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Approximation of parabolic PDEs
with a discontinuous initial condition
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Abstract — We consider a Dirichlet problem for a parabolic partial differential equation with a discontin-
uous initial condition. The boundary condition at ¢ = 0 is assumed to have a discontinuity of the first kind.
Due to the singularity of the solution in the neighbourhood of the discontinuity, the usual discretization
methods do not yield convergeace in the £°-norm in the entire domain of definition. Therefore, in order to
handle the singularity an adapted scheme is constructed. Weuseaspcml!yﬁ&ted difference operator on a
regular rectangular grid. Such a difference sch in the di £°-norm on the whole uniform
gnd.Foramoddproblem,nnmznmlexpenmmtxmththe Jassical and the specially fitted sch are
compared and discussed.

Keywords. Parabolic PDE, discontinuous boundary condition, finite difference methods, uniform conver-
gence.

Solutions of parabolic boundary value problems with discontinuous initial conditions
are not smooth on their domain of definition. Therefore, difficulties arise when these
problems are solved by numerical methods. As was shown, e.g. in [6,7] the solutions of
difference equations which are constructed on regular rectangular grids using classical
schemes do not converge in the £~°-norm in the neighbourhood of the discontinuity
in the boundary condition. Our aim is to construct a scheme which converges in the
£>-norm throughout the domain of definition.

Different approaches can be used for constructing of such special schemes for prob-
lems with non-smooth solutions: (1) methods in which the singularity is split off and
represented separately (e.g. by introducing special basis functions in the Finite Element
Method); (2) methods that use special, refined meshes in the neighbourhoods of sin-
gularities; (3) fitted methods in which the coefficients of the difference equations are
adapted to the singularities.

A method combining the second and the third approach was proposed in [6,7). A
second-order one-dimensional parabolic equation with a discontinuous boundary con-
dition was studied; the highest derivative of the equation contained a small parameter
e € (0,1). When £ — 0, the equation reduces to an equation with only a first-order
derivative for the time-variable. A special difference scheme was constructed for this
singularly perturbed boundary value problem. This scheme converges uniformly with
respect to the small parameter in the £°-norm on the whole domain. Outside some
neighbourhood of this discontinuity the classical difference scheme was used on a rect-
angular grid. In the neighbourhood of the discontinuity special parabolic variables as

*CWI, Amsterdam, The Netherlands
TInstitute of Mathematics and Mechanics, the Urals Branch of the Russian Acad. Sci, Ekaterinburg,
Russia
This rescarch was supported in part by the Dutch Research Organization NWO, grant No. 07-30-012.



288 P.W. Hemker and G.I Shishkin

6 = z/+/2t and t were applied. Due to these special variables, the singular part of the
solution becomes a sufficiently smooth function. Thus, the special scheme [6,7] can be
used for a regular parabolic equation with discontinuous initial conditions.

Generally, this approach will be too complex in practice because it involves fitting
both the coefficients and the mesh. Therefore in the present paper we propose a new
method in which only the coefficients are adapted. We use a uniform rectangular grid
and a special difference equation with a fitted coefficient. This coefficient is selected
‘such that the solution of a model problem with a piecewise constant discontinuous initial
function is the exact solution of the difference equations. This difference scheme with an
adapted coefficient is investigated and the results are compared to those of the classical
scheme.

For singularly perturbed elliptic partial differential equations, difference approxima-
tions to problems with discontinuous boundary conditions were studied in (8].

