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Approximation of parabolic PDEs 
with a discontinuous initial condition 

P. W. HEMKER• and G.I. SHISHK!Nt 

Ahltnct - We CODlider a Dirichlet problem for a parabolic partial dilferential equation wilb a diacontm
uous initial c:ooditioD. 'The boundary CDllditioD II: t • 0 ia ~to have a discontinuity ol lhe .&rsc Jcind. 
Duo to the smgalarity of the solutiOll in the neighbourhood ol the discontinuity, tbe usual diacretizalion 
methods do not jield convcrgcace in the 1!"'-norm in the entire domain of dcfuUtion. ThereCore, In order to 
handle the singularity u adapted scheme is coastructccl. We use a specially fitted diffCl'Cllcc operator ea a 
zesu!ar rectangular grid Such a difference aehemc con-sea in lbc discrete !!"-norm on the wbolc unifonn 
grid Por a model problem, 11wnerical experiments with tbe c:lusica1 Biid the specially fitted scbcmea are 
compared 111d discussccl. 

~. Parlbolic PDE, discontinuous boundary axulilicm, finite difference mctbods, uniform ooavcr· 
gencc. 

Solutions of parabolic boundary value problems with discontinuous initial conditions 
are not smooth on their domain of definition. Therefore, difficulties arise when these 
problems are solved by numerical methods. As was shown, e.g. in [6,7) the solutions of 
difference equations which are constructed on regular rectangular grids using classical 
schemes do not converge in the i""-norm in the neighbourhood of the discontinuity 
in the boundary condition. Our aim is to construct a scheme which converges in the 
t"'-norm throughout the domain of definition. 

Different approaches can be used for constructing of such special schemes for prob
lems with non-smooth solutions: (1) methods in which the singularity is split off and 
represented separately (e.g. by introducing special basis functions in the Fmite Element 
Method); (2) methods that use special, refined meshes in the neighbourhoods of sin· 
gularities; (3) fitted methods in which the coefficients of the difference equations are 
adapted to the singularities. 

A method combining the second and the third approach was proposed in [6, 7]. A 
second-order one-dimensional parabolic equation with a discontinuous boundary con
dition was studied; the highest derivative of the equation contained a small parameter 
e E (0, 1). When e -+ 0, the equation reduces to an equation with only a first-order 
derivative for the time-variable. A special difference scheme was constructed for this 
singularly perturbed boundary value problem. This scheme converges uniformly with 
respect to the small parameter in the i""-norm on the whole domain. Outside some 
neighbourhood of this discontinuity the classical difference scheme was used on a rect
angular grid. In the neighbourhood of the discontinuity special parabolic variables as 

• CWI, Amltcrdam, The Netherlands 
tinstitute ol Mathematics and Mechanics, !he Urals Brallcb of the IWuian Aaul. Sci., Elcateri11burg, 

R.uuia 
TIDa =earch wu supported in part by lbe Dutch RclCarcb OrganizatiOll NWO, vant No. 07-30-012. 



288 P. W. Ikmkv and G. I ShishJcin 

8 .. z/../2t and t were applied. Due to these special variables, the singular part of the 
solution becomes a sufficiently smooth function. Thus, the special scheme [ 6, 7] can be 
used for a regular parabolic equation with discontinuous initial conditions. 

Generally, this approach will be too complex in practice because it involves fitting 
both the coefficients and the mesh. Therefore in the present paper we propose a new 

method in which only the coefficients are adapted. We use a uniform rectangular grid 
and a special difference equation with a fitted coefficient. This coefficient is selected 
·such that the solution of a model problem with a piecewise constant discontinuous initial 
function is the exact solution of the difference equations. This difference sclicme with an 
adapted coefficient is investigated and the results are compared to those of the classical 
scheme. 

For singularly perturbed elliptic partial differential equations, difference approxima
tions to problems with discontinuous boundary conditions were studied in [8). 

L PROBLEM FORMULATION 

On the interval 
D={zl-l<z<l} 

we consider the Dirichlet problem for the parabolic cquationt 

L(i.l)u(z,t) = f(z,t), (z,t) E G 

u(z, t) = ip(:i:, t), (:i:, t) E S 

where 

G "'Dx(O,T) 

S = ?J\G = {{z,t)i z E [-1,+l], t = O; z = ±1, t E [O,T)} 

lJ2 8 
Leu) = B:i:l - p(_z, t)Ft - c(z, t). 

