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Abstract. Spiking neural networks are being investigated both as bio-
logically plausible models of neural computation and also as a potentially
more efficient type of neural network. Recurrent neural networks in the
form of networks of gating memory cells have been central in state-of-
the-art solutions in problem domains that involve sequence recognition or
generation. Here, we design an analog Long Short-Term Memory (LSTM)
cell where its neurons can be substituted with efficient spiking neurons,
where we use subtractive gating (following the subLSTM in [1]) instead of
multiplicative gating. Subtractive gating allows for a less sensitive gating
mechanism, critical when using spiking neurons. By using fast adapting
spiking neurons with a smoothed Rectified Linear Unit (ReLU)-like ef-
fective activation function, we show that then an accurate conversion
from an analog subLSTM to a continuous-time spiking subLSTM is pos-
sible. This architecture results in memory networks that compute very
efficiently, with low average firing rates comparable to those in biological
neurons, while operating in continuous time.

Keywords: Spiking neurons, LSTM, recurrent neural networks, super-
vised learning, reinforcement learning.

1 Introduction

With the manifold success of biologically inspired deep neural networks, networks
of spiking neurons are being investigated as potential models for computational
and energy efficiency. Spiking neural networks mimic the pulse-based communi-
cation in biological neurons: in brains, neurons spike only sparingly – on average
1-5 spikes per second [2]. A number of successful convolutional neural networks
based on spiking neurons have been reported [3–7], with varying degrees of bio-
logical plausibility and efficiency. Still, while spiking neural networks have thus
been applied successfully to solve image-recognition tasks, many deep learning
algorithms use recurrent neural networks (RNNs), especially variants of Long
Short-Term Memory (LSTM) layers [8] to implement dynamic kinds of memory.
Compared to convolutional neural networks, LSTMs use memory cells to store
select information and various gates to direct the flow of information in and out
of the memory cells. The state-changes in such networks are iterative and lack an
intrinsic notion of continuous time. To translate LSTMs-like networks into net-
works, such a notion of time has to be included. At present, the only spike-based
version of LSTM has been realized for the IBM TrueNorth platform [9]: this work
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2 Spike-Based SubLSTM

proposes an approximate LSTM specifically for TrueNorth’s constrains by using
a store-and-release mechanism synchronized across its modules, effectively still
iterative and synchronized model of computation; Intel recently introduced the
first semi-commercial spike-based hardware [10], obviating the need for efficient
and effective spiking neural network algorithms. Here, we propose a biologically
plausible spiking LSTM network based on an asynchronous approach. While a
continuous time model in LSTMs can be implemented by taking small, finite
time-steps, a key problem in spiking LSTM models is the multiplicative nature
of the gating mechanism: such gating requires a graded response from spiking
neurons to create a gradient for learning the proper degree of gating. We found
that multiplicative gating also needs to be precise, in that noisy gating signal
disturbed the learning of memory tasks. We exploit subtractive gating, the “sub-
LSTM” [1], to use spiking neurons that effectively compute a fast ReLU function,
enabling a spiking subLSTM network to operate in continuous time. We con-
struct a spiking subLSTM network and successfully demonstrate the efficacy of
this approach on two standard machine learning tasks: we show that it is indeed
possible to use standard analog neurons for the training phase of the modified
subLSTM and accurately convert the networks into spiking versions, such that
during inference phase spike-based computation is sparse (comparable to active
biological neurons) and efficient.

2 Model

To construct a spiking subLSTM network, we first describe the Adaptive Spik-
ing Neurons we aim to use, and we show how we can approximate their effective
corresponding activation function. We then show how an LSTM network com-
prised of a spiking memory cell and a spike-driven input-gate can be constructed
and we discuss how analog versions of this subLSTM network are trained and
converted to spiking networks.