1. PROBLEM FORMULATION

On the interval
D={z]|-1<z<1} (11)

we consider the Dirichlet problem for the parabolic equationt
Lagu(z,t) = f(z.t), (@t)€C

(12a)
u(z,1) = p(z,1), (z,t)€S
where
@ = Dx(0,T]
(12b)
S=T\G={@|zel-L+1], t =0z =1, te[0,T]}
Lon= gzi, - p(z,t)% - oz, ). (120)

The coefficients c(z,t), p(z,t) and the right-hand side f(z,t) are sufficiently smooth
functions on G, and the coefficients are positive:

oz,8)20, pz,t)2p>0, (5,t)€C. (13)
The boundary function ¢(z,t) has discontinuities of the first kind on the set 5. For
simplicity, in this paper S* consists of a single point only:
8 ={(z,t)|z=0, t =0}. (1.4)
Outside a neighbourhood of S* the function (z,1t) is sufficiently smooth on 5. A
piecewise continuous function v(z, ), on 5\5°, is redefined at the discontinuity by
o(o,t) = %{ Jim o(z + 8,0 + Jim oz + a,t)}, (=) €5 (15)

These boundary value problems with a discontinuous boundary condition describe,
in particular, the temperature in heat transfer problems, when two parts of a material

1The subscript aumber (within brackets) for a symbal denotes the where this symbol is defincd

q
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at different temperatures are instantaneously connected. Such problems arise e.g. when
analyzing problems of heat conduction in a rolling-mill.

For problem (1.2) we want to find a difference scheme which converges in the dis-
crete £°-norm on the whole grid. In order to study the difference scheme, we will make
use of a typical model problem on the set G = [-1, 1]x[0, 1], for the homogeneous heat
equation with discontinuous initial condition: .

13
L(u)“(-“»_-‘) = g’_ub(_:z_,_z - 2’%2 =0, (z,t) €G (1.6a)

u(z,t) = p(z,t), (z,2)€S (1.6b)

where ¢(z,t) is such that the solution of the problem contains either or both smooth
and discontinuous components. )

2. THE BEHAVIOUR OF THE SOLUTION AND ITS DERIVATIVES

In order to construct special difference schemes for problem (1.2) and study their be-
haviour, we first need some estimates of the solution and its derivatives. Note that the
solution of problem (1.2) is continuous for t > 0. The discontinuity appears only at
the point (0,0). The derivatives exist and are sufficiently smooth in G, outside of a
neighbourhood of S*. They only increase, without bound, in the neighbourhood of §°.
Due to the maximum principle, we have for the solution of (1.2) the estimate

lu(z.t)| <M, (z,1)eC 2.1

where

M = (@o)™'T max| f(z,1)] + maxelz,1)]. @2
Hereafter by M (or m) we denote a sufficiently large (small) positive constant. In case
of difference problems these constants do not depend on the parameters of the grid.

The constants do not necessarily represent the same value at different appearances.
We introduce the standard function wy(z,t), which is discontinuous in S*,

wnle,t) = wiletip) = 0(3/F),  Gned\s @3

where 5
(E) = ert€) = 7= [ exp(-o?)ca
is the error function. For ¢ = 0, (z,¢) € S5*, the value of wy(z, t) is defined by continuous

extension. The function wy(z, t) is continuous on the domain G \S* and it is a solution
of the constant coefficient equation

& 8
Loayu(z,t) = {ﬁ - pm} u(z,t) = 0, (z,t) €G. (24)
This function is piecewise constant on S at t = 0 and has a discontinuity of the first

kind in §*:
[wo(0,0)] = 1 @3)
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where [wo(z, £)], (z,t) € S is the jump, defined by
[v(z, 1)) = ,l_ig_lov(z +8,t) — .Ii".‘o”(“ +s5,1), (z,t) e S*. 2.6)

Suppose that

W(z,t) = [¢(0, 0)]wo(z,1,p(0,0)),  (z,1) € G\S” @7
then the function W (z, t) is continuous on G\S* and has a jump at 5*:

W(z,t)] = [p(z.)], (=) €S-

‘We write the solution of problem (1.2) as a sum

u(z, 1) = uen)(3,t) + vgu(z,1),  (5t) € G\S” 28
where uqg) is the solution of the problem

Lagyu(z,t) = 0, (z,t) e G
2.9
u(z,t) = W(z,t), (z,t)€S
and ug.10)(z, t) is the solution of the problem
L(l.l)u(zit) = f(ma t)v (3, t) € G
(2.10)

u(z:t) = ‘P(zrt)_ W(zrt)) (Z,t) €S.