(1.1) 

(1.2a) 

(12b) 

(12c) 

The coefficients c(z, t), p(_z, t) and the right-band side f (:z, t) are sufficiently smooth 
functions on ~. and the coefficients arc positive: 

c(z, t) ~ 0, p(_z, t) ~Po> 0, (z,t) E (J. (1.3) 

The boundary function t,o(z, t) has discontinuities of the first kind on the set s·. For 
simplicity, in this paper s• oonsists of a single point only: 

s· = {(:i:,t)I z • o, t = O}. (1.4) 

Outside a neighbourhood of s• the function <p(z, t) is sufficiently smooth on S. A 
piecewise continuous function v(z, t~ on S\S•, is redefined at the discontinuity by 

v(z, t) "' -2
1{ lim v(:i: + s, t) + lim v(z + s, t)}, (z, t) Es•. (1.5) 

a-i-0 ---o 

These boundary value problems with a discontinuous boundary condition describe, 
in particular, the temperature in heat transfer problems, when two parts of a material 

IThc subscript number (within braclcets) for a symbol denotes the C<(uation ..ticrc this aymbol is dcfiacd. 
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at different t.cmperatures are instantaneously collJICCted.. Such problems arise e.g. when 
analyzing problems of heat conduction in a rolling-mill. 

For problem (1.2) we want to find a difference scl!emC. which a>nverges in the dis
crete l°"-norm on the whole grid. Jn order to study the difference scheme, we will make 
use ofa ~model problem on the set 71 = [-1, l]x[O, 1), for the homogeneous beat 
equation with discontinuous initial condition: 

L(l.6)u(:c'. t) = ~<:; t) - 8u~, t) • 0, (z, t) E G (1.6a) 

u(z, t) "' ip(:i:, t), (:c, t) E S (1.6b) 

where r,o(z, t) is such that the solution of the problem contaitis either or both smooth 
and discontinuous components. · 

2. 'DIE BEHAVIOUll OF 'DIE SOLU'l10N AND ITS DERIVA11VES 

In order to amstruct special difference schemes for problem (1.2) and study their be
haviour, we first need some estimates of the solution and its derivatives. Note that the 
solution of problem (1.2) is continuous for t > 0. The discontinuity appears only at 
the point (0, 0). The derivatives exist and are sufficiently smooth in 71, outside of a 
neighbourhood of S-. They only increase, without bound, in the neighbourhood of S-. 
Due to the maximum principle, we have for the solution of (1.2) the estimate 

iu(:i:, t)I SM, (z, t) e G (2.1) 

where 
M .- <Por1T TI J(z, t)i + IDf' lr,o(:i:, t)I. (2.2) 

Hereafter by M (or m) we denote a sufficiently large (small) positive constant. In case 
of difference problems these constants do not depend on the parameters of the grid. 
The amstants do not necessarily represent the same value at different appearances. 

We introduce the standard function tao(:i:,t), which is discontinuous in S-, 

1 (2: ®. wo(:i:,t) .. we(:c,t;p) = 2v 2 Vt)' (:i:, t) E °lJ\S" (2.3) 

where 

v<e> - erE<e> .. ~I exp(-a2)dllr 

is the error !unction. Fort .. 0, (z, t) ES-, the value of wo(:i:, t) is defined by continuous 
extension. The function tao(z,t) is continuous on the domain G\S• and it is a solution 
of the constant coefficient equation 

L(2.4Ju(z, t) 5 { ::2 - pft} u(:i:, t) = 0, (:i:, t) E G. (2.4) 

This function is piecewise constant on S at t ., 0 and has a discontinuity of the first 
lcind in S-: 

[wo(O, 0)) • 1 (2.5) 
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where [1DO(s, t)], (:i:, t) E S" is the jump, defined by 

[v(:i:, t)J .. !rr;o 11(:11 + s, t) - ~ u{:z: +a, t), (.:i:, t) Es•. (2.6) 

Suppose that 

W(s, t) = [c,o(O, O)]tuo(:z:, t,p(O, 0)), (:z:,t) E lJ\S" (2.7) 

then the function W{:i:, t) is continuous on ?1\S- and has a jump at s•: 

[W(s, t)J = (ip(:z:, t)), 

We write the solution of problem (1.2) as a sum 

{s, t) ES°. 

u(s,t) • U(z.9){s,t) + ti(l.IO)(s,t), (:z:,t) E 71\S-

where 'U(2.9J is the solution of the problem 

£culu(s, t) = 0, (:z:,t) E G 

u(.:i:,t) = W(s,t), (:z:,t) ES 

and UQ.iO)(:i:, t) is the solution of the problem 

L(1.2)U(:z:, t) = f('Zl, t). ('Zl,t) e G 

u(s, t) = ip(:z:, t)- W(:z:, t), (:11, t) E S. 

'Ibe function U(l.J.O)(:i:, t) is continuous and piecewise smooth on S. 

(2.8) 

{2.9) 

(2.10) 

For simplicity we first suppose that p(s, t) = p(t) in the neighbourhood of :i: = O, 
function U(l.lD)(:i:, t) is sufficiently smooth on the boundary of G, and a compatt"'bility 
condition is satisfied at the comer points. Then the following estimates hold 

la~:,..11(2.1o>(:i:, t)I s M. {:i:, t) e ?1 c2u) 

I lJl'+lro ( >I < Mt-<ir,,H/1:) lJz~lJt/co U(2.9) :z:, t - I {:i:,t) E G\S0 (2.12) 

(:i:,t) E ?J. (2.13) 

These bounds are determined by means of a priori estimates (see, e.g. (1] and [3]). 
Thus, for the regular and the singular components of solution (2.8) estimates (2.11)
(2.13) hold. 

