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1. INTRODUCTION 

In this paper we give a brief description of a multigrid method for the solution of 
the 1-D semiconductor device modelling equations (drift-diffusion model). The 
essential part is the adaptation of the prolongation operator to the discretisation: 
an exponential interpolation is used to obtain a nested sequence of Scharfetter­
Gummel discretisations. 

Experiments with a model diode problem show that the usual multigrid efficiency 
can be obtained. A few iteration steps are sufficient to solve the discrete problems 
with truncation error accuracy. 
A more comprehensive paper, with numerical results for the diode will be published 
elsewhere. 

2. THE EQUATIONS 

The equations modelling the steady semiconductor device are given by (cf. e.g. 
[3] ), 

- \7((\7"</;) = q(p-n + D), 

-V(p.n(Vn - nV(ai/;+logn;))) = -R, 

- 'V(p.p(Vp + p V(ai/;- logn;))) = - R, 

(2.1.a) 

(2.1.b) 

(2.1.c) 

on ~ C Rd, d= 1,2,3. The dependent variables if;, n and p describe the electric 
potential and the electron and hole densities respectively; <, the permittivity, and q, 
the elementary charge, are constant values, as is a = qi kT, the inverse of the 
"thermal voltage". The doping D is a given (non-smooth) function of the indepen­
dent space variable x. The electron and hole mobilities µn and Jlp as well as the net 
recombination- generation rate R generally are functions of x, 1/J, n and p, and the 
intrinsic concentration n, is a function of x. For simplicity, in this paper we con­
sider only R = 0 and constant µ,,,, /lp and n;. With these assumptions, (2.1) 
reduces to 

- 'V (•'Vi/;) = qnJp-n + D), 

- 'V (µn('Vn - n'V(ai/;))) 0 ' 

- 'V (µp('Vp + p'V(aif;))) 0 ' 

(2.2.a) 

(2.2.b) 

(2.2.c) 

where n = nln;.p = p!n1 and D =Din;. Usual bo~ndary conditions are either 
of Dirichlet type (at the contacts pn = I, p - Ii + D = 0, 1/-- prescribed) or of 
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Neumann type (cf.[3] ). 
Because of the large range of possible values for n and p, it is convenient to intro­
duce the quasi-Fermi levels as new variables: 

if; - log(ll)/ a 

log(p) I a + if; 

if; - log(n/n;)/o:, 

log(pln;)la +if;. 

(2.3.a) 

(2.3.b) 

In the new set of variables (if;,cpn,<Pp) the quantities all have the same dimension. 
Now (2.2) can be rewritten as 

- 'V(A.2\li/;) = ea(<J>, -y) - ea(y </>,) + jj' 

- 'V(p.neaof - atj>, \l (a</>n)) = 0 ' 

- \l(}J.pea.P, -- o:Y'V(o:lf>p)) :::: 0, 

(2.4.a) 

(2.4.b) 

(2.4.c) 

where A.2 = (/ qn;. 
In view of (2.4), we introduce the notation 1.y = t...2\lt/;, In = /.Lneao} ar>'v(o:<Pn), 
JP = JJpea<P, -- o:Y\l(a<Pp)- Let S C[L(Q)]3 be the set of all functions (tf;,cpn,cpp) such 
that J ..;,Jn,Jp E H(div,Q), and n,p EL 2(Q), then for arbitrary (o/,<Pn,<Pp) ES and 
!Ja C Q we find 

J J (ea(<t>,--o/) - ea(y-<t>,) + jj) dQ' (2.5.a) 
n. 