The function ug.ag(z, t) is continuous and piecewise smooth on S.

For simplicity we first suppose that p(z,t) = p(t) in the neighbourhood of z = Q,
function up.10)(z, t) is sufficiently smooth on the boundary of G, and a compatibility
condition is satisfied at the corner points. Then the following estimates hold

§ethe
Imﬂ(zm)(t't) <M, (zt)eC (2.11)

8"**0
oy upg(z,t)| < M-tk (z,t) € G\S® @.12)
ues(@t) - W(nt) S Mt,  (5,1)€T. (213)

These bounds are determined by means of a priori estimates (see, e.g. [1] and [3]).
Thus, for the regular and the singular components of solution (2.8) estimates (2,11)-
(2.13) hold.

3. CLASSICAL DIFFERENCE APPROXIMATIONS
3.1. The difference schemes
On the set G we introduce the rectangular grid

Ch = wxuy. (3.1)
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Here w and wy are uniform grids on the segments [-1,1] and [0, T] respectively; we
denote the space step by k and the time step by 7, so that z; = ih, i € Z, z; € D,
h =2/N,t = jr,j = 0,1,2,...,No, 7 = T/Np, and
GI.=GHG)., S,.zSﬂC,‘, .5';==S'nC’,..

If the set 5j is not empty, the boundary function o(z,t) on the set S is defined by
17 .. . .
o9 = 3{ Im,e(at) + Imp(s0)},  EDES 62

For approximation of equation (1.2) we first use classical difference approximations
(see, e.g. [4,5]). In case of an implicit difference scheme we have

A@,;)z(z, t) = f(zs t)r (’":t) €Gh

Z(.‘:,t) = ‘P(zrt)s (z)t) € Sh.

3.3)

Where
A(33) = 6.2 — p(z, t)sf - c(z, t)
with &7z(z, t) and 8.z z(z, 2) the usual first and second difference of z(z, t) on the uniform
grids wo and w respectively; the bar denotes the backward difference.
It is well known that the operator Ags is monotone {5), which implies that the
maximum principle holds for difference scheme (3.3).

Remark 3.1. For a restricted time step we also might use the explicit difference

scheme
Apwz(z,t) = fon(zt), (z,t)EG,
(3.4)
z(zr t) = ‘P(xvt)! (ztt) € Sh
or the weighted difference scheme
AOJ)Z(zlt) = f@J)(zrt)r (zit) €G)
(3.5)

z(z,1) = p(z,1), (2,t) € Sn

where
fon(@:t) = f(z,8) = f(z,t-7)
Apawz(z,t) = {62 — &z, 1) - Bz, )6} 3(z, 2)
fasn(@,1) = Bf(z,t) + (1 - A)f(z,1)

A(g_s) = ﬂA(;;) + (1 - ﬂ)A(gA)
with g € [0, 1].
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32. Results with the classical difference approximation for the model problem
1t is obvious that the above classical schemes do not yield £ -convergence in the neigh-
bourhood of the singularity in the solution. As an example, we solve model problem

{1.6), where
w(z, t) = wz, 1), (z,t) €S {3.6)
on a uniform grid, by means of scheme (3.3). The true solution of this mode! problem
(16, (3.6) is the function u(z,t) = we(z,t;1) (z,t) € T\S".
For different N' = 2/k and Ny = 1/r we compute the error

E(”! Nﬂ) = "m H‘s t) - "W(zr t){

where x(z,$) denotes the numerical solution obtained by the dassical difference scheme.
The results are shown in Table 1. In this table E(N,No) = max,, ..z, le(z,t; N, M),
is the error for the solution of the mode! problem (1.6), (3.6); e(z,t; N, Ng) = 2(z,t) —
welz,t) with h = 2/N and r = 1/Ns.