3. CLASSICAL DIFFERENCE APPROXIMATIONS 
3.L The dltrerence schemes 
On the set 71 we introduce the rectangular grid 

71,. = wxwo. (3.1) 
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Here w and wo are uniform grids on the segments [-1, 1) and [O,T) respectively; we 
denote the space step by A and the time step by r, so that :ii; .. ih, i E 'll, :i:; e 75, 
h. .. 2/N, t; .. jr, j = 0, 1,2, .•• ,No0 r • T/No, and 

G,. = G n v,. , s,. .. s n ?J,. , s;,. = s· n ?1,.. 

If the set s;,. is not empty, the boundary function cp(:i:, t) on the set S~ is defined by 

\O(:i:,t) = -2
1{ lim \O(.s,t) + lim cp(a,t)}. (s,t) eSA. (3.2) .-.-o .-•+O 

For approximation of equation (1.2) we first use classical difference approximations 
(see, e.g. (4,5]). In case of an implicit difference scheme we have 

~z(:i:, t) - /(:ii, t). (:i:, t) e a,. 
(3.3) 

z(:i:, t) = \O(s, t), (:i:, t) E Si.. 

Where 
A(l.3) :: 6,.. - p(s, t)6J- c(:i:, t) 

with 6fr(:i:, t) and 6.a :r(s, t) the usual first and second difference of z(s, t) on the uniform 
grids Wo and w respectively; the bar denotes the backward difference. 

It is well known that the operator A(3.3) is monotone [5], which implies that the 
maximum principle holds for difference scheme (3.3). 

Remark 3.1. For a restricted time step we also might use the explicit difference 
scheme 

h(M,:r(:i:, t) • fCMi(:i:, t), (s, t) E G1 

z(:i:, t) = cp(:i:, t), (s, t) E S,. 

or the weighted difference scheme 

where 

with /J e [O, 1]. 

A(3.S)z(:i:, t) = /(3.SJ(:i:, t), (s, t) e G,. 

z(:i:, t) = cp(s, t), 

f(31t)(:i:, t) = ](s, t) = /(:i:, t - r) 

A(3.4)Z(s, t) = { 6.,;r - c(:r, t) - P(:i:, t)6,}i(s, t) 

/(3.si(111,t) • /3/(:i:,t) + (1- /3)}(:i:,t) 

A(.3.5) :: /3A(ll') + (1 - /3)A(3.4) 

(3.4) 

(3.5) 



3.2....._ ...... dwlail...._if'IW I d 1111'die_.. ....... 
J1 ia obYioal dllt die liboie dlllicll ldlcmel do mt )'ield l'"-COllMF8Cll: la the meJab· 
bombood d. t11e ~ m die IOludoa. Aa • __,.., w so1w: model protHem 
(1.6). where 

'P(s,t) • ut(s,t;l), (s,t) ES (3.6) 

OR a unffonn grid, by -. « sdlm:ae (3.3). 1be no IOlutiolll « dlil model probicm 
(1.6), (3.6) ia tho functioll u(s, t) • -.(s, t; 1). (.s, t) E 'C\S". 

Far li&reat N • 2/fa ad Ne • 1/" we compile tho «rOI' 

E(N, He) • - j.a(s, t) - -.(z, t)I 
es.ilA 

1lhea'e -1(2:,t) delloca tho mme:ric:al sohdoa abtaiMd by the clmiatl di5erenca ldleme. 
'Ille resul&s - lllowll ia 1'lblo t Ja tllia tlWe E(N,He) • ~ lc(s,t;N,He)I. 
is Ille error for lbe dutioo d the model problem (1.6), (3.6); e(s, c; N, Nt) • a{s, t) -
Wll(s,t) witll fa • 2/N lftd" • l/Ne. 

T.w.L 
limn ll(N,N•). 

,,. N 

a J6 32 " 121 2!6 

lO 5.77·10'"'' 6.tl&lAt"' 6J6.lr' 6.2SIO"'' UIS-JO'"' 6.l6-lr' 
4) 2.•10'"' sa.:ia-• 6Jll·l0'"2 ........ 6.»JO'"' 6.»JO"' 

ll50 2.&IO""' 1'17 ..... ,,.. .... fJll·:IO'"' '-10-JO'"~ 6.lO-JIT'' 
6«I 3.l&lt"' 113-lll"'' 2A'Mll"'1 s.e.io-• 6.ouo-• 6.10-:111""' 

2560 127-l.O"'' 3.1&1111"'' ZSS.111"'' 2..CH0"'2 :5.8-llt"' 6.81·10'""' 
KDIO l.»10"'' m.:1r• 1J1.r1 lJIS.IO"'' 2.47·:io-· SJIP.Jlt"I 

T.w.1. 
Errors~.). 