Adaptive Spiking Neuron. The requirements of the network architectures
guide us in the demands put on spiking neuron models. Here, we use Adaptive
Spiking Neurons (ASNs) as described in [11]. ASNs are a variant of an adapting
Leaky Integrate & Fire (LIF) neuron model that includes fast adaptation to the
dynamic range of input signals. The behavior of the ASN is determined by the
following equations:

incoming postsynaptic current: I(t) =
∑
i

∑
tis

wiϑ(tis) exp

(
tis − t
τβ

)
, (1)

input signal: S(t) = (φ ∗ I)(t) , (2)

threshold: ϑ(t) = ϑ0 +
∑
ts

mfϑ(ts) exp

(
ts − t
τγ

)
, (3)

internal state: Ŝ(t) =
∑
ts

ϑ(ts) exp

(
ts − t
τη

)
, (4)
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where wi is the weight (synaptic strength) of the neuron’s incoming connection;
tis < t denote the spike times of neuron i, and ts < t denote the spike times
of the neuron itself; φ(t) is an exponential smoothing filter with a short time
constant τφ; ϑ0 is the resting threshold; mf is a variable controlling the speed of
spike-rate adaptation; τβ , τγ , τη are the time constants that determine the rate

of decay of I(t), ϑ(t) and Ŝ(t) respectively. The ASN emits spikes following a

firing condition defined as S(t) − Ŝ(t) > ϑ(t)
2 , and, instead of sending binary

spikes, the ASNs here communicate with “analog” spikes of which the height is
equal to the value of the threshold at the time of firing; note that this model
speculatively implies a tight coupling between spike-triggered adaptation and
short-term synaptic plasticity (see [12] and [11] for more details).

Activation Function of the Adaptive Analog Neuron. In order to create
a network of ASNs that performs correctly on typical LSTM tasks, our approach
is to train a network of Adaptive Analog Neurons (AANs) and then convert the
resulting analog network into a spiking one, similar to [6, 5, 11]. We define the
activation function of the AANs as the function that maps the input signal S
to the average PSC I that is perceived by the next (receiving) ASN. We then fit
the normalized spiking activation function with a softplus-shaped function as:

AAN(S) = a · log (1 + b · exp(c · S)) , (5)

with derivative:
dAAN(S)

dS
=
a · b · c · exp(c · S)

1 + b · exp(c · S)
, (6)

where, for the neuronal parameters used, we find a = 0.04023, b = 1.636 and
c = 23.54. Using this mapping from the AAN to the ASN (see Figure 1), the
activation function can be used during training of the network with analog AANs:
thereafter, the ASNs are used as “drop in” replacements for the AANs. The ASNs
use τη = τβ = τγ = 10 ms, and ϑ0 and mf are set to 0.3 and 0.18 for all neurons.
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Fig. 1. Left panel: average output signal of the ASN as a function of its incoming PSC
I, where the error bars indicate the standard deviation of the spiking simulation, and
the corresponding AAN curve. The shape of the ASN curve is well described by the
AAN activation function, Equation 5; right panel: the output signal of the ASN alone.
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Fig. 2. Overview of the construction of an Adaptive Analog subLSTM and an Adaptive
Spiking subLSTM cell. This compares to a subLSTM with only an input gate.

Adaptive Spiking subLSTM. An LSTM cell usually consists of an input and
output gate, an input and output cell and a CEC [8]. Deviating from the origi-
nal formulation and more recent versions where forget gates and peepholes were
added [13], the LSTM architecture as we present it here only consists of a (sub-
tractive) input gate, input and output cells, and a CEC. Moreover, the original
formulation, an LSTM unit uses a sigmoidal activation function in the input gate
and input cell. However, when using spiking neurons, this causes inaccuracies be-
tween the analog and spiking network, as, due to the variance in the spike-based
approximation, the gates are never completely closed nor completely open. In
a recently proposed variation from the original LSTM architecture, called sub-
LSTM [1], the typical multiplicative gating mechanism is substituted with a
subtractive one, not requiring thus for the gates to output values exclusively in
the range [0, 1]. This allows us to use neurons characterized by a smoothed ReLU
as activation function. Mathematically, the difference between the integration in
the CEC in the LSTM and subLSTM is given as:

LSTM: ct = ct−1 + zt � it , | subLSTM: ct = ct−1 + zt − it , (7)

with ct value of the memory cell at time t, zt and it represent the signal coming
from the input cell and the input gate, respectively.