Table 1.
Erroes E{N, Na).
Ny N
8 b3 2 6 128 25
10 ST 6081077 6161077 6251077 6261077 6261077
40 2481077 S65I07? 6011072 6101077 6201077 6201072
160 2931077 2473077 583077 6013077 610302 6201072
640 3181077 293107 247.10°F 5691077 601107 61202072
250 327-10° 3181077 2931077 247107% 5651077 6011077
0240 3291077 3271077 3181977 2931077 247107 5691077

Tabile 2.
Errors £(y).

ax0025 2714 2712 M 8 28 4 22T 3 @ p
100xE(y) 620 620 610 601 569 247 293 318 327 329

Table 3.
Errors E'*(N, No).

No N
8 16 2 [ 128 56

308107 339-102 3403077 3401077 3401077 340-0-7
1011072 937107 92810 922070 92110 92110°°
371070 273107 245307 23810 2371070 23610
2123107 997107 688107* 62210~ 60210~ 59812074

2Ban
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It is clear that, for a fine mesh, the error is a function of the parameter h2?/7, and
in Table 1 we see that the solution of the classical scheme z(z,t) does not converge to
the solution wy(z,t) for decreasing h or decreasing . From Table 1 we also see that
errors E(N, No) depend on a parameter 5 = n(N, Ny) = h*/r = 4NgN~2. The resulting
figures for

E(n) =

are shown in Table 2. From this table we see that there are no errors less than 2.47-10-2,

Note that jwo(z,t)| < 0.5. Then from Table 1 we conclude that we cannot guarantee
an error less than 12% for any sufficiently small k and 7. From Table 2 we also see
that, with the classical scheme and a uniform grid, there are no errors less than 4.9%
for any small value of h and r. This is due to the approximation of the solution in
the neighbourhood of the singularity. However, convergence is found in the region
{Gh, t 2> to > 0} that excludes a neighbourhood of ¢ = 0. This is observed in Table 3.
In this table E‘*(N, Np) = max nea,>t |€(z, 4 N, No)|, with ¢, = 0.2; further details as
in Table 1.

We can see that on {Gy, t >t > 0} the error vanishes for N, Np — oo.

Hence, if we are only interested in the solution in a region at some distance from the
initial singularity at ¢ = 0, then the classical scheme can be applied. Thus, we can say
that the classical scheme is not suitable if we are interested in the approximate solution
of problem (1.2) in the £~-norm on the domain G \S".

N.No.%o)"l E(N, No)

4, A FITTED DIFFERENCE APPROXIMATION

4.1. An intermediate fitted scheme

On the set G we introduce the grid G}, as in (3.1). For the approximation of equation
(1.2) we use a specially fitted scheme

Auns(z,t) = f(z,t), (z,t)€GH
@.1)
2(z,t) = p(z,1), (z,t) €S

where
Awy = (2, )8z — p(z, )7 — (2, 1) 42)

To show the principle of our technique, the fitting coefficient y(=,¢) is first chosen in
such a way that the function wy(z, ), introduced in (2.3), exactly satisfies the difference
equation

(=, ez wo(z, £, p1) — prérwo(z, 1 p1) =0

where p; = p(0,0). Except for a factor, this function wy(z,t) is the principle part of
the singular component of the solution in expression (2.8). This difference equation
corresponds to homogeneous equation (1.2a), where the coefficient p(z, ) is ‘frozen’ at
the singularity S* and where the lower-order coefficient c(z, t) is suppressed. Note that
Srun(z, t;p1) # 0 and Sz wo(z, t;p1) # O for (z,t) € Gy, z # 0. It follows immediately
that v is determined by

”(’"’=%’ @HEG, z#0. (43a)
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At the nodes S} the function wy(z, ) is defined by (1.5). Therefore we have, for (z,1) €
Gnz#0,

€83

)
»(0,0) " n exp(—a?)da

1) = ) 2=) =0 (43b)
-2 * 2 _ ' a2
h ( /’( L, ep(-a)da /':_ exp( a)da)

hit)
b(z,1) = -;-\/’i(%?).

¥z,t) = 1, (z,t) € Ga, z=0. (43¢)

Difference scheme (4.1) is monotone due to the inequality y(z,t) > 0, (z,1) € Gh.

Now we study how difference scheme (4.1) approximates the solution of problem (1.2).