1pcQ.02$ ::r1• z-12 2"" T' %""' 2""' ::r• 'i' 2' 

l00d(11) 6.20 6.20 6JI) UI $8' 2.~ ll3 3.18 3ZI 129 

TllWo 3. 
a-a B'-(N,Ne~ 

Na N 

• J6 32 " 128 2!6 

JO 3.CJl.Jll'"' 3.351-10'"' J..40.JO-' 3AJ.io-• 14Q.JO-• 3.*Jlt'' 
«I 1.01·10"'' t.37.:10 .... 93.,...a 9.22·1l""' 9.21-10 ... t.n.:wr• 

160 3.77·10""' 2.13-:11 .... 2.4:1.r isr 2.37·10"'' 2.36-Jlt'" 
640 2ll·m-' !l.9Hlr4 ue.io-• 6.22·!0""" 6.112-~ 5.!l&Jlt'4 
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It is clear that, for a fine mesh, the error is a function of the parameter h.2 /.,., and 
in Table 1 we see that the solution of the classical scheme .r(:i:, t) does not converge to 
the solution 111g(:i:, t) for decreasing h. or decreasing r. From Table 1 we also see that 
errors E(N,No) depend on a parameter 'I/= 'l(N,No) = /r.2/-r = 4N0N-2• The resulting 
figures for 

E(q) = N,No.~.No)•'I E(N, Na) 

are shown in Table2. From this table we see that there are no errors less than 2.47·10-2• 

Note that IWo(:i:, t)I :::; 0.5. Then from Table 1 we conclude that we cannot guarantee 
an error less than 12% for any sufficiently small h and -r. From Table 2 we also see 
that, with the classical scheme and a uniform grid, there are no errors less than 4.9% 
for 019' smoJI ~ of h and r. This is due to the approximation of the solution in 
the neighbourhood of the singularity. However, convergence is found in the region 
{G1., t ~to> O} that excludes a neighbourhood oft = 0. This is observed in Table 3. 
In this table E 10(N, No) = DWCcc,•JEG.:1~1o le(:i:, t; N, No)I, with to = 0.2; further details as 
in Table l 

We can see that on { G1, t ~ to > O} the error vanishes for N, No -> oo. 
Hence, if we are only interested in the solution in a region at some distance from the 

initial singularity at t = 0, then the classical scheme can be applied. Thus, we can say 
that the classical scheme is not suitable if we are interested in the approximate solution 
of problem (1.2) in the l""-norm on the domain 7J \~. 

4. A FITI'ED DIFFERENCE APPROXIMATION 
4.L An intennediate fitted scheme 
On the set ?1 we introduce the grid ?Ji. as in (3.1). For the approximation of equation 
(1.2) we use a specially fitted scheme 

Ac•.1)z(:i:, t) = /(:i:, t), (:i:, t) e G,. 
(4.1) 

z(z, t) "' cp(:i;, t) I (2'1 t) E s,. 

where 
A(u) = 7(:i:, t)Cd - p(z, t)5r - c(:i:, t). (4.2) 

To show the principle of our technique, the fitting coefficient 7(:.i:, t) is first chosen in 
such a way that the function Wo(z, t), introduced in (2.3), exactly satisfies the difference 
equation 

7(:i:, t)5..-wo(:i:, t;Pt)-1116rwo(:i:, t;Pl) = O 

where 111 • p(O, 0). Except for a factor, this function wo(:i:, t) is the principle part of 
the singular component of the solution in expression (2.8). This difference equation 
corresponds to homogeneous equation (1.2a), where the coefficient p(:i:, i) is 'frozen' at 
the singularity ~ and where the lower-order coefficient c(:i:, t) is suppressed. Note that 
.5i-Wo(:i:,t;p1) rf: 0 and 5,..wo(:i:,t;Pl) r 0 for (:i:,t) e Gi., :i: rf: 0. It follows immediately 
that 7 is determined by 

( :i: t) - p(0,0)5rWo(:i:,t;.PI) 
""( ' 5d1DC1(2' 1 tjp1) 1 

(43a) 
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At the nodes S;. the function Wo(z, t) is defined by (1.5). Therefore we have, for (:z, t) E 
Gh, :z f' 0, 

7(:z, t) '" ( l(s+h,t) (s,l) ) 
h-2 J, exp(-a2)da- exp(-oc2)da 

1(:,1) l(.c-h,l) 

(4.3b) 

where 
8(:, t) = i vp(O; 0) . 

