STRENGTHENING ALEXANDER'’S SUBBASE THEOREM

By G. E. STrRECKER, E. WaTTEL, H. HERRLICH, AND J. DE GROOT

Historically, compactness has been introduced within the framework of
topology. However, it is illuminating and convenient to define compactness
set-theoretically.

Let X be a non-empty set and E a family of subsets of X. If A C X, then
A will be said to be compact relative to €, or equivalently 4 e pE, provided that
for every 8 C & such that B \J {4} has fip., (N B) N A = &. (Although
compactness is usually defined in terms of coverings (by open sets), we prefer,
for reasons of simplicity and convenience, to work within the complementary
framework of collections with the finite intersection property (f.i.p.).) Thus
in the case that € is the collection of all closed subsets of a topological space,
denoted (X, €), p€ is by this definition the collection of all compact subsets
of the space. Observe that p€ contains all finite subsets of X, but pE€ need not
contain €. p"€ is defined inductively; 0"G = p(p"'G). Furthermore, we let
@ denote the collection of all (arbitrary) intersections of finite unions of mem-
bers of €. Observe that v is idempotent; v = v& D €. Also the convention
Ng = X isused. Thus € = v€ if and only if (X, €) is a topological space.

In terms of these operators, Alexander’s Subbase Theorem can be stated as
follows:

TuroreEM (Alexander). For every € C 2%, o6& = pyG; i.e. the family of sets
compact relative to € is the same as the family of sets compact relative to the larger
collection v@&.

In the course of the paper the theorem is strengthened by establishing the
existence of an even larger collection, namely v(€ \U p*€), with the same compact
sets. Also, necessary and sufficient conditions are obtained which determine
whether or not y€ is the largest collection ®© for which p€& = pD, or indeed
whether or not there exists a collection D maximal with respect to the property
that p& = pD. (As usual, the term “largest’”’ implies comparability with all
other elements, whereas ‘“maximal’”’ does not necessarily carry that connotation.)
For a Hausdorff space, (X, ¥€), there is always a maximal collection—precisely
v(€ U p°@), and v€ is maximal if and only if (X, vG) is a k-space.

1. An extension of Alexander’s Theorem. Throughout the paper we will
assume that X is a non-empty set and that € and © are subsets of 2*. G A D
will denote {E N\ D | E ¢ G, D ¢ D}.

Lemma 1. If € C 9D, then p® C p€.
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Proof. Trivial.
Lemma 2. If € C v€ M p€ and if € has f.i.p., then \E = .

Proof. If € = S, then NC = X = F. If € = &, let C ¢ G; then C & pE.
By Alexander’s Theorem, C ¢ p(vyE). Also € C v€ and € U {C} has fip,;
thus by the definition of compactness, NE = (NE) N. C # K.

Lemma 3. 7€ A p"€ C p°G, forn > 1.

Proof. If n = 1, this is merely a restatement of the well known result that
in a topological space the intersection of a closed set and a compact set is again
compact. To complete the proof by induction, assume that y& A p"€ C p"€
and that E ¢ vG, C ¢ p""'G, and B C "€ such that B U {E N C} has {.ip.
Clearly 8’ = {E} A B C 1€ A "G C 0"€ and ¥’ U {C} has fip. Thus by
the definition of compactness, (N\B) N E N C = (NB') N C # &; and so
7@ /\ P”+l@ C pn+l@‘

LemMa 4. p€ A p°G = pE N p°G.

Proof. Clearly p@& N p°€ C p& A p°E, and by applying the statement of
Lemma 3 with n = 1 to p€ we have

p€ A p°€ C 1€ A p°C C p°G.

Thus we need only show that pG A p’C C pE. Let C oG, Dep’Cand B C €
be such that 8 U {C M D} hasfip. Now® =B A {C} C+vE€ A p€; so that
by Lemma 3, 8’ C pE. Also 8’ U {D} has f.i.p. so that by the definition of p?,
NB)YNCND=(NB)NDs= &. Therefore C M D ¢ pE.

Remark. Note that by the inductive definition of p", Lemuma 4 may be stated
more generally as: p"CG A p""'C = p"€ N p""'G, n > 1. For a more extensive
treatment of the p and v operators, see [2].

TrEOREM 1. For every & C 2%, p& = py(€ U p°G).

