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On semi--regular and minimal Hausdorff embeddings 

§1. Introduction 

It is well known that a space can be embedded in a compact Hausdorff 

space if and only if it is completely regular. Thus since every 

compact Hausdorff space is minimal Hausdorff, we have a minimal Haus­

dorff em.bedding of every completely regular space. This result has 

been extended by Banaschewski [1] who proved that every semi-regular 

Hausdorff space can be densely embedded in a minimal Hausdorff space. 

In [2],Berri asked for a determination of the class of spaces which 

can be embedded in minimal Hausdorff spaces. It is the purpose of 

this paper to show that this is precisely the class of all Hausdorff 

spaces. First, however, we obtain a general semi-regular embedding 

theorem which seems to be of interest in itself. 

We wish to express our gratitude to Prof. J. de Groot for his 

substantial improvement of the proof. 

§2, Definitions and Notation 

(X,c-/) will denote the topological space having underlying set X and 

topology 4t". If A c.X, Cl,r A (Int,,- A) will denote the closure (interior) 

of A with respect to 't'. 

A set, V, in a topological space will be called regular open•provided 

that it is the same as the interior of its closure; i.e. V = Int<(Cl< V). 

A topology will be called semi-regular provided that it has a base·con­

sisting of regular open sets. 

A topological space (X,'t') will be called minimal Hausdorff provided 

that 1:" is Hausdorff and there exists no strictly coarser (weaker) 

Hausdorff topology on X. 

A topological space will be called Urysohn provided that distinct points 

have disjoint closed neighbourhoods. 
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The weight of a topological space, (X,'t'), is the least cardinal number, 

m, such that there exists a base for 't' with cardinality.!!!.• 

§3. Main results 

1) IT' Theorem 1. Any topological space, (x,~), can be embedded as a 

nowhere dense closed subspace in a connected semi-regular space (Y,~). 

Furthermore, the embedding preserves the separation properties T0 , T1, 

Hausdorff, and Urysohn; and the weight of (Y,~) will be equal to the 

weight of (X,'t') if the weight of (X,'t') is infinite. 

Proof. 

Let 'i be a base for (X,'t') such that the cardinality oft is equal to 

the weight, m, of (X,'t'). For each a e 1} , let I be a copy of the real 
- a 

line open ray (O,+=). If a# S we require that Ia/\ IS=¢. (If 

AC(O,+=) is considered to be a subset of I , we label it A.) Let 
. a a 

6 be an additional point and let z = u {I I a 6B} u {o}. We now 
a 

proceed to define a topology on z. 
Let J be the set of positive integers and let Q be the set of positive 

rational numbers. For each n E J let 

U = {o} U { (0, 2.) I a E ~}. 
n n a 

Let 

'Y = {u I n£J} U { (a,b) I a,b eQ, ae.1}. n a 

Then 'Y is a base for a connected topology, 'tt on Z and 

card ( 'P) = max (X0 ,.!!!,) ~ 

Now we let Y = X U Z. For each aE ~ and each n EJ, let 

an = a tJ {( n , +=) S I S e 1.> and S c a} • 

1 ) 
A slightly stronger version of the theorem which asserts that any 
space (X,tt) can be embedded in a semi-regular space composed entirely 
of disjoint copies of (X,'t') has also been established (cf. [4] ). 
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Then 

.... 
satisfies the requirements of a base for a topology, 't', on Y. We now 

.... 
proceed to show that (Y,"'C) has the properties asserted by the theorem. 

Clearly't" restricted to Z isec'', ZE't', and if U£'1.>, Uf\Z -I=¢. Thus Z 

is a connected, dense, open subset of 't". Consequently, since -t restricted 

to X is't', we have that (X,'t') is embedded as a nowhere dense closed 

subspace of the connected space (Y,'t). It is clear that the weight of 

(Y ,"t') is ec1ual to the cardinality of 'Y, which is equal to the weight 

of (X,'I:') i:E' the latter is infinite. Thus it remains to be shown that 

(Y,'t') is semi-regular and preserves the separation properties mentioned. 

Proof of semi-regularity 
.... 

We show that every number of~ is regular open. If VE<p, then it is 

clear that there exists some integer, n, such that 

V C {o} u {(O,n) I ae1>} = w. 
a n 

Thus if x ~'.X and x e. S, then 

Con:equently Cl'!' V = Cl"t', V CZ, which combined with the fact that 

Z €. 'j, implies that 

Int..-.. Cl..-.. V = Int Cl V = V. 
~ 't: ~I 't'' 

Therefore V is "C-regular open. Now suppose that & £. '?> _q, and 
n .... .... 

q £Cl..-.. a -- a • If q£ Z, then there exists some Sc.a such that 
"t' n n 

q = n4.f;Ia- Thus q ~Int .... Cl .... ~. If qE:X and 8 is any member ofi 
I-' 'L 't" n .... m 

which contains q, then 6 ¢ a; hence 6m ¢ Cl-,: an since 

{m + 1}.i:c;S - Cl .... ~. Consequently,~ is"t'-regular open. 
u m ~ n n 

Proof of separation preservation 
.... 

First note that distinct points of Z have disjoint closed 't'-neighbour-

hoods. Now suppose that x E. X and z E. Z. If z E Ve. 9 and x € a E. 'D, then, 
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as above, there exists an n E::J such that V c.W • Clearly x Ea 1 and 
n n+ 

Cl.-. V f'\ Cl.-. ~ = ¢. 
'I: 't" n+1 

Hence x and z have Urysohn separation. Furthermore, if a4'.S3and x ¢ a, 

then x ¢; for all neJ. Also if a,Be:'S!>and anB =¢,then 
n 

a AS = ¢1 for all n e.J; and if Cl_ a f'\ Cl_ B = ¢, then n n ... ''-
Cl ... ~ (\ Cl ... S = ¢ for all n€.J. Thus if (X,rt') is T0 , T1, Hausdorff 
~ n 't' n 

or Urysohn, (Y,Ct') will be T0 , T1, Hausdorff or Urysohn, respectively. 

Theorem 2. Every Hausdorff space can be embedded in a minimal Hausdorff 

space. 

Proof. 

By theorem 1 any Hausdorff space can be embedded in a semi-regular 

Hausdorff space. By the result of Banaschewski cited above, this space 

can be embedded in a minimal Hausdorff space. 

Remark. 

Several generalizations of theorem 2 appear in [3]; e.g. an arbitrary 

Hausdorff spaGe can be embedded as a closed subspace of a minimal 

Hausdorff space with the same weight and there exists a separation and 

weight preserving embedding of any space into a central-compact space 

(central-compactness being a generalization of the minimal Hausdorff 

properties to spaces with weaker separation). 
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