- fln Jtdr 0, (2.5.b) 
L 

- j Jp Jt df = 0 , (2.5.c) 
r. 

where 11 the outward pointing normal at r a• the boundary of Qa· This system of 
equations, together with the boundary conditions, is written in symbolic form as 

N(q) = r(q), (2.6) 

where N: S - V = [L 2(!J)]3 is the nonlinear differential operator in the left hand 
side of eq.(2.4), r(q) is the right hand side and q denotes the vector of unknown 
functions q = (o/,cpm<flp)-

3. THE DISCRETISATION 

To preserve the conservation character of the equations, for the discretisation of 
(2.4) we use a finite volume technique. We divide the interval Q = (x 0 ,xN) in dis­
joint boxes (i.e. intervals) fl; = (x; i.x;), i = 1, ... ,N. Inside each box fl; we select 
a point X; _ 112 and for each box we approximate values of the variables if;, <Pn and 
<Pr To define a proper se~uence of refining meshes as N-oo, we introduce a 
monotonously increasing C [O, l]-function y:[O, l]-Q such that, for a fixed N, 
x; = y(i IN). Another set of subintervals { D;} is introduced with 
D; = (x;. 112 ,x;+- 112 ), i=l, ... ,N-1, X;- 111 = (x;--J + x;)/2 or 
X; .. 112 = y((i-1/2)/N), Do= (xo,X1t2), DN = (xN- 112 ,xN). These intervals 
form the set of dual boxes. Thus, for a given function y, sets {Q; }; '" 1 •.•.. N• and 
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{ D; }; =O ..... N are defined for an arbitrary N EN. The different discretisations are 
parametrised by h = l / N. The set of boxes is denoted by 
Qh = {Q;Ji = 1,2, .. .,N}. 

A discrete representation qh ESh of the state of the semiconductor is given by the 
3N-dimensional vector qh = {qr};"' 1, .... N = { (i/;;, </>,,,;,</>p.;)}; - 1 ..... N· Notice that q; is 
associated with the box Qi and can also be associated with x; ._ 112 . 

The discretisation we use is based on the piecewise constant approximation of 
J ··I" J 11 and JP on the dual mesh {D;}. These piecewise constant functions are 
derived from qh by 

and 

2 1/i;+1 - -./;; 
J .•.. = .\ ------­.,,,, 

X;+l/2 - X]-l/2 

Jn.i = µ,11 exp(ao/ - acp11 ) \l(a</>11 ) 

which yields 

onD;, 

exp( - a<f>n.i + 1) - exp( - a<f>n.i) ,...,, 
exp( - aif; + ll - exp( -ao/;) 

Similarly an expression is found for Jp.i• 

(3.1) 

(3.2) 

ao/; + I - ao/; 
X;+J/2 - X; .. J/2 

_ exp(+ a<f>p.i+ 1) - exp(+ a<f>p.;) ao/; + 1 - ao/; 
Jp.i - /Lp ( + ~1. ( + ~1. ) (3.3) exp "'"'l'i+I) - exp '"'"'l'i X;+112 - X;--112 

Boundary conditions are treated in a way consistent with the assumption of piece­
wise constant J. In this way we obtain the discrete form of (2.6) 

(3.4) 

4. NESTED DISCRETISATIONS 

In fact, by the above construction we derived a cell-centered version of the well­
known Scharfetter-Gummel scheme. What is important is the derivation of this 
scheme as a Galerkin or wei~ed residual method. We can define a residual 
weighting, or restriction operator Rh: V ....,-. Vh by 

where 

(uh);= jju(x)dfJ., 
n. 

(4. l) 

i = 1,2,. . .,N. 

An interpolation or prolongation operator Ph :Sh-s is defined by the assumptions 
(i) that (Phqh)(x; _ 11 2) = q;, (ii) that Phqh has piecewise constant fluxes J >¥• J" and 
JP on the dual mesh {D; }, and (iii) that Phqh satisfies the boundary conditions for 
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(2.2) at x 0 and XN- For (i/l,cJ>no4>p) such that Phqh = q = (i/J,i/>n,4>p), this implies 
that q satisfies the boundary conditions, and that if is a piecewise linear function 
which interpolates the values {i/I;}; = 1. ..•• N. For i/>n and cf>p it leads to piecewise 
exponential interpolation, as is derived from (3.2). For x ED; we find 

and 

exp( - acp,,)I ;, ,, 

exp(-aif)I;, ,,, 

exp(-a,i. )Ix, '" 
~n X, I.:! 

