-dimensional indexes, only. Since each
attribute is indexed separately from the others, to ex-
ecute an MDRQ it is necessary to look up the indi-
vidual indexes for each dimension and intersect their
results. The latter can be an expensive task, given that
the individual intermediate results can be much larger
than the final result, and because index lookups yield
the matching tuple IDs (or bit-vectors) in different or-
der.

Figure 1 depicts the total cost for a query stream
of 1000 MDRQs, with 20% selectivity per attribute,
over an 8-dimensional data set of 107 elements. We
use eight instances of database cracking, one per each
column. The high costs of intersecting the individ-
ual intermediate results of different columns turn the
unidimensional indexing solutions unfit for querying
multidimensional data. Database cracking costs’ sur-
pass the cost of a full scan and is one order of magni-
tude slower than a full multidimensional index.

Covering indexes [Zhang, 2009] or side-ways
cracking [Idreos et al., 2009] avoid the intersection of
per-column intermediate results by keeping all re-
maining dimensions aligned with the leading index
dimension. However, this comes at the expense of
having index-support only for one leading dimension,
while the remaining dimensions need to be scanned.
In case the selectivity per dimension varies strongly
across queries, multiple ”wide” indexes would need
to be built and maintained to suit all queries optimally.

To address these needs we propose a novel ap-
proach for indexing multidimensional data: Multidi-

mensional Adaptive Indexing (MDAI). It works by ex-
tending adaptive indexing in order to produce an MDI
as a side-effect of query processing. In this paper, we
describe our ongoing work on MDAI and present the
Cracking KD-Tree as the first MDAI that generates a
KD-Tree in an adaptive fashion.

Paper Structure. The rest of this paper is struc-
tured as follows. Section 2 provides an overview of
related work. Then, Section 3, describes multidimen-
sional adaptive indexing. Section 4 presents a brief
proof of concept and experimental analysis. Finally,
in Section 5, we present our conclusions and discuss
future steps.

2 Related Work

In this section, we present the state of the art on
automatic physical database design and MDI struc-
tures.

2.1 Automatic Physical Tuning

Self-Tuning Tools [Chaudhuri and Narasayya, 1997,
Agrawal et al., 2000, Valentin et al., 2000] attempt to
solve the index selection problem by automat-
ically recommending a set of indexes to opti-
mize a known workload of the system. They
work by selecting a relevant workload, generat-
ing a set of indexes that might be beneficial for
it and running them through the What-If archi-
tecture [Chaudhuri and Narasayya, 1998] in order to
check if the indexes should be created. However,
these systems depend on previous workload knowl-
edge, are only able to create full indexes and only con-
sider uni-dimensional indexes in order to prune the in-
dex search space. Therefore, they are not suitable for
exploratory systems with MDRQ.
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Figure 2: Database cracking with two dimensional range
query.

Adaptive Indexing [Schuhknecht et al., 2013] is
an alternative to the self-tuning tools. It is espe-
cially useful in scenarios where the workload is un-
predictable and there is no idle time to invest in in-
dex creation. It tackles these problems by creat-



ing indexes that are workload dependent in an in-
cremental fashion. Figure 2 depicts an example of
database cracking [Idreos et al., 2007] answering a
multidimensional range query. The query starts by
triggering the creation of the cracker column (i.e., ini-
tially a copy of column X) where the tuples are clus-
tered in three pieces reflecting the range predicate on
column X. The result is then retrieved as a view on the
piece between 4 and 7. Column Y is treated in a sim-
ilar way, using predicate boundaries 1 and 6. Finally,
both views need to be intersected by their id column
in order to retrieve the overall result.

Multiple issues with database cracking have
been identified and resulted in different research
paths, such as poor convergence towards a full in-
dex [Graefe and Kuno, 2010, Idreos et al., 2011], in-
efficient tuple reconstruction [Idreos et al., 2009], un-
predictable performance [Halim et al., 2012], ineffi-
cient updates [Holanda and de Almeida, 2017]. More
recently a generic algorithm for adaptive indexing, the
adaptive adaptive indexing [Schuhknecht et al., 2018]
was proposed to unify all algorithms in one, where
previous data access paths can be mimicked by set-
ting different properties.

To the best of our knowledge, all existing adaptive
indexing techniques focus on creating only single-
dimensional indexes, and are thus not suited to effi-
ciently and effectively deal with MDRQs.