Proof. By Alexander’s Theorem, py(G U p°€) = p(€ U p°E) and by Lemma 1,
p(€ U p’E) C pE. Thus we must show that p& C p(€ U p°C).

Let C ¢ pG and let B C € \U p°E be such that B \J {C} has fip. Further-
more let B; = BN Gand B, = BN p°C.

Case 1. B, = J. Clearly 8 C €, so that by the definition of p,
NB) N C = &.

Case2. B, = &. Then B’ = {C} A B C p€ A p°G, so that by Lemma 4,
B’ C p& N p°E. But since B has f.i.p., we have that by Lemma 2 applied to
B’ and p& "B N C) = NY' = &.

Case3. B, # &;B, % &. Then B, A B, CvE A p°G, so that by Lemma, 3,
B, A B; C p°G. Thus we have a situation essentially the same as that of
Case 2.

Next we give an example of a Hausdorff space for which, by an application
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of Theorem 1, we obtain a strictly stronger (i.e., finer) space with the same
compact subsets.

Example 1. Let X be an uncountable set and let p be a distinguished element
of X. Let

€ = {E C X | E uncountable implies p ¢ E}.

Then (X, €) is Hausdorff, p€ is the collection of all finite subsets of X, and
p°G = 2*. Thus € is properly contained in € U p°E.

2. Spaces maximal with respect to the compactness operator. Having found
a general strengthening of Alexander’s Subbase Theorem, we now seek a clas-
sification of those spaces for which no strengthening is possible, i.e. those spaces
(X, €) for which there is never a collection strictly larger than € with the same
compact sets.

If € C 2%, welet o denote {4 C X | {4} A oG C pG}.

N.B. By Lemma 3 (with n = 1), ¥& C aG; by Lemma 4, p°€ C «G; and by
Alexander’s Theorem, a€ = ayG.

LemMmaA 5. p€ = pD implies that a€ = aD.
Proof. Trivial.
LemMma 6. If A ¢ oG, then p({4} U €) = pG.

Proof. By Lemma 1, p({A} \U €) C p€. To show the reverse containment
suppose that C e p€ and B C {4} \J € such that 8\J {C} hasfip. If4¢ 9B,
then by the definition of p, (N\YB) N C = &. If A ¢ B, then A N C ¢ pG and
B\{4}) Y {A N C} hasfip. Therefore (NB) N C = NB\{A}) N (ANC)
# .

TueoreM 2. In order that a space (X, €) have the property that € is the largest
collection D such that p© = p€ it s necessary and sufficient that € = «G.

Note that for a Hausdorff space, (X, €), € = «E is precisely the statement
that (X, €) is a k-space, [3; 230].

Proof. The necessity is established by Lemma 6 and the fact that € C oE.
To show the sufficiency, suppose that € = «€ and that for some D, pD = pE.
Let A e D andlet CepE. By Lemma 3, A N C e pD = pE;s0 that A ¢ o€ = G.
Thus © C €.

CoroLrLARY. A Hausdorff space (X, €) is a k-space if and only if there exists
no collection D strictly larger than € such that pD = pG.

3. Existence of collections maximal with respect to compactness. Having
characterized those spaces which are maximal with respect to their collection
of compact subsets, we now investigate those sets for which there is a maximal
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collection (or indeed even a largest collection) with the same compact sets.
Notice that the space of Example 1 satisfies the condition that there exists a
largest collection with the same compact sets, yet it is not itself the largest

collection. The following theorem yields the needed characterization.

TueoreM 3. If & C 2%, then the following are equivalent:

(1) there exists a largest collection D such that oD = pG.
(i) there exists a collection D maximal with respect to the property pD = pGE.
(iii) p€ = pal.

Remark. If the maximal collection D exists, it must be €.

Proof of Theorem 3. Clearly (i) implies (ii). To show that (ii) implies (iii)’
assume that © is maximal with respect to the property that p® = pE. By
Lemma 5, a® = a; and by Lemma 6, if 4 & a, then p({4} U D) = »E,
80 that by the maximality of ©, 4 ¢ D. Thus a€ = D, so that pa€ = pD = pE.
To show that (iii) implies (i), assume that p& = pa@. Thus if 4 & ca€ and
CepG AN CepaG = pGC so that A e «E. This, together with the fact that
for any A, A C v™A C ¥, yields:

vo€& C aa€ C a€ C vaG.