=------
exp(-aif)I~: :: ' 

(4.2.a) 

exp(-acJ>n(x)) - exp(-acf>n,;) = (4.2.b) 

( ( ·'·( )) ( ,..,,, )) exp( - acpn.i + 1) - exp( - a<Pn,;) = exp -ay x - exp - ... y; · 
exp( - al/;;+ I) - exp( - al/;;) 

This formula gives a kind of exponential interpolation formula for i/>n(x ), interpo­
lating the values { </>11.;}; =, 1 •.... N -· I· A similar formula is found for cf>p: 

exp(a<t>p(x)) - exp(a<t>p.;) = (4.2.c) 

= (exp(ai/;(x)) _ exp( al/;;))" exp(a<l>p.i + 1) - exp(a<t>p.;) 
exp( al/;;+ I) - exp(al/i;) 

In this way, the discrete operator Nhqh is constructed as the Galerkin operator 
Nh = R.,, N (Phqh)- Notice that the complete discretisation of (Nh - rh) is not a 
true Galerkin approximation because of the quadrature approximation used to 
compute rh, the discrete version of the rhs in (2.5.a). 

Given OH, a discretisation of 0, we can construct a sequence of finer and finer 
discretisations by successively doubling the number of boxes. Thus, we obtain 
SlH 12, OH14 etc .. In these discretisations all boxes are nested, i.e. a single box on a 
coarser discretisation contains a number of complete boxes in a finer discretisation. 
Notice that the corresponding dual boxes are not nested. 
F~ each discretisation Oh in the sequence, we have space~Sh, Vh and operators 

Ph, Rh, Nh and rh. Based on (4.1), a restriction operator R 2h.h: Vh-+V2h can be 
introduced by 

i'h.j• (4.3) 

which satisfies the relation R2h.h Rh = R2h· 

Because the dual boxes are not nested, we can not find a prolongation 
Ph.2h: S2h-+Sh that satisfies the similar relation P2h = PhPh.2h· Nevertheless we 
can construct a Ph. 2h such that 

R 2h.h Nh ( PuJiq2h) = N 2h(q2h) (4.4) 

for all 92h ES2h, by using for Ph.2h interpolation rules derived from (4.2). 
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5. THE MuLTIGRID METHOD 

To solve the nonlinear system 

Mh(qh): = Nh(q1i) - rh(qh) = fh (5. l) 

we use a nonlinear multigrid (FAS) method [ 1, 2] . For a vanishing right-hand-side 
fh this system is the system of equations (3.4). The FAS method for solving (5.l) is 
an iterative process, in which each cycle consists of: 

1. a number of p nonlinear relaxation sweeps: 
2. a coarse grid correction; 
3. another q nonlinear relaxation sweeps. 

As a relaxation procedure we use a nonlinear Collective Symmetric Gauss Seidel 
(CSGS) relaxation. In this procedure all boxes are successively scanned in forward 
and backward direction, and for each box in its turn the 3 nonlinear equations are 
(approximately) solved. The coarse grid correction consists of the following steps 

d2Ji = R 2Ji.h (Ji, - Mh(q~n))), 

M 2.h(q2.h) = M 2h(q2h) + d2h Iµ, 

qhntl) = qhn) + µ(Ph.2Jiq2Ji - Puhq2h)· 

(5.2.a) 

(5.2.b) 

(5.2.c) 

Here q2Ji is an (arbitrary) approximation to the solution on the grid Q2.h· The value 
q2h may be either computed from the nonlinear system (5.2.b), or it may be an 
approximated by a number of a multigrid cycles for the solution of (5.2.b) applied 
to the initial approximation q 2h. In this way a recursive procedure is obtained in 
which a sequence of coarser and coarser grids is used. Only on the coarsest grid a 
(smaller) nonlinear system is to be solved by other means. The parameter ,uEIR is a 
number to control the right-hand-side in the equation (5.2.b). In our applications 
we use µ = 1 throughout. The numbers p, q, o E~ determine the strategy of the 
multigrid method; a= 1 defines a V-cycle, a=2 a W-cycle. I~most experiments we 
took a fixed strategy with p = q = a = 1. The operators R 2h,h and Ph. 2h are as 
described in section 4. 