Due to representation (2.8) we consider the solution of the difference scheme for the

solutions of problems (2.9) and (2.10).

Let v(z,t), (z,t) € C be a function satisfying v € C*(G), and suppose that v(z, t) is

continuous on G \S5*, and may have a discontinuity of the first kind on §*. By z(z,1),
(z,t) € Gy, we denote the solution of the difference problem

Aanz(z,t) = fun(z,t) = Lagyv(z,t), (2,1) €Gy

2(z,t) = v(z,1), (z,t) € Sy

where

For z = () we set

(4.4)

where v(z,1) is either ugg)(z,1) or ugin(z,t). Let first
v(z,t) = ug_m)(z,i) (4.5)

be the part of the solution of problem (1.2) from which we have removed the singular
part. Then we estimate the error

eus(z, 1) = 2(z,t) — up)(z,1), (z,1) € Gy. (4.6)

‘We suppose that p(z,t) = p(t) and estimate (2.11) holds. We use (2.11) and the estimate
for |y(z,1)| to obtain

MQ +T/h), t=r

M, t>r.

(=0l < {

This estimate is derived from (4.3a), where wo(z,;p) is given by (2.3). The estimate
for the function ey 6)(z, t) is obtained by applying the maximum principle (as in [26]) to
the difference problem (4.4), (4.5):
iy
lesy (@ 1)) < M{T + 1} ,  (z.,1)€Ch. @

Thus, if 7%2/h is small, then the difference between u.10)(z, 1) and z,(z,t) is small in
the neighbourhood of the line ¢t = 0

7
lean@l S M{T- 40}, @HEB “8)
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provided that ¢t < p, where p is an arbitrary mumber p € (7, T).
Further we estimate eug)(z,t) for ¢ > p. Using estimate (2.11) and an estimate for
|7(z, t) — 1] we find the local truncation error. Using (4.3a), (2.3), we find
Iv(z,) = 1} < Mp2(h + 1)
for (z,t) € Gy if t > p, and accordingly
[Awneua(z. )| < Mp*(h? + 1) “.9)

for (z,1) € Gy if t > p. Then we apply the maximum principle [5] for t > p > 0 and take
into account estimate (4.8) and truncation error (4.9) (at ¢ > p) to obtain the result

leug(@ )| = e 1) - 2.(=,1)]

<M {;né’; lews(= 1) + max|Auneus(z, 1}

< M{p“(h‘+f)+z-:n— +P}, @) elCh, t2p.

Due to this inequality and (4.8), where p > 0 is an arbitrary number, we arrive at the
estimate

72
biaan@ ) - 2@l < M{# + )P+ T2}, (@ €T 4.10)
Hence it follows that, under the condition
h>mr*, v<3/2 (4.11)

for arbitrary 0 < v < 3/2, convergence of difference problem (4.4) is guaranteed for the
smooth solution v(z,t) = u@.0)(z,t) in expression (2.8)

[u@10 () — 2(2, )| < M{(& + 7}* + P}, (2,8) € Ga.

If, for example,

k> mr 4.12)
then we have
[z, ) - zu(z, )l S MW + 72, (2,1) € Ca. 4.13)
In a similar way we estimate the function
ear0(z,1) = z(z, ) ~upg(z,t), @) ECH (4.14)

where z,(z,t) is the solution of problem (4.4) with v(z,t) = upg(z,t). Here, from
estimates (2.12) and (2.13) we obtain the estimate

luasy(z,t) — z(z, )] < M{(h2 Fr)B s fhf} . @)ETH. (@415

This estimate is derived in the usual way by means of the maximum principle [S}, taking
into account that upg(z,t) is the solution of (2.9), where Wz, t) is defined by (2.7),
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and wo(=,1) is the solution of problem (2.4) and (2.5). Combining (4.10) and (4.15) we
find the result

leaz(z,t) = zen (=) S M {(h2 +7) + #} , (@) €Gh. (4.16)

Under condition (4.11) difference scheme (4.1) converges to the solution of problem
(12),

luan(@,t) — zan(z,0)] < M{(B* + 2 + 2}, (@,1) €T (417)
and under special condition (4.12) we have
luaz(z, ) - 2an(z. 1) < MGBE + 72, (z,0) €Ch. (4.18)

Thus, we see that, for p(z,2) = p(t) and under condition (4.11), the solution of
difference scheme (4.1) converges to the solution of problem (1.2) in the discrete -
norm on the whole set G, and estimates (4.17) and (4.18) hold under condition (4.11)
and (4.12) respectively.