Therefore (X, o@) is a space, and o€ = «(a). Hence by Theorem 2, o is
the largest collection D such that pD = pE.

DErFINITION. A space is called hereditarily compact if every subset is compact
(cf. {4]). Such a space is called maximal hereditarily compact if there exists
no strictly stronger hereditarily compact topology on its underlying set.

CoroLLARY. Every maximal hereditarily compact space is finite.

Proof. If (X, G) is hereditarily compact, then p& = 2*. Thus o€ = 2%,
so that pa@ = {4 C X | 4 is finite}.

Remark. Spaces for which there is no maximal collection with the same com-
pact sets exist in profusion since there are numerous infinite hereditarily compact
spaces. An example is the co-infinite topology on an infinite set.

Since both Theorems 1 and 3 provide general “strengthenings’” of Alexander’s
Subbase Theorem, it is worth noting that there are specific instances where one
of them gives a better result than the other. Example 2 below illustrates an
instance where an application of Theorem 3 and the remark following it yield
a larger collection with the same compact sets than is obtained by an application
of Theorem 1. Example 3 shows that there are spaces for which Theorem 1
provides a proper strengthening even though no maximal strengthening exists.

Example 2. Let I be the closed unit interval [0, 1]. We will say that z is
an I-limit point of A C I if z is a limit point of 4 in the topology induced from
therealline. Let X = I X {1, 2} and let 7: X — I be the projection =(z, n) = =z.
Let G = {7 '[a,0] |0 < a <b< 1}V {{c} | ce X}; then (X, ¥6) is a T, space,
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o€ = {C C X | z an I-limit point of #C implies ="'z N C # &},
a@ = {A C X | z an I-limit point of 74 implies 7'z C A} and
0°C = {E C X | E is finite}.
Thus v& = y(€ U p°E) but p& = paG and yE is properly contained in o@.

Example 3. Let X = A \U B, where A and B are disjoint uncountable sets.
Let

G={FCX|BCPF}J{FCX|FN Bis finite and F N A is countable}.
Then (X, €) is a T, space,

pG = {C C X | C N Ais finite},

p°’C = {E C X | E N B is finite},

o€ = 2%, and

pa€ = {D C X | D is finite}.
Thus there is no maximal collection D for which
pD = pE, but & isproperly contained in (€U p’€) and p(€ U p*E) = pG.

We now consider a large class of spaces for which there is always a strongest
space with the same compact sets. It should be noted that for any member of
the class obtained, an application of Theorem 1 yields this strongest space.

ProposiTioN 1. If € C 2% and X ¢ p°G, then oG = pa@ and there exists a
largest collection D = a€ = v(€ U p°€) = p’C such that pD = pG.

Proof. Clearly, by Lemma 1, pa@ C p€. Let C £ p€ and © C «€ be such
that & \U {C} has f.i.p. Thus & = & A {C} has f.i.p. and is contained in p@.
Therefore since X ¢ p°G, it follows that (&) N\ € = N&' = &. Thus pC =
pa@. By Theorem 3 and the remark following it, € = va€ is the largest
collection ®© such that p® = pE. Since for any €, € U p°C C o€, we have
that p& C (€U p*C) C va€ = a@. To show that € C p*E, suppose that
A £a€ and € C p€ such that € U {4} has f.i.p. Then

NEONA=NEA{AYDNX =,
since € A {4} C p€ and X & p°G.
CoroLrARY. If € C 2% and p& C G, then p€ = paG.

Proof. If M C pE, then M C v& M pE; so that if I has f.i.p., we have by
Lemma 2 that MR = &. Thus X e p°G.

Cororrary. If (X, €) is Hausdorff, then p€ = pa@.
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4. Problems.

(A) Given G C 2%, what are necessary and sufficient conditions for the existence
of some D such that € = pD?

(B) Given € C 2%, what are necessary and sufficient conditions for the existence
of some D such that € = ypD?

(C) Given pG, characterize {D C 2% | pD = pE}.

Note that (A) and (B) are actually different questions since the collection of all
countable subsets of an uncountable space can be vpD for some D but cannot be
pD for any D. Also note that answering question (C) in the case p& = 2* is a
central topic of [4].
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