For : = 0 we set 
7(z,t)=l, (x,t)EGi., :i:=O. (4.3c) 

Difference scheme (4.1) is monotone due to the inequality -y(x, t) > 0, (::.:, t) e G,.. 
Now we study how difference scheme (4.1} approximates the solution of problem (1.2). 
Due to representation (2.8) we consider the solution of the difference scheme for the 
solutions of problems (2.9) and (2.10). 

Let v(:,t), (z, t) e V' be a function satisfying v E C2(G), and suppose that v(:i:, t) is 
continuous on CJ\S•, and may have a discontinuity of the first kind on s·. By .i;,(x, t), 
(x, t) e "GA, we denote the solution of the difference problem 

A(4.l)Z(:i:, t) = /(4AJ(:i:, t) = L(1.2JV(:i:, t)' (:z, t) E Gh 
(4.4) 

z(:i:, t) = v(:i:, t), (:z, t) E Si. 

where v(:i:, t} is either ui;z.9)(:, t} or U(l.tO)(:i:, t). Let first 

v(:z, t) = U(l.1DJ(%1 l) (4.5) 

be the part of the solution of problem (1.2) from which we have removed the singular 
part. Then we estimate the error 

ecuJ(:i:, t) = z.(:i:, t) - U(l.10J(Z, t), (:, t) E lJ,.. (4.6) 

We suppose thatp(:i:, t} = p(t) and estimate (2.11) holds. We use (2.11) and the estimate 
for lr(:i:, t)j to obtain 

{ 
M(l + ../T/h), 

lr(:i:, t)i :5 
M, 

t = 1" 

This estimate is derived from (4.3a), where wa(:i:, t;p) is given by (2.3). The estimate 
for the function ec4.6)(:, t) is obtained by applying the maximum principle (as in [2,6]) to 
the difference problem (4.4), (4.5): 

iec•.6J(:, t)i :5 M { ~ + t}, (:i:, t) E <Ji.. (4.7) 

Thus, if ,,.3fl/h is smal~ then the difference between u(2.1ai(:i:, t) and .i;,(z,t) is small in 
the neighbourhood of the line t = 0 

{ ,,.3/2 } 
iec•.6J(:i:, t)i :5 M T + p , (4.8) 
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provided that t $ p, where p is an arbitrary mmber p e (r, T]. 
Further we estimate e(4.6)(:i:,t) fort> p. Using estimate (2.11) and an estimate for 

J-y(:i:, t) - 11 we find the local truncation error. Using (4.3a), (2.3), we find 

J-y(:i:,t)-11 $ MF2(h2 + r) 

for (:i:, t) e (Jh if t ~ p, and accordingly 

IAc•.1}e(4.6)(:i:, t)i $ Mp-2(h2 + r) (4.9) 

for (:i:, t) e (Jh if t ~ p. Then we apply the maximum principle [5] fort ~ p > 0 and take 
into account estimate (4.8) and truncation error (4.9) (at t ~ p) to obtain the result 

iec•.6)(:i:, t)I = !1'(2.101(:, t) - z,,(:, t)I 

$ M{max lec4.6J(:i:, t)i + max IAc4.1)fC•.6J(:i:, t)i} 
s-,l:;S,1 s.,t~,. 

Due to this inequality and (4.8), where p > 0 is an arbitrary number, we arrive at the 
estimate 

{ 2 13 T3/2} !u(2.10)(:i:,t)-z,(:i:,t)!SM (h +r)I +T, (z,t) e?h. (4.10) 

Hence it follows that, under the condition 

h~mT", v < 3/2 (4.11) 

for arbitrary 0 < v < 3/2, convergence of difference problem (4.4) is guaranteed for the 
smooth solution v(:i:, t) "' u(l.1o)(z, t) in expression (2.8) 

IU(:l.10)(z, t) - z,,(z, t)I $ M { (h2 + T )1' 3 + r 312-"} , (z, t) E ?J,.. 

If, for example, 
h ~ mT7/6 

then we have 

luc2.10>(:i:, t) - zv(z, t)I $ M(h2 + r)1/3, 

In a similar way we estimate the function 

e(4.14)(z, t) "' z.(z, t) - uc;:.P)(Z, t), 

(z, t) E ?Jh. 

where z.{z, t) is the solution of problem (4.4) with v{z, t) "' u(2.9){z, t). 
estimates (2.12) and (2.13) we obtain the estimate 

{ l 1/3 TJ/2} lu(l.9)(:i:,t)- z,.(:i:, t)I $ M (h + r) + T , 

(4.12) 

(4.13) 

(4.14) 

Here, from 

(4.15) 

This estimate is derived in the usual way by means of the maximum principle [S}, taking 
into account that U(2.9)(z, t) is the solution of (2.9), where W(z, t) is defined by (2.7), 
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and wo(:z:, t) is the solution of problem (2.4) and (25). Combining (4.10) and (4.15) we 
find the result 

(:z:, t) E <Jh. (4.16) 