2.2 Multidimensional Index Structures

MDI structures can be exploited to accelerate
MDRQs by avoiding the intersection cost necessary
with uni-dimensional indexes and scans. Sprenger et
al. [Sprenger et al., 2018] select three different mul-
tidimensional index structures considered to be the
state-of-the-art for querying multidimensional data.
In the following, we present a brief description of
these three techniques.

Figure 3: KD-Tree indexing two dimensions.

KD-Tree [Bentley, 1975]. It is a generalization of
a binary search tree to multidimensional data. Every

node of a KD-Tree holds a key, a discriminator col-
umn and, at most, two pointers for its children. The
traditional method is using the median of each col-
umn to split the data horizontally. Every level of the
tree is focused in one specific dimension chosen in a
round-robin fashion. Figure 3 depicts a KD-Tree that
indexes the dimensions X and Y. The root indexes the
dimension X in its median value 5. The next level in-
dexes the next dimension Y in the medians of the new
pieces defined by X. 7 when X < 5 and 2 otherwise. A
query that requests the ranges X > 5 and 2 < Y < 10
would transverse the tree until reaching node (Y,2)
and would scan the column partition from position 8
until its end.

R-Tree [Guttman, 1984]. Similar to B+-Trees,
they store data in the leaves. However, they use the in-
ner nodes to hold information in minimum bounding
rectangles. Lookup starts at the root and traverses the
tree to the leaves intersecting the query with the min-
imum bounding rectangles to determine which sub-
trees may have the searched data, and pruning the re-
maining subtrees.

VA File [Weber et al., 1998]. It partitions the
data space into rectangular cells that generate a bit-
encoded approximation of points. Dividing a k di-
mensional space into 2b rectangular cells. Where b is
the number of bits used for approximation.

3 Multidimensional Adaptive
Indexing

The previous section gave us the necessary mo-
tivation for MDAI. (1) Selecting which MDI to cre-
ate in an unpredictable environment is a hard task, (2)
a priori index creation requires idle time that is not
available in exploratory scenarios, (3) although adap-
tive indexing techniques aim to alleviate problems (1)
and (2) they only produce uni-dimensional indexes.
Hence, they are not suited to boost MDRQ.

We propose MDAI as a new technique that brings
adaptivity to multidimensional indexes. MDAI is de-
signed to produce an MDI while taking advantage of
the lightweight adaptive properties from adaptive in-
dexing. We believe that the following modifications
from adaptive indexing must be taken: (1) We group
all columns that are queried with range predicates
together, maintaining the tuple alignment, and copy
them to a table, that we call cracker table, (2) when
swapping elements based on a pivot, we swap the en-
tire row of our cracker table, instead of column ele-
ments and (3) we use an MDI structure to keep track
of the cracker table pieces.

Figure 4 depicts how MDAI works. Consider an
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Figure 4: Multidimensional Adaptive Indexing

unindexed table, a query Q1 that queries ranges from
columns C1 to Cn, where 1 < n≤ d, d being the max-
imum number of dimensions of the multidimensional
space. Q1 triggers the first phase of MDAI, by cre-
ating a cracker table with all the columns aligned by
an explicit id. After the cracker table is created the
cracking phase starts. Each range predicate will be
executed sequentially from their order in the query
(i.e., in this case from C1 to Cn). At the end of the
cracking phase, we simply need to do a lookup in our
cracking index and retrieve a view, marked in red, that
answers our query.

3.1 Cracking KD-Tree

In this section we describe the Cracking KD-Tree, the
first MDAI algorithm. It implements all the modifica-
tions of an MDAI and produces a KD-Tree as index.

Cracking. The major difference between the
Cracking KD-Tree and a regular KD-Tree is how
they are built. The regular KD-Tree is constructed
based on the medians of each column, whereas the
Cracking KD-Tree is constructed based on incom-
ing MDRQs. Given an MDRQ, for example x1 ≤
X < x2 AND y1 ≤ Y < y2, we iterate over the (col-
umn,key) pairs that represent the individual predi-
cate terms, e.g. (X ,x1),(X ,x2),(Y,y1),(Y,y2), and
use them to successively grow and refine the index.
It is important to notice that one pair can be in-
serted in multiple locations and that the levels in the
Cracking KD-Tree are not dimension specific as op-
posed to the regular KD-Tree. We also implemented
a minimal partition size (i.e., L2 cache size) in order
to avoid non-proportionally increased index mainte-
nance overhead and unnecessary random access that
would result from too many too small partitions.

