
Vol. 6, No. 4, May–June 2007

Existential Owners for Ownership Types

Tobias Wrigstad, Stockholm University/Royal Institute of Technology, Sweden
Dave Clarke, CWI, The Netherlands

This paper describes a lightweight approach to adding run-time checked downcasts
to a language in the presence of ownership types without the need for a run-time
representation of owners. Previous systems [6] have required owners of objects to be
tracked and matched at run-time which is costly in terms of memory and performance.
Our proposal avoids run-time overhead to deal with owners and also extends the
expressiveness of ownership-based systems enough to handle the Java equals idiom
for structural equality comparison. The price is that it is sometimes impossible to
downcast a type into a type that can be statically aliased. Our proposal is completely
orthogonal and combinable with previous work.

1 INTRODUCTION

Recent years have seen an intense research on various ways of strengthening en-
capsulation in object-oriented systems. One notable such system is Clarke et al.’s
Ownership Types [10, 8]. In ownership types, the objects’ nesting relations are
captured in the program code by means of ownership annotations on types—every
object is owned by another object in the system, and the nesting relations control
how an object may be referenced from other objects. Somewhat syntactically bur-
densome, ownership types has a strong containment invariant that facilitates alias
management [13, 8] and makes the job of developing lightweight specification lan-
guages easier [19]. Various forms of ownership types have also been used to enforce
architectural restrictions [2], to avoid deadlocks and data-races [5], and for reasoning
about disjointness of effects and absence of aliasing [9]. Ownership types have also
been combined with uniqueness to enable uniquely referenced aggregates [4, 3, 12]
and to overcome a problem with abstraction introduced by unique pointers in an
object-oriented setting [12, 21].

Most statically typed class-based object-oriented languages include a downcast-
ing operation. The downcasting operation is checked at run-time. To this end,
the run-time system keeps track of an object’s class and matches it against the
class cast to modulo subtyping. An invalid cast generally raises some kind of error
or exception, preventing the use of the object as the wrong type, which preserves
type-safety.

As ownership types extend types and class declarations with ownership and
nesting information it complicates the matter of downcasting. When casting from
one type to another, not only must classes and the inheritance tree be considered,

Cite this article as follows: Cite this article as follows: Tobias Wrigstad and Dave Clarke:
”Existential Owners for Ownership Types”, in Journal of Object Technology, vol. 6, no. 4,
May-June 2007, pp. 141-159 http://www.jot.fm/issues/issue 2007 03/article5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301642575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jot.fm/issues/issue_2007_03/article5

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

but also the owners associated with the types. Boyapati, Lee and Rinard [6] describe
a way of allowing downcasts in the presence of ownership in Mini Safe Concurrent
Java. Mini Safe Concurrent Java handles downcasting in the obvious fashion by
keeping track of owners at run-time. To enable the dynamic check, each object
holds references to its owners, which is a pretty severe overhead.

In this paper, we present an alternate way of implementing downcasts in the pres-
ence of ownership influenced by the concept of existential types [20]. Our proposal
voids the need for keeping owners around at run-time and adds additional flexibility
to an ownership types system that allows the implementation of “standard meth-
ods” that generally rely on downcasting, such as the Java [15] equals method, an
idiom that was not previously possible to express in deep ownership-types systems.
The downside of our proposal is the impossibility in most cases to downcast into an
existing type that can be statically aliased.

Outline This paper continues as follows: in Section 2, we present deep owner-
ship types in additional detail to set the scene for our discussion. In Section 3, we
discuss the downcasts of Mini Safe Concurrent Java and show why they are not
powerful enough to express Java equals methods. Section 4 introduces our own pro-
posal, named Existential Downcasts, and discusses its strengths and weaknesses in
relation to Mini Safe Concurrent Java. Section 5 sketches a formalisation of Exist-
ential Downcasts in the context of the Joline programming language, and Section 6
concludes.

2 OWNERSHIP TYPES

Deep ownership types [10] enforces the conceptual structural property that an ob-
ject’s representation (the subobjects conceptually belonging to it) is inside its en-
closing object and cannot be exported outside it. This is called the owners-as-
dominators property and gives strong encapsulation.

Ownership types introduces the notion of objects as owners and representation
objects are owned by their enclosing objects. Classes are parameterised by ownership
information and types are formed by instantiating these parameters with actual
owners.

Deep ownership enables constraining of the object graph by capturing the nest-
ing of objects in the types in a simple and elegant manner. Representation objects
are ordered inside their enclosing objects, and references to representation are not
allowed to flow to the outside world. As the nesting is captured in the class declar-
ations, the nesting information is propagated through the program, giving control
over the global structure of the object graph. By prohibiting references owned by
some owner x to flow to objects outside x, a strong, but flexible, containment in-
variant is achieved that cannot be circumvented as in shallow ownership, causing
indirect representation exposure [8].