As noted, to obtain a working Adaptive Spiking subLSTM, we first train its
analog equivalent, the Adaptive Analog subLSTM. Figure 2 shows the schematic
of the Adaptive Analog subLSTM and its spiking analogue: we aim for a one-on-
one mapping from the Adaptive Analog subLSTM to the Adaptive Spiking sub-
LSTM. This means that while we train the Adaptive Analog subLSTM network
with the standard time step representation, the conversion to the continuous-
time spiking domain is achieved by presenting each input for a time window of
size ∆t, which is determined by the neuronal parameters and by the size of the
network. We find that by simply multiplying the signal incoming to the spik-
ing CEC times a conversion factor (i.e. CF in Figure 2), the two architectures
process inputs identically, even if the time component is treated differently.

Spiking Input Gate and Spiking Input Cell. The AAN functions are used
in the Adaptive Analog LSTM cell for the input gate, input cell and output
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cell. From the activation value of the input cell the activation value of the input
gate is subtracted, before it enters the CEC, see Figure 2. Correspondingly, in
the spiking version of the input gate, the outgoing signal is subtracted from
the spikes that move from the ASN of the input cell to the ASN of the output
cell. This leads to a direct mapping from the Adaptive Analog subLSTM to the
Adaptive Spiking subLSTM.

Spiking Constant Error Carousel (CEC) and Spiking Output Cell. The
Constant Error Carousel (CEC) is the central part of the LSTM cell and avoids
the vanishing gradient problem [8]. In the Adaptive Spiking subLSTM, we merge
the CEC and the output cell to one ASN with an internal state that does not
decay – in the brain could be implemented by slowly decaying (seconds) neurons
[14]. The value of the CEC in the Adaptive Analog LSTM corresponds with
state I of the ASN output cell in the Adaptive Spiking LSTM. In the Adaptive
Spiking subLSTM, we set τβ in Equation 1 to a very large value for the CEC cell
to obtain the integrating behavior of a CEC. Since no forget gate is implemented
this results in a spiking CEC neuron that fully integrates its input. When τβ is
set to ∞, every incoming spike is added to a non-decaying PSC I. So if the
state of the sending neuron (ASNin in Figure 3) has a stable inter-spike interval
(ISI), then I of the receiving neuron (ASNout) is increased with incoming spike
height h every ISI, so h

ISI per time step. The same integrating behavior needs to
be translated to the analog CEC. Since the CEC cell of the Adaptive Spiking
subLSTM integrates its input S every time step by S

τη
, we can map this to the

CEC of the Adaptive Analog subLSTM. The CEC of a traditional LSTM without
a forget gate is updated every time step by CEC(t) = CEC(t − 1) + S, with S
its input value (i.e. zt − it for a subtractive LSTM). The CEC of the Adaptive
Analog subLSTM is updated every time step by CEC(t) = CEC(t−1)+ S

τη
. This

is depicted in Figure 2 via a weight after the input gate with value 1
τη

. To allow

a correct continuous-time representation after the spike-coding conversion, we
divide the incoming connection weight to the CEC, WCEC, by the time window
∆t. In our approach then, we train the Adaptive Analog subLSTM as for the

AANin CEC AANout
I

ASNin
I  
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Fig. 3. A simulation to illustrate how the analog CEC integrates its input signal with
the same speed as an ASN with τβ =∞ provided that the input signal does not change
and that 1 analog time step corresponds to ∆t = 40 ms (middle). In the right panel,
the spiking output signal approximates the analog output.
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traditional LSTM (without the τη factor), which effectively corresponds to set
a continuous-time time window ∆t = τη. Thus, to select a different ∆t, in the
spiking version WCEC has to be set to WCEC = τη/∆t. The middle plot in Figure
3 shows that setting τβ to∞ for ASNout in a spiking network results in the same
behavior as using an analog CEC that integrates with CEC(t) = CEC(t−1)+S,
since the slope of the analog CEC is indeed the same as the slope of the spiking
CEC. Here, every time step in the analog experiment corresponds to ∆t = 40
ms.

Learning Rule To train the analog subLSTMs on the supervised tasks, a
customized truncated version of real-time recurrent learning (RTRL) was used.
This is the same algorithm used in [13], where the partial derivatives w.r.t.
the weights Wxc and Wxi (see Figure 2) are truncated. For the reinforcement
learning (RL) tasks we used RL-LSTM [15], which uses the same customized,
truncated version of RTRL that was used for the supervised tasks. RL-LSTM also
incorporates eligibility traces to improve training and Advantage Learning [16].
All regular neurons in the network are trained with traditional backpropagation.