42. The final fitted scheme
The function v(z,t) as introduced in (4.3) is not easily used for practical
because the derivatives of wo(z,t) both in the numerator and in the denominator of
(4.3a) decrease exponentially for large z/v/2 which causes a numerical instability in the
computation of 4(z,t). Therefore, scheme (4.1) has little practical value and is mainly
of theoretical interest. Note, however, that the influence of the special scheme is only
required in the neighbourhood of the singularity, where derivatives of the solution of
(12) are unboundedly large. Therefore we modify v(z,t) so as to be sure that (in a
stable way) #(z, t) — 1 for increasing |z| or ¢. This means that the usual classical scheme
is practically retained outside a neighbourhood of the discontinuity.

A proper modification of scheme (4.1) is found by replacing the discontinuous func-
tion we(z,t) in formula (4.32) by W(z,t) = wo(z,t) + v(z,t), where vy(z,1) is a smooth
function with sign é.zv(z,t) the same as sign 8,z wo(z,t). Then

7o 1) = &w(zé ;) ,:( :’.(:;)u':(z,t) @) EG z#0. 4.19)
For instance, if vo(z,8) = —z3 — 6(p(0, 0))~'=t, this implies that v(z, t) is replaced by
0,0 ,1)— 6z
T(z,t) = %, (z,8)€Gh, z#0 (4:20)

with ¥(z,1) = 1, (z,t) € Gy, z = 0. In a close neighbourhood of S* the functions ¥(z, t)
and (s, 1) are almost equal [in Fig.1 we can see the function ¥(z, t) for p(0,0) = 1.
The discrete operator (4.2) is accordingly replaced by

Ay = Az, )5 — p(z, t)6; — c(z, ). 4.21)
Thus we obtain the special difference scheme

Aumyzaa)(z,t) = f(z,t), (z,1) € Gx
422)
zu.2)(%, 1) = (z,1), (z,t) € Sa
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which is our new (modified) adapted scheme, The proof of the error estimate
a2z 1) = zaan(z, )] < M{(#* + )P+ ), (z,8)€Ch (4.23)
under condition (4.11) and the estimate
[wan(e,t) = 20m(a,t)| < M + )P, (z,1) €T (424)

under condition (4.12) is similar to that of estimates (4.17), (4.18). Thus, we have the
following theorem.

Theorem 4.1. Assume that (a) p(z,t) = p(t) in the neighbourhood of S*, and (b) for
k + 2ko < 4, the estimates (2.11), (2.12) and (2.13) hold for the functions v@9)(z,t) and
ug.10)(%, t), which represent the discontinuous and the continuous component of solution u
in (2.8). Then, under condition (4.11), the solution of difference scheme (4.22) converges
to the solution of problem (1.2) in the discrete €°-nom on the whole set Gn. Under
conditions (4.11) or (4.12) respectively, estimates (4.23) or (4.24) hold for the solution of
the difference problem.

Remark 4.1. In schemes (4.1), (3.1), and (4.22), (3.1), the set S* belongs to the grid
Gh. In the same way as above, we can construct a scheme on G, for which 5= ¢ Gi.

If we drop condition (a) of Theorem 4.1 then, for problem (1.2) where p(z,t) and
o(z, t) are sufficiently smooth functions, under conditions (4.11) or (4.12) respectively,
the estimates

luaan(z,t) — zam(z,t)l < M{(B* + )P + P2}, (@) €Ty

or
luaz(z,t) — 24z, )] < MW + 75, (z,t) € Ch

hold for the solution of the difference problem. This result is obtained by a lengthy and
tedious computation along the lines as shown in [6].