142 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

2 OWNERSHIP TYPES

An owner can be seen as the permission to reference a group of objects. Types
are formed from classes and owner parameters, which serve as placeholders to give
permissions to reference external objects. Thus, a type does not denote a set of
possible instances of a class, but a set of possible instances of a class with a particular
set of permissions to reference other objects. Types with different owner parameters
are not compatible and references of types with different owners cannot be aliases
[9].

Annotating Classes with Ownership Information

To be able to statically control ownership nesting, class declarations are extended
with annotations which describe the relations between owner parameters to thread
nesting information through the program. As an example, the class StringList

below takes two owner parameters where the first parameter is nested inside the
second and both are outside the owner owner.

class StringList< owner1 outside owner, owner2 outside owner1 >

Ownership parameters of a class must always be outside the implicit owner owner,
the owner of the instance. This is key to avoiding the problem of indirect represent-
ation exposure in shallow ownership [21].

The omnipresent owner world is outside all owners, is visible in all scopes and
denotes global objects, accessible everywhere in the object graph. In addition to
owner and world, a class body has access to the owners declared in its class header,
and the owner this, which denotes itself and is inside owner.

For subclassing, the extends clause is extended with a mapping relation from the
owners of the subclass to those of the superclass. The number of owner parameters
in a subclass may grow or shrink depending on the relations between the owners in
the superclass.

class List< some outside owner > extends Object { . . . }

class StringList< owner1 outside owner, owner2 outside owner1 >

extends List< owner2 > { . . . }

The owner must be preserved through subtyping as it acts as the permission gov-
erning access to the object. Preserving it by subsumption is a key to achieving a
sound system [8]. In the example above, StringList’s second owner parameter will
be mapped to some when viewed as its superclass. This is valid if owner2 is outside
owner, a requirement derived from List’s class header. That the requirement is ful-
filled can be derived from the class header of StringList as nesting is a transitive
relation (owner2 is outside owner1 and owner1 is outside owner implies owner2 is
outside owner).

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 143

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

Forming Types

Types have the following syntax:

owner:ClassName< owner1, ..., ownern >

where owner is the owner of the type, ClassName is a class name and owner1..n are
visible permissions (in the current context) to reference external objects.

When forming types from a class, the nesting requirements of the owners in the
class’ header must be satisfied by the owners in scope to which they are bound. The
object graph is well-constructed with respect to the nesting requirements specified
in the classes.

Below are a few examples of types with ownership using the recent class declar-
ation examples.

class StringList< owner1 outside owner, owner2 outside owner1 >

extends List< owner2 >

{

this:StringList< owner, owner1 > representation;

owner:StringList< owner1, owner2 > outgoing;

// owner1:StringList< this, owner2 > illegal;

// world:StringList< this, owner2 > alsoIllegal;

owner:List< owner2 > super = outgoing;

}

In the code example above, the third and fourth variable declarations are illegal as
the owners in scope do not satisfy the requirements of the class header of StringList
as this is inside both world and owner1.

The variable representation holds a representation object with permission to
reference back to the object itself as it is parameterised with owner.

The variable outgoing has the same type as the current instance. As the type of
outgoing does not have this as its owner, it cannot point to a representation object
as all representation objects are owned by this and types with different owners are
not assignment compatible. Furthermore, the type is not given explicit permission
to reference this (this is not an owner in the type). This means that references
to representation cannot be stored in an object referenced by the variable. Such
violations are statically checkable and will not compile. Actually, having this in the
type of outgoing would not be valid as that would give an external object permission
to reference the current representation. This is prevented by the restriction that the
owner must be inside all other owner parameters.

Last, super demonstrates subsumption—owner:List< owner2 > is a super type
of owner: StringList< owner1, owner2 > and we can therefore assign from outgoing

to super. Note the remapping and hiding of owner parameters as discussed on the
previous page.

144 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

2 OWNERSHIP TYPES

Owner-Polymorphic Methods

Owner-polymorphic methods take owners as parameters, similar to type parameters,
and allow code to be reused with different owners [7, 8, 12, 18]. The scope of
owner parameters is limited to the current method, and an argument with owner
parameters in its type cannot be statically aliased by the receiver (see Wrigstad’s
dissertation [21] for an extended discussion of this topic, in particular the “hide
owner” pattern that lifts this restriction in certain situations). As an illustration,
an owner-polymorphic method in the Joline system [12, 21] looks like this:

< temp inside world > void method(temp:Blah arg) { ... }

Inside the method body the owner temp is statically known to be inside the
owner world. When invoked, the owner argument is supplied at the call-site and
can be thought of as giving a temporary permission to the receiver to reference the
object (albeit only for dynamic aliases).