Under condition (4.11) difference scheme (4.1) converges to the solution of problem 
(1.2), 

(u(l.l)(:z:, t) - Z(uJ(z, t)i ~ M { (h2 + -r)1l3 + r 3/1--•}, (:z:, t) E C:h (4.17) 

and under special condition (4.12) we have 

!U(l-l)(:z:, t)- Z(4.1)(:z:, t)! ~ M(h2 + -r)1l3 ' (:i:, t) E ?JA. (4.18) 

Thus, we see that, for p(:i:, t) = p(t) and under condition (4.11), the solution of 
difference scheme (4.1) converges to the solution of problem (1.2) in the discrete !:"'
norm on the whole set ?JA, and estimates (4.17) and (4.18) hold under condition (4.11) 
and (4.12) respectively. 

4.2. The final fitted scheme 
The function -y(:i:, t) as introduced in (4.3) is not easily used for practical purposes, 
because the derivatives of uio(:i:, t) both in the numerator and in the denominator of 
(43a) decrease exponentially for large :i:/./i. which ea.uses a numerical instability in the 
computation of -y(:i:, t). Therefore, scheme (4.1) has little practical value and is mainly 
of theoretical interest. Note, however, that the influence of the special scheme is only 
required in the neighbourhood of the singularity, where derivatives of the solution of 
(U) are unboundedly large. Therefore we modify -y(:z:, t) so as to be sure that (in a 
stable way) 'f(z, t) -+ 1 for increasing !:i:I or t. This means that the usual classical scheme 
is practically retained outside a neighbourhood of the discontinuity. 

A proper modification of scheme (4.1) is found by replacing the discontinuous func
tion wo(:z:, I) in formula ( 43a) by til{:i:, t) = 111u(:z:, t) + t10(:i:, t), where Vo(:z:, t) is a smooth 
function with sign 5,,,v(:i:, t) the same as sign 6',,, tuo(:i:, t). Then 

( t) = PI Srw(z, t) + L(l.9tii(:i:, t) ( ) G J, (4.19) 
"f':z:, 5..stil(:i:,t) , :i:,tE1.,:i:rO-

For instance, if 'llO(:i:, t) = -:z:3 - 6(p(O, 0))-1:i:t, this implies that -y(:i:, t) is replaced by 

'f(:z: t) = p(O, O) OrWo(:Z:, t)- 6:z: (:i:, t) E Gh. I :z t 0 (420) 
' odwo(:i:, t)- 6:z: ' 

with "l(:i:, t) = 1, (:r, t) E GA, :i: = o. In a close neighbourhood of s· the functions 'f(:i:, t) 
and -y(:i:, t) are almost equal [in Fig.1 we can see the function "f(:i:, t) for p(O, 0) = 1). 
The discrete operator (4.2) is accordingly replaced by 

Ac4.lll s 'Y(:i:, t)S.s - p(:i:, t)Dr - c(:i:, t). (4.21) 

Thus we obtain the special difference scheme 

A(4.22)Z(4.22)(:i:, t) - J(:i:, t), (:z:, t) E Gi.. 
(4.22) 

Z(4.22)(:z:, t) = ip(:i:, t), (:2:, t) E Sh. 
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which is our new (modified) adapted scheme. The proof of the error estimate 

Ju(1.2)(:i:, t) - Z(4.l2)(:i:, t)J :SM{ (h2 + r)1/3 + r 3fl-"}, 

under condition (4.11) and the estimate 

Ju(l.lJ(:i:, t) - Z(4.ll)(:i:, t)[ :S M(h2 + r)113 , 

(4.23) 

(4.24) 

under condition (4.12) is similar to that of estimates (4.17), (4.18). Thus, we have the 
following theorem 

Theorem 4.1. Assume that (a) p(:i:, t) = p(t) in the neighbourhood of s·, and (b) for 
k + 2ko :S 4, the estimates (211), (212) and (213) hold for the functions U(l.9)(:i:, t) and 
U(l.io)(:i:, t), which represent the discontinuous and the continuous component of solution u 
in (28). Then, under condition (4.11), the soluiion of difference scheme (4.22) converges 
to the solution of problem (1.2) in the discrete l""-norrn on the whole set (},... Under 
conditions (4.11) or (4.12) respectively, estimates (4.23) or (4.24) hold for the solu.tinn of 
the difference problem. 

Remark 4.1. In schemes (4.1), (3.1), and (4.22), (3.1), the sets· belongs to the grid 
?J,.. In the same way as above, we can construct a scheme on ?in for which s· rt. CJ,,.. 

If we drop condition (a) of Theorem 4.1 then, for problem (1.2) where p(:i:, t) and 
c(:i:, t) are sufficiently smooth functions, under conditions (4.11) or (4.12) respectively, 
the estimates 

(:i:, t) E CJh 

or 
[U(l.2)(:1:, t) - Z(4.l2)(Z, t)[ :S M(h2 + T )115 • 

hold for the solution of the difference problem. This result is obtained by a lengthy and 
tedious computation along the lines as shown in [6]. 