3 Experiments

Since the presented Adaptive Analog subLSTM only has an input gate and no
output or forget gate, we present four classical tasks from the LSTM literature
that do not rely on these additional gates.

Sequence Prediction with Long Time Lags. The main concept of LSTM,
the ability of a CEC to maintain information over long stretches of time, was
demonstrated in [8] in a Sequence Prediction task: the network has to pre-
dict the next input of a sequence of p + 1 possible input symbols denoted as
a1, ..., ap−1, ap = x, ap+1 = y. In the noise free version of this task, every symbol
is represented by the p+ 1 input units with the i− th unit set to 1 and all the
others to 0. At every time step a new input of the sequence is presented. As
in the original formulation, we train the network with two possible sequences,
(x, a1, a2, ..., ap−1, x) and (y, a1, a2, ..., ap−1, y), chosen with equal probability.
For both sequences the network has to store a representation of the first element
in the memory cell for the entire length of the sequence (p). We train 50 networks
on this task for a total of 200k trials, with p = 100, on an architecture with p+1
input units and p + 1 output units. The input units are fully connected to the
output units without a hidden layer. The same sequential network construction
method from the original paper was used to prevent the ”abuse problem”: the
Adaptive Analog subLSTM cell is only included in the network after the error
stops decreasing [8]. In the noisy version of the sequence prediction task, the
network still has to predict the next input of the sequence, but the symbols
from a1 to ap−1 are presented in random order and the same symbol can occur
multiple times. Therefore, only the final symbols ap and ap+1 can be correctly
predicted. This version of the sequence prediction task avoids the possibility that



Spike-Based SubLSTM 7

Table 1. Summary of the results. The number of iterations necessary for the network
to learn is shown both for the original [8][15] and current implementation. Success-
fully trained networks (%), ASN accuracy (%) over the number of successfully trained
networks, total number of spikes per task and average firing rate (Hz) are also reported.

Task Orig. Conv. (%) AAN Conv. (%) ASN (%) Nspikes (Hz)

Seq. Prediction 5040 (100) 4562 (100) 100 2578± 18 (129)
noisy Seq. Prediction 5680 (100) 64428 (100) 100 2241± 22 (112)
T-maze 1M (100) 15633 (86) 97 1901± 249 (77)
noisy T-Maze 1.75M (100) 20440 (94) 92 1604± 216 (65)

the network learns local regularities in the input stream. We train 50 networks
with the same architecture and parameters of the previous task, for 200k trials.

T-Maze Task. In order to demonstrate the generality of our approach, we
trained a network with Adaptive Analog subLSTM cells on a Reinforcement
Learning task, originally introduced in [15]. In the T-Maze task, an agent has
to move inside a maze to reach a target position in order to be rewarded while
maintaining information during the trial. The maze is composed of a long cor-
ridor with a T-junction at the end, where the agent has to make a choice based
on information presented at the start of the task. The agent receives a reward
of 4 if it reaches the target position and −0.2 if it moves against the wall. If it
moves to the wrong direction at the T-junction it also receives a reward of −0.2
and the system is reset. The agent has 3 inputs and 4 outputs corresponding to
the 4 possible directions it can move to. At the beginning of the task the input
can be either 011 or 110 (which indicates on which side of the T-junction the
reward is placed). Here, we chose the corridor length N = 20. A noiseless and
a noisy version of the task were defined: in the noiseless version the corridor is
represented as 101, and at the T-junction 010; in a noisy version the input in
the corridor is represented as a0b where a and b are two uniformly distributed
random variables in a range of [0, 1]. While the noiseless version can be learned
by LSTM-like networks without input gating [17], the noisy version requires the
use of such gates. The network consists of a fully connected hidden layer with 12
AAN units and 3 Adaptive Analog subLSTMs. The same training parameters
are used as in [15]; we train 50 networks for each task and all networks have the
same architecture. As a convergence criteria we checked whenever the network
reached on average a total reward greater than 3.5 in the last 100 trials.