Ownership Types in Trouble: The Java Equals Method

In Java, downcasting is frequently used to overcome the shortcomings of the static
type system. Prior to Java 5.0, and the introduction of parametrically polymorphic
classes, container classes stored data objects as instances of Object. As a con-
sequence, type information of an object stored in a container was lost when the
object was later retrieved and dynamically checked downcasting was essential to
regain the type information.

Even in Java 5.0, downcasts are frequently used. A good example can be seen in
the equals method declared in Object, the superclass of all objects. This method is
supposed to be overridden in all classes for which structural equality is sensible. In
the Java API, all equals methods have the same signature: boolean equals(Object

other). The common implementation of such a method is to check that the argu-
ment is of the correct type; if so, cast the argument to the desired type, and then
perform equality tests of the contents of the objects.

In a system without the possibility of downcasting implementation of equals
will break overriding as the signatures of equals methods cannot stay the same:

boolean equals(x:List< y > other)

{

...// code omitted, no need for casting

}

Apart from breaking overriding, the method above has another serious problem:
x and y can only be selected from the owner parameters known to the receiver and
the selection of x, most likely owner, is fixed for life. Comparing different lists in this

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 145

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

way is not possible without making the equals method owner-polymorphic, which
adds additional syntactic baggage to the implementation:

< x inside world, y outside x > boolean equals(x:List< y > other)

{

...// code omitted, no need for casting

}

but the necessary signature would (still) prevent overriding, which limits flexibility.

In conclusion, in an ownership types system, the implementation of equals meth-
ods is complicated by the presence of owner parameters. The methods will most
certainly be owner-polymorphic, as they will otherwise not allow structural equality
tests of objects with different owners, which is clearly too restrictive.

Even in a system with regular downcasting, implementing equals methods is
problematic, which the upcoming section will show.

Note that the problems pointed out there apply to other methods, such as clone,
as well. Later sections will revisit this discussion in the presence of downcasting.

3 RELATED WORK

In this section, we discuss previous approaches to downcasting in the presence of
ownership. As our focus is on deep ownership, we focus most of our attention on
Mini Safe Concurrent Java, as it is a deep ownership system but also briefly cover
ArchJava. The systems are very similar, and both fail to deal with implementation
of Java equals methods, our driving example.

Downcasting in Mini Safe Concurrent Java

In Mini Safe Concurrent Java, Boyapati, Lee and Rinard [6] propose a way of doing
dynamically checked downcasts with deep ownership where ownership information
is stored at run-time. The implementation is straight-forward: after successful type-
checking, a Mini Safe Concurrent Java program can be translated into a normal Java
program where each class is extended by a field for each owner used by the class.
The Java translation of the class StringList on Page 143 would for example have
become the fields

Object owner1, owner2;

to be able to hold references at run-time to the owners so they can be used for
checking the validity of downcasts.

The obvious downside of this implementation is the overhead of keeping track of
owners at run-time. If a class has four owner parameters, this means four additional

146 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

3 RELATED WORK

pointers to the corresponding actual owners in each instance in a näıve implement-
ation. As the mandatory owner parameter may sometimes not be used internally
in a class, but only be used externally to track nesting and manage aliasing, Boy-
apati et al. allow the programmer to explicitly declare the the owner parameter as
anonymous. This removes the owner field from the translation, avoiding the need
for one owner field in the translation. (Inferring anonymity would require that all
classes in an inheritance hierarchy were analysed before compilation.) Anonymous
owners somewhat lowers the memory overhead required to do downcasting in Mini
Safe Concurrent Java, but the overhead is still high.

How Mini Safe Concurrent Java Handles Equals

Interestingly, the downcasting enabled Mini Safe Concurrent Java does not allow the
implementation of Java equals methods. Consider the code for the equals method
in a List class below:

boolean equals(x:Object other)

{

x:List< y > list = (x:List< y >) other;

...// rest of the code omitted

}

Just like in our initial example of equals, the implementation above has two
problems—x and y. Unless we make the method owner-polymorphic, we can only
compare ourselves with lists owned by the owner x, probably owner in a real im-
plementation, which is severly limiting. Making all equals methods polymorphic
in the owner parameter of their parameter lifts this restriction, but we must still
consider the remaining parameters, in this case y. If we must include the remaining
owners in the methods’ owner parameters to enable downcasting, equals methods in
classes with different owner parameters will have different signatures, again breaking
overriding. Thus, the possible choices of y will be restricted to the set of owners
statically accessible to the receiver, and x, the single owner parameter. Clearly, this
is inflexible and not satisfactory for real-world applications.