There is a difference between the usual FAS algorithm and the present one, due 
to the nonlinearity of the prolongation. Generally, the last step in the coarse grid 
correction is written 

qhntl) = qhn) + µPh.2h(q2h - qzh) 

which is equivalent to (5.2.c) only for a linear prolongation. 

With the property N2.h = R 2h.hNhPh.2h it can be shown that the restriction of the 
residual will be small after a coarse grid correction. From (5.2.a-b), with M 
replaced by N we derive 

R21i.h(Ji. - Nh(q~n))) = /L (N2h(q2h) - N2h(q2h)) 

== ,u R2h.hN1i(P1i.2hq2h) - ,u R2h.hNh(Ph.2Jiq21i), 

This implies for the restriction of the residual that 

R 2h.h<Jh - Nh(q~n i l ))) = 
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= R2h,h[Nh(q~n)) - Nh(q~n +I)) + µ.Nh(Puhq2h) - µ.Nh(Ph.2h9h)]. 

Introducing the notation l::i.qh = qh - qi,, assuming that Nh is differentiable, and 
linearising Nh around qi,, we find 

R 2h,h(fi, - Nh(q~n + 1))) = 

= R2h.h[Nh' q~n) - Nh' q~n+I) + µ.Nh' Ph.2hq2h - µ.Nh' Ph,2h92h] 

+ f!( II /::i.q~n) 11 2 + II l::i.q~n +I) 11 2 + II t:i.Ph, 2hq2h 11 2 + II /::i.Ph. 2h92h 11 2 ) 

= R2h,h Nh'[q~n) - q~n+I) + µ.(Ph.2hq2h - Ph.2hqh)] 

+ 0( II l::i.q~n) 11 2 + II l::i.q~n 1 )) 11 2 + II t:i.Ph. 2hq2h 11 2 + II t:i.Ph. 2hq2h 11 2 ) 

=0(llJ\,.,(n)ll 2 +11A,..,(n+l)ll 2 +11/::i.P q 11 2 +11/::i.P q- 11 2 ). """th """th h,2h 2h h.2h 2h 

For nonvanishing rh, r2h we obtain 

R2h,hifh - Mh(q~n + ll)) = 
= µ.[r2h(q2h) - r2h(q2h)] + R 2h.h [rh(q~n + 1>) - rh(q~11 l)] + 0( II . 11 2 ) 

= µ.r' 2h(92h - q2h) + R 2h.h r' h(q~n +I) - q~11>) + 19( II • 11 2 ) 

= µ.[r'2h(q2h - q2h) - R2h,hr'h(Ph,2h92h - Ph,2hq2h)] + 0(11. 11 2), 

where we assume that rh and r2h are differentiable in a sufficient neighbourhood of 
q';, and qiJ.. Using the differentiability of Ph,2h• we find 

R2h.hifh - Mh(q~n+I>)) = µ.[R2h,hr'hP'h.2h - r'2h](q2h - 92h) 

+ 0( II l::i.q~11 , 11 2 + II !::.q~11 + 11 11 2 + II t:i.Ph. 21i92h 11 2 + II t:i.Ph. 2hq2h 11 2 ). 