4 Results

As shown in Table 1, for the noise-free and noisy Sequence Prediction tasks all
of the networks were both successfully trained and could be converted into spik-
ing networks. The top panels in Figure 4 show the last 5 inputs of a noise-free
Sequence Prediction task before (left) and after (right) the conversion, demon-
strating the correct predictions made in both cases. In the noisy task, all the
successfully trained networks were also still working after the conversion. Finally,
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we found that the number of trials needed to reach the convergence criterion
were, on average, lower than the one reported in [8] for the noiseless task, while
much higher for the noisy task. Both the training and the conversion resulted
harder for the T-Maze task, with a few networks non converting correctly into
spiking. The bottom panels in Figure 4 show the Q-values of a noisy T-Maze
task, demonstrating the correspondence between the analog and spiking repre-
sentation even in presence of noisy inputs. In general, we see that the spiking
CEC value is close to the analog CEC value, while always exhibiting some devia-
tions. Table 1 reports also the average firing rate per neuron, showing reasonably
low values compatible with those recorded from real (active) neurons.

5 Discussion

Gating is a crucial ingredient in recurrent neural networks that are able to learn
long-range dependencies [8, 18]. Input gates in particular allow memory cells to
maintain information over long stretches of time regardless of the presented -

Fig. 4. Top panels: output values of the analog (left) and spiking (right) network for
the noise-free Sequence Prediction task. Only the last 5 input symbols of the series
are shown. The last symbol y (black) is correctly predicted both in the last time step
(analog) and in the last 40 ms (spiking). Bottom panels: Q-values of the analog (left)
and spiking (right) network for the noisy T-Maze task. At the last time step/40 msit
correctly selects the right action (solid gray line).
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Fig. 5. The values of the analog CECs and spiking CECs for the noise-free Sequence
Prediction (left panel) and noisy T-maze (right panel)tasks. The spiking CEC is the
internal state Ŝ of the output cell of the Adaptive Spiking LSTM.

irrelevant - sensory input [8]. The ability to recognize and maintain information
for later use is also that which makes gated RNNs like LSTM so successful in the
great many sequence-related problems, ranging from natural language processing
to learning cognitive tasks [15]. To transfer deep neural networks to networks of
spiking neurons, a highly effective method has been to map the transfer function
of spiking neurons to analog counterparts and then, once the network has been
trained, substitute the analog neurons with spiking neurons [6, 5, 11]. Here, we
showed how this approach can be extended to gated memory units, and we
demonstrated this for a subLSTM network comprised of an input gate and a
CEC. Hence, we effectively obtained a low-firing rate asynchronous subLSTM
network which was then shown to be suitable for learning sequence prediction
tasks, both in a noise-free and noisy setting, and a standard working memory
reinforcement learning task. The learned network could then successfully be
mapped to its spiking neural network equivalent for the majority of the trained
analog networks. Further experiments will be needed in order to implement other
gates and recurrent connections from the output cell of the subLSTM. Although
the adaptive spiking LSTM implemented in this paper does not have output
gates [8], they can be included by following the same approach used for the
input gates: a modulation of the synaptic strength. The reasons for our approach
are multiple: first of all, most of the tasks do not really require output gates;
moreover, modulating each output synapse independently is less intuitive and
biologically plausible than for the input gates. A similar argument can be made
for the forget gates, which were not included in the original LSTM formulation:
here, the solution consists in modulating the decaying factor of the CEC. It must
be mentioned that which gates are really needed in an LSTM network is still an
open question, with answers depending on the kind of task to be solved [19, 20].
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14. Denève, S., Machens, C.K.: Efficient codes and balanced networks. Nature neuro-
science 19(3), 375–382 (2016)

15. Bakker, B.: Reinforcement Learning with Long Short-Term Memory. In: NIPS 14.
pp. 1475–1482 (2002)

16. Harmon, M., Baird III, L.: Multi-player residual advantage learning with general
function approximation. Wright Laboratory pp. 45433–7308 (1996)

17. Rombouts, J., Bohte, S., Roelfsema, P.: Neurally plausible reinforcement learning
of working memory tasks. In: NIPS 25. pp. 1871–1879 (2012)
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