Downcasting in ArchJava

The ArchJava language [2, 1] uses ownership annotations as part of a system to
enforce architectural constraints in programs. The ArchJava ownership is shallow,
meaning that nesting relations between objects are not enforced, which results in a
weaker encapsulation than that of deep ownership.

The ArchJava language implements downcast support using a technique similar
to that of Mini Safe Concurrent Java. Owners are being stored at run-time, and
downcasting can only be made to types using owners in the current scope. The

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 147

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

system thus suffer from the same problems as Mini Safe Concurrent Java in terms
of being able to encode Java equals methods. However, an upside of the weaker
ownership system is that the owner representation overhead is lower than for Mini
Safe Concurrent Java.

4 OUR PROPOSAL: EXISTENTIAL DOWNCASTS

The idea behind our proposal is simple: if a Java-style downcast (disregarding own-
ership) of an object to some class c succeeds, then we should be able to infer the
owner parameters necessary to form the new type from c’s class header. We call the
inferred owners existential owners, and types that use them existential types.

For example, if we can check that the class of the object stored in a variable
typed a:Object is List, we know that its actual type is a:List< b > for some owner b
outside a. In our proposal, downcasts will simply add b to the current scope, nested
outside a. Adding owners in this fashion can never enable breaking owners-as-
dominators as we must already have permission to reference the object (its owner),
and owner parameters of well-formed classes are always outside the owner parameter.

Existential owners completely avoid a run-time owner representation to the price
of now being able to downcast a type into a previously existing type. The short-
comings of this approach are explored below.

The syntax of existential downcasting could follow standard:

(a:List< b >) x; // x has type a:Object

If x actually holds a list object, the cast expression would introduce b as a new
owner (possibly aptly named by the programmer) that is outside a, inferred from
the header of the List class. (If x does not contain a list, we would raise a class
cast exception as in Java.) The only information necessary at run-time to check this
is the class of the object in x, which is present in most object-oriented languages,
including Smalltalk [14], Java and C# [17].

We define existential owners and existential types thus:

Definition 4.1 (Existential Owner). An existential owner is an owner that is in-
troduced by a type cast.

Existential owners have no statically known relations to other owners, except for
the owners in the type cast where they were introduced and the owner parameter
of the cast object, which is always known. Existential types are bound to their
enclosing scope.

Definition 4.2 (Existential Type). In our setting, an existential type is a type that
uses an existential owner for one or more of its owner parameters.

148 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

4 OUR PROPOSAL: EXISTENTIAL DOWNCASTS

As the owners of an existential type are bound to the enclosing scope, so is
the type itself. As existential owners are introduced in the scope of a method, a
class definition can never use existential types for fields and thus, references with
existential type can never be stored in the fields of the current receiver as the types
will never be compatible. For the same reasons, existential types can never appear
as parameter types, or return types.

Again, if x holds a List object, the object must have (at least) two owners,
the already known owner a and an owner of the data objects in the list, here b.
As we clearly have permission to reference a which is inside all the “non-visible
owner parameters” of the object in x, we can safely access them without breaking
encapsulation.

Owner-Polymorphic Methods + Existentials = Equals

Apart from avoiding run-time owner representations, the existential owners present
a solution to the problem of the Java equals method. As we saw in Section 3,
combining standard subtype polymorphism and downcasting to allow structural
equivalence tests of objects belonging to different representations does not suffice,
as the owners in the type cast to must be in the receiver’s type or be this. This
prevents structural equality tests of objects with different owners, which is severly
limiting. Using owner-polymorphic methods as discussed in Section 2 to pass owners
in to the equals method to overcome this limitation will break overriding as the
equals method’s signature will vary with the implementing class’ owner parameters.
As existential owners can be introduced “out of the blue” without having to be
explicitly passed in, these problems are now overcome, and combining existential
downcasting with owner-polymorphic methods allows us to form a generic signature
for the equals method that will work for all cases:

< temp inside world > boolean equals(temp:Object other)

Inside the equals method, existential downcasting can be used in a straightfor-
ward way to allow access to other’s complete protocol. An example of this is shown
in Figure 1.

As we see it, allowing the downcasting operation to introduce existential own-
ers is a simple way to overcome the (technical) difficulty of deriving what owner
parameters should have been passed to the method would the desired type of the
argument be known outside, something we expect to be generally impossible. Our
solution preserves pure polymorphism for methods without introducing any addi-
tional complexities in the system. It also preserves abstraction as it is not visible
external to the method how the method will downcast its argument object.