Lookup. A lookup in the Cracking KD-Tree con-

sists of comparing the current node key with the given
range. For example, given a key x and a range x1 ≤
X < x2, there are three possible outcomes:

1. x≤ x1: the result of the query is on the right of the
key.

2. x2 ≤ x: the result of the query is on the left of the
key.

3. x ∈ [x1,x2]:the result of the query is on both sides.

Figure 5 depicts a bi-dimensional example of the
Cracking KD-Tree. In this example, Figure 5(a) rep-
resents the uncracked cracker table. Query Q1 starts
by triggering the first cracking iteration on column X
using its lower predicate boundary 4. After swapping
the elements of X around 4 the Cracking KD-Tree
root node is inserted. It holds the information regard-
ing the cracked column, the pivot value and the table
position, depicted in Figure 5(b). The second crack-
ing iteration is then started and we continue to crack
the column X . However, we now crack it using its up-
per predicate boundary 7, creating a child node to the
root, depicted in Figure 2(c). Finally, the last cracking
iteration starts, now on column Y . Since the root node
and its child do not give us any information about Y
we must follow all possible paths, and crack Y on 1
in all existing pieces, resulting in Figure 5(d). After
the cracking phase is finished, we perform a lookup
operation at the index. Starting from the root of the
tree, we can see that its key 4 is equal to the inclu-
sive lower predicate boundary of 4 ≤ R.X < 7. This
means that need to descend to the right child of the
root node. There, we see that its key 7 is equal to the
exclusive upper predicate boundary of 4 ≤ R.X < 6,
which leads us to its left child. Finally, the leaf with
key 1 is equal to the inclusive lower predicate bound-
ary of 1 ≤ R.Y . Hence, we can return the tuples in
positions 6 and 7 of the cracker table, shaded in red in
Figure 5(d), as the query answer.

4 Experiments

In this section, we present a brief experimental
analysis to demonstrate the strong potential benefits
of MDAI.

Setup. We implemented the Cracking KD-Tree in
a single-threaded stand-alone program written in C++
and compiled with GNU g++ version 7.3.1 using op-
timization level -O3. All experiments were conducted
on a machine equipped with 256 GB of main memory
and two 2.6 GHz Intel Xeon E5-2650 v2 CPUs, each
with 20 MB L3 cache, 8 cores and hyper-threading
enabled, running Fedora 26.



Figure 5: Cracking KD-Tree.

1 SELECT COUNT(R.C1)
2 FROM R
3 WHERE LowC1 < R.C1 < HighC1 AND ...
4 AND LowCn < R.Cn < HighCn

Listing 1: Query form used on experiments

Our data set consists of a table with 8 8-byte in-
teger attributes holding 107 tuples. The values per at-
tribute are independently uniformly distributed.

All queries are of the form depicted in Listing 1.
Where n is the number of dimensions queried. All the
queries have selectivity equal to 0.2 per column, one
might notice that the total selectivity of the queries in
the query stream will vary since the query predicates
are selected in a random pattern. We repeat the entire
workload 10 times and take the average runtime of
each query as the reported time.

We implemented four different algorithms to com-
pare with our Cracking KD-Tree.

Full Scan. We use a vectorized, predicated scan
approach [Boncz et al., 2005] that produces a candi-
date list per scanned vector of a column. The vector
size is in accordance to the L2 cache size.

Standard Cracking AVL. Each column goes
through the process of database cracking separately.
Afterwards, the results are intersected by the creation
of bit-vectors1.

Full Index B+ Tree. Each column is indexed us-
ing a B+ Tree created before running the workload.
To answer the queries, we do a lookup in each col-
umn and intersect the results with bit-vectors.

Full Index KD-Tree. All columns are indexed us-
ing a KD-Tree pivoting by median values and choos-
ing the dimensions in a round robin fashion. In order
to find the medians, we use a quick-sort variant that
instead of ordering a column, stops execution when

1We use the standard c++ library: boost::dynamic bitset
to generate the bit-vectors

finding its median value. The query result is then
given by a lookup in the KD-Tree.