5. NUMERICAL RESULTS FOR THE DIFFERENCE SCHEME

5.1. The discretization error for the model problem

To show the effectiveness of the scheme (4.22) we apply it to the solution of model
problem (1.6) where (z,t) is such that the solution of the problem contains both a
singular and a regular component

u(z,t) = w(z,t) - ua(2,t) (6.1
with
us2(z,1) = (z + 0.5 +2t. (52)
This implies for the boundary condition
oz, t) = wo(z, 1) — u(SJ)(zt 1), (s,t)€S. (5.3)

For problem (1.6), (5.3) we use the fitted scheme (4.22). Figure 1 shows the fitted
function ¥(z, t) for (1.6).



=8 P.W. Homker ond G. I Shishkin

Ml.Thaendﬂdm'}(a,t}mdh&nﬁmdnhmc(‘.ﬂ),(&l)unhadmd’xndt,&rrobh-
(15), N = 32, Np = 4.

Figare 2. The computcd solution obtsined with the fitted scheme (4.22), (3.1) for u(z,1) = uge.1)(3,4) =
we(z,8) — wx2)(®.t) N = 32, No = 40.

Note that F(z, t) is constant (equal to 1) almost everywhere, and only significantly
differs from 1 in the neighbourhood of the singularity S*. The computed solution for
problem (1.6) is shown in Figure 2.

We see that this solution bas a discontinuity at S* and is smooth outside a neigh-
bourhood of S*.

To estimate the errors in the singular solution of the problem (1.6), (5.3) we compute
separately the errors for the solution of problem (1.6) with

'P(z;t) = w‘(’)‘): (zlt) €S (5'4)
and of problem (1.6) with
o(z,t) = uszn(a,8), (zt)€S 55)
where wo(z,2) and usp(z,t) are the singular and the regular part of the solution of
(1.6), (53)
For the error

E(N, N = mag [a(z, 1)~ u(a, )

experimental results are given in the Tables 4 and 5.
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Table 4.
Errors E(N, No) in the solution of problem (16), (54) with u(z,t) =
wo(x, 1; 1.0). Scheme (4.22), (3.1) is used with h = 2/N and = 1/Np.

No N
8 16 32 64 128 256

22610~? 196-10~2 189-10~2 187-10~2 187.10~2 1871072
1271072 10610~ 101-10~? 100-10-3 1.00-10~* 1.00-10~2
774-10-% 530-107% 430107 41610~ 4.08-10-3 4.07.10°3
613.100> 301-10~% 180-10~% 143-10~> 133.10~% 131.10~3
571107 230-10~3 947.10~* 528-10~* 417-10~* 338810~
5611073 211.107% 7.00107% 264-107% 1441074 1121074

§§§§ss

Table 5.
Errars E(N, No) in the solution of problem (L6), (5.5) with u(z, ) =
u(5.2)(%,1;1.0). Scheme (4.22), (3.1) is used with h = 2/N and 7 = 1/No.

No N
8 16 32 64 8 256

10 510-10-% 8721102 11610~* 136.10' 147.10~' 1.53-107!
40 146-1072 2271077 3.1510°% 3.89-1077 4.50-10-? 4.87-10°?
160 7.19-107% 58710~% 7.00.10~® 844.10~% 9.83.10~3 110-10?
640 732107 4051070 27410°° 222.10°% 207107 232.107°
2560 7.44-10~% 317-10~% 16410 10310~ 85210~* &73-10*

From Tables 4 and S we see that the solution of difference scheme (4.22), (3.1)
approximates both the singular and the regular parts of the solution of problem (1.6).
For both parts of the solution the relative error is guaranteed to be not larger than 1%
if we take N > 8 and Ng 2> 160.

Results obtained with scheme (4.22) are also shown in Figure 3. The results obtained
with classical scheme (3.3) are shown in Figure 4.