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 149

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

// In List class
< temp inside world > boolean equals(temp:Object other)
{

if (other == this)
{

return true;
}

if (other != null && other instanceof List)
{
// the existential owner ‘ex’ is introduced here
let list = (temp:List< ex >) other in

{
if (list.length() == this.length())

{
for (int i=0; i<this.length(); ++i)

{
if (this.get(i).equals< ex >(list.get(i)) == false)

return false;
}

return true;
}

else
{

return false;
}

}
}

return false;
}

Figure 1: Existential downcasting used in implementation of an equals method.

Limitations of Existential Downcasting

The price of existential downcasting is being forced to conservatively treat existential
owners derived from a cast as different from all other owners in scope, possibly even
when the same variable is downcast twice (unless we can clearly see that it has not
been modified since the last downcast using program analysis). This is much weaker
than Mini Safe Concurrent Java, but fully functional in many situations and does
not require burdensome ownership information to be kept at run-time. Interestingly,
the existential owners are regular owners that can be used to instantiate objects etc.
Thus, we can use existential owners introduced through a downcast to create objects
and update the downcast object, for example populate a list. We just need to do it
without losing track of what owner belongs to what object, such as within the body
of a single method.

150 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

5 ADDING EXISTENTIAL DOWNCASTING TO JOLINE

As existential types are tied to the scope of the method that creates them,
references of existential types cannot be captured in fields of the receiver. To be
stored in a field, these types need to be subsumed into a non-existential type, that
is, a type where all the existential owners are forgotten. This is possible for all types
whose owner is not existential or an owner parameter to a method as all classes are
derived from Object. Thus, the reference can be saved as being of a more general
type, which will require a downcasting operation before each use of the contents of
the field as the more specific type.

Downcasting into a Non-Existential Type

An interesting observation of downcasts is that the introduction of existential owners
is only necessary when the subclass extends the set of owner parameters of the
superclass. Casting from a supertype to a subtype using the same set of owner
parameters, no existential owners need be introduced. Consider the following pieces
of code:

class List< data outside owner > extends Object { . . . }

class StringList< other outside owner > extends List< other > { . . . }

If casting from x:Object to x:List< y >, an existential owner y must be intro-
duced for the data owner parameter. However, when casting from x:List< z > to
x:StringList< z >, the set of owners is unchanged. As z is already in the environ-
ment, as x:List< z > is a well-formed type, we can safely allow the downcast into a
non-existential type. The only necessary dynamic check is to check that the actual
type of the value is a subtype of StringList. A similar remark can be found in
Boyapati’s dissertation [4], but only for types with single owners.

5 ADDING EXISTENTIAL DOWNCASTING TO JOLINE

In this section, we show how to extend the Joline programming language [12, 21],
with an existential downcast statement. For brevity, we present only the parts of
the Joline system that are absolutely necessary to grasp the new extension. One
intension is to show the straightforwardness of our idea and how easy it can be
incorporated with the existing Joline language. Joline has been described elsewhere
[11, 12] (see Wrigstad’s dissertation [21] for an extended description including the
dynamic semantics and proofs of the owners-as-dominators property and subject
reduction).

To simplify the formal account, existential downcasting is formulated in standard
let-expression style to provide a scope for the existential owners, rather than to
allow expressions to extend the static type environment. How to map the let-style
expressions to standard casts should be obvious.

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 151

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

Table 1: Syntax of Joline

c ∈ ClassName f ∈ FieldName md ∈ MethodName
x, y ∈ TermVar α, β ∈ OwnerVar R ∈ {≺∗,�∗}

P ::= class i∈1..n s e Program

class ::= class c〈αi Ri pi∈1..m〉 extends c′〈p′i′∈1..n〉 { fd j∈1..r methk∈1..s } Class

fd ::= t f = e; Field

meth ::= 〈αi Ri pi∈1..m〉 t md(ti xi∈1..n) { s return e } Method

lval ::= l-value
x variable
e.f field

e ::= Expression
this this
lval l-value
new t new
null null
e.md〈pj∈1..m〉(ei∈1..n) method call

s ::= Statement
skip; skip
t x = e; variable declaration
e; expression
lval = e; update of lvalue
s1; s2 sequence
let x = (t) e in { s } existential downcast
if (e) { s1 } else { s2 } if-statement

p, q ::= Owners
this this
α owner parameter
world world
owner owner

t ::= Type
p :c〈pi∈1..n〉

Joline’s Syntax

A subset of the syntax of Joline is displayed in Table 1. It is basically a subset of
Java extended with ownership types and should be familiar to anyone with some
experience of Java.

A program is a collection of classes followed by a statement and a resulting ex-
pression that are the equivalent of Java’s main method. We could have followed
Java’s example and use a static main method etc., but chose this way out for sim-
plicity.