5. NUMERICAL RESULTS FOR nlE DIFFERENCE SCHEME 
5.L The discretfzation error for the model problem 
To show the effectiveness of the scheme (4.22) we apply it to the solution of model 
problem (1.6) where 'f'(:i:, t) is such that the solution of the problem contains both a 
singular and a regular component 

u(:i:, t) = Wo(Z, t) - U(S.l)(:t, t) (5.1) 

with 
U(s.l)(:i:, t) = (:i: + 0.5)2 + 2t. (5.2) 

This implies for the boundary condition 

tp(:i:, t) = Wo(:J:, t) - U(5.l)(Z, t), (x,t) ES. (5.3) 

For problem (1.6), (5.3) we use the fitted scheme (4.22). Figure 1 shows the fitted 
function "r(z, t) for (1.6). 



.... 1. The~ '!'(:a, 1) used ill llac lillcll scbemo (4.22), (3.1) ... function "' .. ""'11 t, for prablciim 

(1.6). N • 32, Ne • 40. 

Jllpn 2. The <:cmp!Bd salulion obmncd with the lilted aclicme (4.22). (3.1) for u(s, t} • "(•.1>(s, i) • 

vo(•, I) - "(Uj(=, I). N • 32, No • 40. 

Note that 'f(:i:, t) is constant (equal to 1) almost everywhere, and only significantly 
differs from l in the neighbourhood of the singularity S*. The computed solution for 
problem (1.6) is shown in Figure 2 

We see that thls solution has a discontinuity at S* and is smooth outside a neigh
bourhood of S*. 

To estimate the errors in the singular solution of the problem (1.6).. (5.3) we compute 
separately the errors for the solution of problem (1.6) with 

\l'(.:i:,t) = We(:i:,t), (z, t) ES (5.4) 

and of problem (1.6) with 

'l'(:t, t) = U(S.l)(:c, t), (:i:,t) ES (5.5) 

where Wc(:s, t) and 11(5.2)(:,t) are the singular and the regular part of the solution of 
(1.6~ (5.3). 

Far the error 
E(N, No) = IllllX j.1(:1:, t)- u(:i:, t)i 

(•,t)E'IJ. 

experimental results are given in the Tables 4 and 5. 



'l'llble ... 
P.rrors E(N, No) in the solution IX problem (1.6), (S.4) with u(>o, t) • 
wo(s,t;LO). Scheme (4.22). (3.1) is used with II• 2/N md r • l/N0 • 

No N 

8 16 32 64 128 2S6 

1D 226·W-" 1.96-W-' J..89.ur• 1.87-1.0-" 1.87·10""· 1.8'7·10-2 
40 L21·W-" 1.IJ6.lO-' l.Ol·W-" J..OO.ur• 1.00.w-• LIXJ.10-2 

160 1.1 .. 10-• .5.30.11r4 4.30-:w-& 4.J6.ur• 4.0S·l0-3 4.07.io-• 

640 6.13-io-• 3,01.i.o-• 1.SO·:w-8 Leur• 1.33·10-• 1.31·1.o-· 

2S60 s.11-10-1 2.30.10-• 9.47·104 5..28-ur 4.17-10-• 3.SS·ur• 
10'240 5.61·10-3 211-10-• 7.00-lo-4 2.64-10-4 l.44-10-4 1.12.:1.0-• 

'l'llble 5. 
Eirora E(N, No) in the solution of problem (1.6), (S.5) with u(z, t) • 
U(1.2i(s,t;l.O). Scheme (4.22), (3.1) is used with h" 2/N and r • 1/No. 

No N 

8 16 32 64 128 256 

10 s.10-10-• 8.7.2-10-• 1.16-W-' 1.36·10-1 1.47·10-1 1.53-W-' 

40 1.415-W-' 2.27-10-· 3.15-10-' 3.89-10-• 4.SO·Ul-2 4.87·JD-2 

160 7.19·Ul-· 5.87·1.o-· 1.00-10-• 8.44-10-• 9.83-W-3 LlO·lo-2 

640 7.32-W-· 4.0S·W-• 274-10-• 222-10-• 207.10-• 232-lo-3 
2560 7.44-10-• 3.17·1.o-· 1.64-10-. 1.03-lo-" 8.52-w-4 8.73-W-• 

From Tables 4 and S we see that the solution of difference scheme (4.22), (3.1) 
approximates both the singular and the regular parts of the solution of problem (1.6). 
For both parts of the solution the relative error is guaranteed to be not larger than 1 % 
if we take N ~ 8 and No ~ 160. 

Results obtained with scheme ( 4.22) arc also shown in Figure 3. The results obtained 
with classical scheme (3.3) are shown in Figure 4. 