We see that the restriction of the residual, 

R2h.h(/j, - Mh(q~n+I))) :::::J (R2h,hr'hP'h.2h - r'2h)(q2h - q21i), 

depends on the integration error in the right-hand-side, which will be at most e(h ). 
In ~eneral q2h - 92h will be at most f!(h), and the restriction of the residual will be 
fJ(h ). -

Because R2h,h adds residual components of s~all boxes to form a residual com­
ponent of a coarse grid box, a small value of R 2h.h(/j, - Mh(q),11 +11)) implies that 
large components in Ji, - Mh(q~n+I» must be high-frequency components. The 
success of the MG method is based on the fact that relaxation methods as CSGS 
are effective means to reduce these high frequency components in the 
error I residual. 

In principle, for the smoothing step we may consider various relaxations. Based 
on previous experience with other equations, our choice is Collective Symmetric 
Gauss Seidel relaxation. This relaxation can be performed in different ways. In all 
cases the boxes are successively scanned, first in the forward later in the backward 
direction, and in each box in its turn the 3 nonlinear equations are approximately 
solved. How the solution of these small systems is approximated makes the 
difference. The first possibility is to use Newtons method. Another possibility is 
pointwise Gummel iteration. In Gummel iteration, first the variable 1" is solved for 
fixed values of 4>n and lf>p, and then lf>n and lf>p are solved for the new value of if. In 
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pointwise Gummel relaxation, this process is iterated for each particular cell until 
the solution of the nonlinear 3 X 3 system is obtained with a specified accuracy. 

At convergence, the result of this pointwise iteration process and the result of 
pointwise Newton iteration are the same. Differences are the faster convergence of 
the Newton process near the solution, and the better global convergence properties 
of the pointwise Gummel iteration. An additional advantage of Gurnrnel iteration 
is that no (possibly ill conditioned) linear 3 X 3 systems have to be solved. 

6. THE TEST PROBLEM 

As a test problem we consider a simple one-dimensional standard diode as 
described in[3] . It is given by the equation (2.2) in one space dimension, on the 
interval (0.0,0.001); with t: = 1.0359E-12, q = l.602IE- 19, n; = l.22E+ 10, 
a = 38.68293. The dope function is given by 

D(x) = {-1.0E 18, if x<0.0005. 
+ J .OE 18, if x >0.0005 , 

R = 0 and P.n and P.p are constants. 
At the boundary charge neutrality is required: p - n + D = 0 . Further, at 
x = 0 the boundary conditions are <Pn = <Pp = O; at x = 0.001 the applied vol­
tage VB is given c/>n = c/>p = VB. 

Computations have been made for vB = 5.0 (the standard case) and further for 
vB = 100.0 (reverse bias) and vB = - LO (forward bias). 

For the discretisation two kinds of mesh are used: (1) a uniform, and (2) a non­
uniform mesh. Both meshes were used with N = 2L , L = 0, 1, · · · ,8 cells. The 
non-uniform mesh was defined by the mapping x; = f(I;,;), where f is a 
differentiable and monotonously increasing function, and { ~;}; ... o .... ,N a uniform 
partition of [O, l ]. This function f is chosen such that a reasonable resolution of the 
layer at x -= 0.0005 can be obtained. At first sight it seems unreasonable to try 
uniform meshes for these problems, because it is known that the solution is rapidly 
varying near the depletion layer. Nevertheless, we are also interested in the 
behaviour of the numerical methods for this case, because we want to know how 
the numerical methods behave for not well-adapted coarse meshes. 

REsULTS AND CONCLUSION. 

We find that, for a 1-D diode as model problem, typical multigrid convergence 
can be obtained for the discrete semiconductor device equations. A convergence 
factor is found that is essentially independent of the meshwidth. By embedding in 
a "Full Multigrid" algorithm, one or two iteration steps seem to be sufficient to 
reduce the iteration error below truncation error. For this purpose, in the non­
linear FAS-procedure the prolongation was adapted to the method of discretisation 
(Scharfetter-Gumrnel). It appeared that discrete operators on extremely coarse 
meshes still enhance the convergence behaviour. 
A more detailed description of the method and the results will be published later. 
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