152 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

5 ADDING EXISTENTIAL DOWNCASTING TO JOLINE

Classes are parameterised with owner parameters. Each owner parameter (ex-
cept the implicit, first, parameter owner) must be related to either owner or some
previously declared parameter of the same class. Classes contain fields and methods.
Fields must be initialised. Object creation requires the owner parameters specified
in the class header to be bound to actual owners.

Static Semantics

In this section, we present the static type environment for Joline along with the
definition of well-formed type environment and well-formed owners.

Static Type Environment

The type environment E records the types of free term variables and the nesting
relation on owner parameters:

E ::= ε | E, x :: t | E, α �∗ p | E, α ≺∗ p

Above, ε is the empty environment, x :: t is a variable to type binding and α �∗ p
means that owner parameter α is outside owner p. Conversely, α ≺∗ p means that
owner parameter α is inside owner p.

Good environment

(env-ε)

ε ` 3

(env-x)

E ` t x /∈ dom(E)
E, x :: t ` 3

(env-α �∗)

E ` p α /∈ dom(E)
E, α �∗ p ` 3

(env-α ≺∗)

E ` p α /∈ dom(E)
E, α ≺∗ p ` 3

The rules for good environment are straightforward. (env-ε) states that the empty
environment, ε, is well-formed. (env-x) states that adding a variable name to type
binding, x :: t to a good environment E produces another good environment provided
x is not already bound to a type in E and t is a well-formed under E. The rules (env-

�∗) and (env-≺∗) deal with inside and outside orderings of owners—(env-�∗) states
that adding a α �∗ p ordering of two owners to a good environment E produces a
good environment if p is a good owner under E and α is not in E. The (env-≺∗)
rule states the same, but for the ≺∗ relation.

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 153

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

Good owner

(owner-var)

α R ∈ E
E ` α

(owner-this)

this : t ∈ E
E ` this

(owner-world)

E ` 3

E ` world

The rules for good owners state that an owner is well-formed if it is defined in the
static environment. Also, if present in the environment, the special variable this is
also a good owner. The owner world is globally defined, and thus always valid.

Owner Orderings

(in-env1)

α ≺∗ p ∈ E
E ` α ≺∗ p

(in-env2)

α �∗ p ∈ E
E ` p ≺∗ α

(in-world)

E ` p
E ` p ≺∗ world

(in-this)

this :: t ∈ E
E ` this ≺∗ owner

(in-refl)

E ` p
E ` p ≺∗ p

(in-trans)

E ` p ≺∗ q E ` q ≺∗ q′

E ` p ≺∗ q′

The inside and outside relations are derived from the owner orderings in E. The
relations are transitive and reflexive and each others’ inverses. Owners and their
ordering form a tree (since an owner can only be ordered inside one owner by (in-

env1)). From (in-world), we see that all owners are inside world. Importantly, if
this is a valid owner, it is always ordered inside owner, which is the owner of the
object denoted by this.

Owner Substitutions

Substitution is denoted σ, where σ is a map from owner variables to owners.

As an illustration, if type p :List〈q〉 is formed from the class definition

class List< data outside owner > { . . . }

we sometimes write p :List〈σ〉 for the same type where σ = {data 7→ q}.
We write σp to mean σ ∪ {owner 7→ p} and σn to mean σ ∪ {this 7→ n} and

σp
n for the combination. Applying a substitution to an owner is written σ(p). For

brevity, we write σ(α R p) for applying a substitution to a pair of owners related
with R. The application is defined thus:

σ(p) = q, if p 7→ q ∈ σ

σ(p) = p, if p 7→ q /∈ σ

σ(p R q) = σ(p) R σ(q) if p ∈ dom(σ)

σ(p R q) = p R q if p 6∈ dom(σ)

154 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

5 ADDING EXISTENTIAL DOWNCASTING TO JOLINE

Types

A type is well-formed whenever the substituted owner arguments satisfy the ordering
on parameters specified in the class header.

(type)

class c〈αi Ri pi∈1..n〉 · · · ∈ P
σ = {owner 7→ q, αi 7→ qi∈1..n} E ` σ(αi Ri pi)i∈1..n

E ` q :c〈qi∈1..n〉

Subtyping

Subtyping in Joline must care to preserve the owner to preserve the encapsulation.
A supertype may have fewer owners than a subtype. Mapping between owners
of a subclass and its superclass is specified explicitly in the extends clause. The
subtyping rule states that the owner must remain the same.

(sub-class)

E ` p :c〈σp〉 class c〈. . .〉 extends c′〈p′i∈1..n〉 · · · ∈ P
E ` p :c〈σ〉 ≤ p :c′〈σ(p′i∈1..n)〉

Subtyping is derived from subclassing, modulo names of the owner parameters. As
this corresponds to the composition of two order-preserving functions, it is order-
preserving. This is required to preserve deep ownership, see Clarke’s dissertation
[8]. In particular, subtyping preserves the owner that is fixed for life. Letting the
owner vary, as in Cyclone [16], would be unsound in a system with deep ownership,
as observed by Clarke and Drossopoulou [9].