We observe that the error e(:r:, t; N, No) = •(:r:, t) - U(S.l)(:r:, t), (:, t) E GA, is mainly 
localized in the neighbourhood of s· and that the error for the classical scheme is much 
larger than that for the fitted scheme. 

Thus, we see that special fitted scheme (4.22) converges for both the singular and 
the smooth parts (and hence on the whole solution) of model problem (1.6), (5.3), in 
the discrete i""-norm on the whole set 71A. 

5.2. 'lhe experimental generalized order of converaence 
To reall7.e the value of the difference scheme (4.22) in practice, we determine its order 
of convergence. To do so, we compute the generalized order of convergence for the 
error. We say that a difference scheme has a generalized order of convergence 11 if 

E(N, No) • max l•(:r:, t)- u(:r:, t)J ~ M(h.1 + T)". 
(•,•)EC:. 
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llpre 3. 'lbe dilcrcdzadon error tor fitted scbcmc (4..22), (3.1) applied to the same problem IS in Pigurc 2. 

Tbo ma:imum error ia O.QSS4S. 

llpre <4. 'J1ic cliacredzadon error for duaicll idieme (3.3), (3.1) applied to the -C problem IS in 
Figure 2. Tllo muimum error is D.3007. 

Here we denote the error by E(N,No), where N = 2/h and No = 1/'r. We introduce 
the aperimtntal genqalized order of convergence by 

17 = min Tl(N, No) 
N,/Vo 

Tl(N,No) = {lnE(N,N0)- lnE(2N,4No)}/ln4 

is the experimental generalized local order of convergence at the point (N, No). 
Numerical results for the singular and the smooth part of the solution of problem 

(1.6), (S.3) ue shown for the solution u(z, t) • wo(:i:, t) in Table 6 and for the solution 
u(:s, t) = ""'2)(z, t) in Table 7. 

In Table 6 it is seen that for the singular part of the solution of problem (L6), (S.3) 
the experimental generalized order of convergence is not less than v "' 0.45. For the 
smooth part of the solution of problem (1.6), (S.3) we find (Table 7) the experimental 
generalized order of convergence to be not less than v = 0.41. 
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Hence, for our model problem (1.6), (53) the value TI, which is the experimental 
generalized order of convergence for our fitted difference scheme (4.22), is not less 
than 0.4. This order is in agreement with the theoretical lower bound value found in 
(4.18). 

&. CONCLUSION 
For the Dirichlet boundary value problem (1.2) for a parabolic equation with variable 
coefficients and with a discontinuous initial condition we have constructed the adapted 
scheme (4.22) on a uniform grid (3.1), which converges in the discrete i""-norm on the 
whole grid 711. 

Both in theory and in practice we have shown that the classical scheme docs not 
converge in the i""-norm on all of 711. For a model problem .(the heat equation with a 
discontinuous initial condition) in the discrete l"°-norm no error less than 5% could be 
found and no error less than 12% could be guaranteed for an arbitrarily small r and h. 

For the same model problem, the special, fitted difference scheme (4.22) converges 
in the discrete i"°-norm on the whole grid ?h, and the experiment shows the generalized 
order of convergence to be not less than 0.4 (see Tables 6 and 7). This is in agreement 
with the thcoi:y. Moreover, the numerical results show that the special difference scheme 
(4.22) is efficient indeed: for a typical problem, for No 2: 160 and N ~ 8, the error is 
guaranteed to be not larger that 19'a, for both the regular and the singular part of the 
solution. 

Table" 
Experimenlal pen1izcd local order ci comcrgcacc 1l(N, N0 ). 

Data dcriYcd from the enon u focmd in Table 4. 

No N 

8 16 32 64 l28 

10 S.44-JO-l 4.80-10-1 4.54-10-1 4.50.10-1 4.50.:w-1 

40 6.31·10-1 6.S:H0-1 6.4().10-1 6.SO·l0-1 6.Sl·J0-1 

160 6.81·10-1 7.82-10-1 7.92·10-1 s.is.10-1 8.18·10-1 

640 1.oe-10-1 11.34-10-1 s.s:z.io-• 8.91·10-1 8.92-10-1 

2S60 7.1S·10-1 8.58·10-' 9.zz.10-1 9J8.to-I 9.45-10-1 

Table 7. 
&perimcatll pacralizcd local order ol convergence Tl(N, No). 
Data derived er- the errons as found in Table 5. 

No N 

8 16 32 64 l28 

10 5.830·10-' 7.357·10-1 7.888·10-1 7.9.S3·:W-1 7.979-JIJ-1 

40 6.562-10-' 8.501-1.0-l 9.~·to-1 9.923-:w-1 1.016 
:l60 4.130.:w-1 5.509·10-1 8.27&to-l 1.011. l.G400 

640 6Jl3S.to-l 6.518-10-1 7.lll.7·10-1 6.914-:W-l 6.250-10-1 
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