We observe that the error e(z,t; N, M) = z(z,t) — ve.p)(2, 1), (z,t) € Gy, is mainly
localized in the neighbourhood of S* and that the error for the classical scheme is much
larger than that for the fitted scheme.

Thus, we see that special fitted scheme (4.22) converges for both the singular and
the smooth parts (and hence on the whole solution) of model problem (1.6), (5.3), in
the discrete £°-norm on the whole set Gi.

5.2. The experimental generalized order of convergence

To realize the value of the difference scheme (4.22) in practice, we determine its order
of convergence. To do so, we compute the generalized order of convergence for the
error. We say that a difference scheme has a generalized order of convergence v if

E(N,No) = max |z(z,t) — u(z,t)| < MW + 7).
(=.)ECh
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Figure 3. The discretization error for fitted scheme (4.22), (3.1) applied to the same problem as in Figure 2.
The maximum error is 0.05545.

Figure 4. The discretization error for classical sch (33), (3.1) applied to the same problem as in
Figure 2. The maximum error is 0.3007.

Here we denote the error by E(N, No), where N = 2/h and No = 1/r. We introduce
the experimental generalized order of convergence by

7 = min 7N, No)

where
T(N,No) = {nE(N,No) — In E(2N,4No)}/In 4

is the experimental generalized local order of convergence at the point (N, No).

Numerical results for the singular and the smooth part of the solution of problem
(1.6), (5.3) arc shown for the solution u(z,t) = wy(z,t) in Table 6 and for the solution
u(z,1) = ys2)(z,1) in Table 7.

In Table 6 it is seen that for the singular part of the solution of problem (1.6), (5.3)
the experimental generalized order of convergence is not less than 7 = 0.45. For the
smooth part of the solution of problem (1.6), (5.3) we find (Table 7) the experimental
generalized order of convergence to be not less than 7 = 0.41.
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Hence, for our model problem (1.6), (5.3) the value ¥, which is the experimental
generalized order of convergence for our fitted difference scheme (4.22), is not less
than 04. This order is in agreement with the theoretical lower bound value found in
(4.18).

6. CONCLUSION

For the Dirichlet boundary value problem (1.2) for a parabolic equation with variable
coefficients and with a discontinuous initial condition we have constructed the adapted
scheme (4.22) on a uniform grid (3.1), which converges in the discrete £°-norm on the
whole grid Gs.

Both in theory and in practice we have shown that the classical scheme does not
converge in the £-norm on all of G;. For 2 model problem (the heat equation with a
discontinuous initial condition) in the discrete £°-norm no error less than 5% could be
found and no error less than 12% could be guaranteed for an arbitrarily small = and A.

For the same model problem, the special, fitted difference scheme (4.22) converges
in the discrete £°-norm on the whole grid G}, and the experiment shows the generalized
order of convergence to be not less than 0.4 (see Tables 6 and 7). This is in agreement
with the theory. Moreover, the numerical results show that the special difference scheme
(4.22) is efficient indeed: for a typical problem, for Ny > 160 and NV > 8, the error is
guaranteed to be not larger that 1%, for both the regular and the singular part of the
solution.

Table 6.
Experimental generalized Jocal order of convergence U(N, No).
Data derived from the errors as found in Table 4.

Ny N

8 16 2 64 128
10 5.44.10-1 480-10"! 454.10"' 45010~ 4.50.10-!
40 631107 653107! 640107' 650-107' 6511077
160 6.81.107! 7.82-10~! 79210~' 818-10~! 81810~}
640 7.08107' 834-10-' 88210~! 891-10"! 892101
2560 715107 858-10~! 92210~' 93810~! 945.10!

Table 7.
Experimental generalized Jocal order of convergence (N, No).
Data derived from the errors as found in Table 5.

No N

8 16 32 64 128
583010~ 7357.10"! 788810~ 7953107 7979107
6.562:10"' 850110~! 09489.10~%! 992310°' 1016
4130-10"! 550910 827610~ 1012 1.0409
6.035-10~! 6.51810"' 7.017-10~' 691410~ 6.250-10~!

Z8as
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