(sub-refl)

E ` t
E ` t ≤ t

(sub-trans)

E ` t ≤ t′ E ` t′ ≤ t′′

E ` t ≤ t′′

As expected, the subtype relation is reflexive and transitive.

Parameters

We write Pc to denote the owner parameter declaration for a class c. For example,
given the class definition

class List< data outside owner, other outside data > { . . . }

we have PList = {data �∗ owner, other �∗ data} in straightforward fashion.

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 155

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

Existential Downcast

This section shows the single type rule necessary to extend Joline with existential
downcasts.

(existential-downcast)

E ` e :: t E ′ ⊆ σp(Pc)
E, E ′ ` p :c〈σ〉 ≤ t E, E ′, x :: p :c〈σ〉 ` s; E ′′

E ` let x = (p :c〈σ〉) e in { s }; E

The (existential-downcast) rule states that the result of expression e of type t
can be downcast to some type p :c〈σ〉 if p :c〈σ〉 is a subtype of t. This downcast will
possibly introduce existential owners, E ′ for the scope of the block { s }. Note that
E ′ is a subset of the nesting relations, Pc, from the class header of c applied to σ,
the mapping from parameter names from the class header of c to the actual names
used by the programmer. The subset relation is necessary as a downcast need not
introduce additional owners. To illustrate the rule, we provide a few examples based
on the class declarations on Page 143.

Examples

Consider the following statement, type checked in a well-formed environment E in
which obj is a variable typed this:Object (i.e., obj::this:Object is an element in
E):

let super = (this:List< ex >) obj; in { ... }

By (sub-class), if this:List< ex > is a well-formed type, it is a subtype of the type
this:Object. PList = {some �∗ owner} and σp = {owner 7→ this, some 7→ ex}.

Thus, σp(PList) = {ex �∗ this}. If ex is free in E and this is a well-formed
owner (which it must be, as this:Object is a well-formed type), E can be ex-
tended to E ′ = E, ex �∗ this, an environment under which this:List< ex > is
a well-formed type. Thus, E ′ ` this:List< ex > holds and by (sub-class), E ′ `
this:List< ex >≤ this : Object.

Interestingly, if we were to downcast super to StringList in the nested scope
of the let expression, we would only have to introduce one new existential owner:

let example = (this:StringList< ex, other >) super; in { ... }

In this case, PList = {owner1 7→ ex, owner2 7→ other} and σp(PList) =
{ex �∗ this, other �∗ ex}. As ex is already in the environment, we only need
to introduce other. Note that if List did not introduce additional parameters
other than what was in the superclass, downcasting would not need to introduce
any (new) existential parameter. This is dealt with automatically by the subset

156 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

6 CONCLUSION

relation between E ′ and σp(Pc). Thus, when all the owners are statically known,
and the subclass does not introduce new owners not in the superclass, E ′ in the rule
above will be empty and our downcasting proposal have equal strength as Mini Safe
Concurrent Java, but without the run-time overhead.

Again, note that the let-expression is not strictly necessary but simplifies the
formalism. We could have allowed the cast expression to introduce new owners for
the remainder of the enclosing scope. This would have retained the standard syntax
for casts, but would have broken away from our existing formalisation, as expressions
do not update the static type environment.

6 CONCLUSION

We have presented a novel way of implementing downcasting in the presence of
ownership types. The benefits of our system are twofold: it does not need a run-
time representation of ownership and it can safely introduce owners into a scope
without breaking any containment invariants or require these owners to be passed
around. This increases the expressiveness and flexibility of the system and enables
encoding of idioms such as the Java equals method without breaking overriding due
to changing signatures. Our proposal also deals naturally with downcasting where
no additional introduction of owners is necessary. In such cases, downcasting into
a previously known, non-existential type is possible, with the same strengths as in
Mini Safe Concurrent Java but without the run-time overhead.

In contrast to our proposal, Mini Safe Concurrent Java [6] allows downcasting
into a type that extends the owner parameters with parameters already in scope.
This is more powerful, but comes with the cost of keeping track of a potentially
large mass of ownership information at run-time.

The existential system is simple, both statically, as we have shown, and dynamic-
ally (just rely on standard Java-style downcast checking) and completely orthogonal
to and therefore combinable with previous downcast proposals. Finally, nothing
would prevent using our system in a shallow ownership setting such as in Arch-
Java [2].

References

[1] Aldrich, J. Using Types to Enforce Architectural Structure. PhD thesis,
University of Washington, August 2003.