Full Scan Database Cracking
B+ Tree Cracking KD-Tree
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Figure 6: Total response time breakdown of workload with
8 columns.

Figure 6 depict the breakdown of accumulated re-
sponse time for all algorithms. We can see that both
uni-dimensional indexes have a similar cost, around
140 seconds in total, mainly due to the time spent
in scanning, creating and intersecting the intermedi-
ate results with the bit-vectors. The full scan is four
times cheaper than building, traversing and intersect-
ing multiple uni-dimensional indexes to answer the
query. The KD-Tree achieves a three times better re-
sponse time than the full scan, with index creation be-
ing its highest cost. This issue is mitigated by the
Cracking KD-Tree that efficiently spreads it through-
out the query stream. However, the index creation
cost still takes a considerable chunk of time on the
Cracking KD-Tree mainly due to the relaxation of the
one dimension per level restriction of the KD-Tree.

Figure 7 depict the cumulative response time for
the full scan and both KD-Trees. The full scan has
a linear cost, presenting about the same cost for ev-
ery scan. The Full KD-Tree has the highest initial
cost due to its a priori creation, costing two orders
of magnitude more than a full scan, but all subse-
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quent queries have low additional costs, taking around
280 queries for this initial investment to pay off. The
Cracking KD-Tree’s first query cost is one order of
magnitude higher than a full scan, and it quickly con-
verges towards a full index speed, presenting a lower
response time than a full scan around query 7, and
only needing 70 queries for its creation investment to
pay off.
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Figure 8: Total time for multiple columns.

Figure 8 depicts the total time for running our
query stream under a different number of dimensions.
Since we maintain the same selectivity per column
(i.e., 0,2%), for 16 columns our query results are all
empty. We can see that the full scan increases its total
time dependent on the intermediate result size due to
the use of candidate lists. Since the overall selectivity
of the queries decreases when we increase the number
of dimensions the full scan can maintain good scala-
bility after four dimensions. The Full KD-Tree de-
pends mostly on time spent creating the index, so its
cost grows exponentially when we increase the num-
ber of columns. The Cracking KD-Tree presents bet-
ter scalability when compared to a Full KD-tree due
to its lazy nature.

5 Conclusion & Future Work

MDAI introduces new aspects that were unex-
plored by adaptive indexing and that require further
investigation. We describe the following as the as-
pects that shall be explored as our next steps in this
research:

• Related work optimizations: In our proof-
of-concept, we always use one uni-dimensional
index per column and later intersect their in-
termediate results using bit-vectors. How-
ever, we can also use a covering index which
might be more competitive than the current ap-
proach. Another possibility would be to map
the n-dimensions to one dimension by using Z-
Ordering [Ramsak et al., 2000] and indexing it.

• Cracking KD-Tree: The Cracking KD-Tree pre-
sented in this work produces multiple dimensions
in the same level by constructing it using the or-
der of range predicates presented in the query.
Other design choices can be made, as ignoring
parts of the predicates to preserve the dimensions
per level, or completely ignoring the query predi-
cates and select the pivot points by calculating the
medians, one for each predicate.

• Adapting other MDI: Other data structures
are also good candidates to MDAI when in-
creasing the number of dimensions. For in-
stance, Vantage-point Tree, Ball-trees and M-
Tree [Liu et al., 2006], and Locality Sensitive
Hashing [Andoni, 2009] present similar searching
properties to KD-Trees, although their structure
demand heavier storage space compared to the
KD-Tree increasing the runtime for maintenance.

• Benchmarks: Our experimental evaluation is
limited by only using uniformly random distri-
butions for the data and a fixed selectivity for
the queries. Other distributions and selectivities
must be explored. Real-world multidimensional
data and workloads should also be tested (e.g.,
the genomic multidimensional range query bench-
mark [Sprenger et al., 2018]).

• Machine Learning: In-database Machine Learn-
ing is a trend and KD-Trees are broadly used
for approximate nearest neighbor (k-NN) search:
given a labeled object, find the most simi-
lar labeled object. Applications of the k-NN
search, include, text categorization, searching im-
age databases, finding duplicate records. Our
agenda includes studying the impact of our Crack-
ing KD-Tree to save search time at little cost in
quality of the nearest neighbor in some of these
applications.
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