[2] Aldrich, J., Chambers, C., and Notkin, D. ArchJava: Connecting
software architecture to implementation. In ICSE (May 2002).

[3] Aldrich, J., Kostadinov, V., and Chambers, C. Alias annotations for
program understanding. In Proceedings of the OOPSLA Conference on

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 157

EXISTENTIAL OWNERS FOR OWNERSHIP TYPES

Object-Oriented Programming, Systems, Languages and Applications
(November 2002).

[4] Boyapati, C. SafeJava: A Unified Type System for Safe Programming. PhD
thesis, Electrical Engineering and Computer Science, MIT, February 2004.

[5] Boyapati, C., Lee, R., and Rinard, M. Ownership types for safe
programming: Preventing data races and deadlocks. In Proceedings of the
OOPSLA Conference on Object-Oriented Programming, Systems, Languages
and Applications (November 2002).

[6] Boyapati, C., Lee, R., and Rinard, M. Safe runtime downcasts with
ownership types. In International Workshop on Aliasing, Confinement and
Ownership in Object-oriented Programming (July 2003), D. Clarke, Ed.,
UU-CS-2003-030, Utrecht University.

[7] Buckley, A. Ownership types restrict aliasing. Master’s thesis, Department
of Computer Science, Imperial College of Science, Technology, and Medicine,
Queen’s Gate, London, June 2000.

[8] Clarke, D. Object Ownership and Containment. PhD thesis, School of
Computer Science and Engineering, University of New South Wales, Sydney,
Australia, 2001.

[9] Clarke, D., and Drossopolou, S. Ownership, encapsulation and the
disjointness of type and effect. In Proceedings of the OOPSLA Conference on
Object-Oriented Programming, Systems, Languages and Applications
(November 2002).

[10] Clarke, D., Potter, J., and Noble, J. Ownership types for flexible
alias protection. In Proceedings of the OOPSLA Conference on
Object-Oriented Programming, Systems, Languages and Applications (1998).

[11] Clarke, D., and Wrigstad, T. External uniqueness. In 10th Workshop
on Foundations of Object-Oriented Languages (FOOL) (New Orleans, LA,
January 2003).

[12] Clarke, D., and Wrigstad, T. External uniqueness is unique enough. In
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP) (Darmstadt, Germany, July 2003), L. Cardelli, Ed., vol. 2473 of
Lecture Notes In Computer Science, Springer-Verlag, pp. 176–200.

[13] Dietl, W., and Müller, P. Universes: Lightweight Ownership for JML.
Journal of Object Technology 4, 8 (2005), 5–32.

[14] Goldberg, A., and Robson, D. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

158 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 4

6 CONCLUSION

[15] Gosling, J., Joy, B., Steele, G., and Bracha, G. Java(TM) Language
Specification, The (3rd Edition) (Java Series). Addison-Wesley Professional,
July 2005.

[16] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and
Cheney, J. Region-based memory management in Cyclone. In Proceedings
of the ACM Conference on Programming Language Design and
Implementation (June 2002).

[17] Hejlsberg, A., and Wiltamuth, S. C# Language Specification. Microsoft
Corporation, 2000.

[18] Krishnaswami, N., and Aldrich, J. Permission-based ownership:
encapsulating state in higher-order typed languages. In PLDI ’05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and
implementation (New York, NY, USA, 2005), ACM Press, pp. 96–106.

[19] Leavens, G. T. Why specification languages need ownership types. In
Dagstuhl workshop Types for Tools: Applications of Type Theoretic Techniques
(Dagstuhl, Germany, June 2005). (based on joint work with Peter Müller and
Arnd Poetzsch-Heffter).

[20] Pierce, B. C. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

[21] Wrigstad, T. Ownership-Based Alias Management. PhD thesis,
Department of Computer and Systems Science, Royal Institute of Technology,
Kista, Stockholm, May 2006.

ABOUT THE AUTHORS

Tobias Wrigstad is a lecturer at the department for computer and systems sci-
ences, Stockholm University/Royal Institute of Technology, Kista. His main areas
of interest are object-oriented programming, formal methods and dynamic program-
ming languages. He can be reached at tobias@dsv.su.se.
Also see http://dsv.su.se/ tobias.

Dave Clarke is a postdoctoral researcher in the SEN3 “Coordination Languages
and Models” Group at CWI in The Netherlands. His main areas of interest are
coordination languages, object- and aspect-oriented programming, game theory and
formal methods. He can be reached at David.Clarke@cwi.nl.
Also see http://homepages.cwi.nl/ dave/

VOL 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 159

mailto:tobias@dsv.su.se
http://dsv.su.se/~tobias
mailto:David.Clarke@cwi.nl
http://homepages.cwi.nl/~dave/

