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ABSTRACT. 

Supercongruences 

Matthijs J. Coster 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, the Netherlands 

In this report we will discuss special congruences. We explain how the congruences arise 
from formal groups and then we give some exa~les. 
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1. INTRODUCTION. 

This paper deals with so called "supercongruences". Before we will explain this term, we 
give some definitions which we need in the explanation. Let K be an algebraic extension 

of CQ. Letp be a prime which splits in K as p = n"ic. Let I · Ip be the valuation on CQ in 

such a way that I~ IP = 1 and In IP = p-1 • We will consider n as an element of ~P· Let 

{un} n= 7 be a sequence of rational or p-adic integers. In this paper we will consider the 

congruences 

( r) ( ~r- l ) d Ar u mp = a· u mp mo p , (lA) 

and 

(lB) 

where A, m,r are positive integers and a is an integer and 1t is an p-adic integer. 

Therefore (IA) is a congruence in ~ and (lB) is a congruence in ~p- In section 2 we will 
give an introduction in formal groups. We will show that congruences (IA) and (lB) with 
A= 1 arise in a natural way from formal groups. Especially, we will give a sketch of the 
Conjecture of Atkin and Swinnerton-Dyer. In section 3, 4 and 5 we give some examples of 
congruences (IA) and (lB) with coefficient 'A> 1. In such cases we call the congruence 
supercongruence. At the moment supercongruences cannot be proved by use of formal 
groups. In each case a separated proof has to be given. A lot of proofs will be omitted in 
this paper. For these proofs we refer to [12]. In section 6 some conjectures are given. 
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2 supercongruences 

2. THE CONJECTURE OF ATKIN AND SWINNERTON-DYER. 

Let K be a commutative field with char(K) = 0 and let R be a subring. (In our case we 

will choose R = ~p). We denote by R[[T]] the set of power series in the variable T 

with coefficients in R. 

Let F(X,Y) E R[[X,Y]]. We call F(X,Y) a commutative formal group law if F(X,Y) 
satisfies the following properties. 

F(X,Y) =X+Y+(terms of degree;::: 2), 

F(X,F(Y,Z)) = F(F(X,Y),Z), 

F(X,Y) = F(Y,X). 

We derive from (2) that F(X,Y) satisfies moreover the following properties. 

F(X,O) = X, 

(2) 

there is a unique i(T) E R[[Jl] such that F(T,i(T)) = 0. 

Let ~T = {X(T) E R[[Jl] : X(O) = O}. We define a formal addition +3" on ~T by 

X(T) +3" Y(T) = F(X(T),Y(T)). 

It turns out that ~T with +3" is a group. This group is called a formal commutative group 

in one variable over R. From now on let rt be a formal group over R (i.e. 

rt= (~T,+3" )). 

We define the logarithmf(T) of the formal group rt by 

f(T) E K[ [T]]' 

f(T) = T+(tem1s of degree ;::: 2), 

l(F(X,Y)) =l(X) +l(Y). 

The last condition can be replaced by 

F(X,Y) = l- 1 (f(X) + l(Y)) , 

where l-1(T) E K[[T]] is the power series such thatl-1(f(T)) = T. We find that 
l(T) satisfies the property 

(3) 
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~ u(n) n • 
f(T) =Li -T with u(n) E R. 

n=I n 
(4) 

We call 

w =f'(T)dT (5) 

the differential form related to the formal group !:r. We consider the formal Dilichlet series 

L(s,!:r) = f u(~) (6) 
n=l n 

where !:r (T) = L unTn In is the logarithm of the formal group !:r. 
n=l 

Two formal groups !:r (withfandL(s,!:r)) and 9 (with g andL(s,9)) are 

isomorphic over R if there is a formal group homomorphism h: !:r ~ 9 with 
h(T) E R[[Jl] and h(F(X,Y)) = G(h(X),h(Y)). In our case (that 

~ v(n) 
char(K) = 0) we have h(T) = g-1(f(T)) and L(s,!:r)/L(s,9)= Li -s , 

n=I n 
I v(n) Ip :::; I n Ip. 

with 

We have a theorem due to Honda which says that for each formal group !:r there exists a 

formal group 9 such that the Dirichlet series related to 9 has p-adic numbers as 
coefficients. In formula: 

Theorem 1. (Honda). Let !:r be afonnal group over ~p· Then there exists afonnal 

group 9, isomorphic to !:rover ~P such that 

(7) 

where b(j) are p-adic integers. 
Proof. See [20,pp. 441~445] or [12, pp. 18-23].m 

Corollary 2. Let !:r be aformal group over ~p· Let f(T) = L u(n) · Tn/n be the 
n=l 

related formal group. Then there exists p-adic numbers b(j) such that 

u(mpr) -b( 1) · u(mpr- I) - ... -pr- I · b(r) · u(m) = 0 mod pr, (8) 
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for m,r positive integers and p is not a divisor of m. 
Proof. See [20, pp. 441-445].111 

We will apply Theorem 1 and Corollary 2 on formal groups related to elliptic curves. Let e 
be an elliptic curve over a:: and let robe a holomorphic differential form on e. Let n:'ro be 

the formal group related to ro. Suppose that n:'rois a formal group over a::. Let 

( -s b -2s)-1 Lp(s) = 1-aP ·p +p· P ·p 

be the Dirichlet series related to the Hasse-Weil zeta-function of the elliptic curve. Then a 
theorem of Honda Cartier and Hill says that the_f_ormal series related to the Dirichlet 
series is isomorphic to the formal group n:' w. 

Coronary 3. (Conjecture of Atkin and Swinnerton~Dyer). Let n:'w be the formal 
group as defined above. 
(i) We have 

u(mp') - ap · u(mp'- 1) + p · bp · u(mp'- 2) = 0 mod p'. (9) 

(ii) If e is ordinary over a::p (i.e. bp = 1 and ap-::/:- 0) then we have 

( ') - ( r- 1 ) d r u mp = n: · u mp mo p , (10) 

where ic such that I ic IP = 1 and ic is a root of X 2 - apX + 1 = 0 . 

Proof. (i) Corollary 2 says that (9) must be a congruence of form (8). Then we use the 
theorem of Honda Cartier and Hill, which was mentioned above. This theorem says that 
the coefficients b(l) and b(2) coincide with the integers ap and bp of the Dirichlet 
series and that the other coefficients b(n) equal zero. 

(ii) Notice that 

It is not difficult to see that the formal group related to Lµ(s) is isomorphic to the formal 

group which is related to the Dirichlet series ( 1 - ii ·p-s r1 
. (See [20]).1111 
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3. GENERALIZED APERY NUMBERS. 

The numbers b( n) = .t (~)' . ( n; k) and d( n) = .*. (;)' . ( n; k r were introduced by 

Roger Apery and played a role in the proof of the irrationality of ~(2) and ~(3) 

respectively. Many papers deal with congruences on these numbers. We mention Chowla, 

cowles and Cowles [9] and Gessel [16]. For these numbers Mimura [21] proved some 

congruences of the form up-1 =1 mod p3, where p is a prime, p;::::: 5. F. Beukers [4] 

generalized these congruences to 

u(mpr - 1) = u(mpr- l - 1) mod p 37, 

where m and r are any positive integers. Now we consider the so called generalized 

Apery numbers, which are defined by 

n (n)A (n+ k)B k 
WA Be ( n.) = k~ k . k . e (11) 

where A,B e ~;:::o and e = ±1. 

We have for the generalized Apery numbers the following theorem. 

Theorem 4. Let w(n) be as defined above. Let p ~ 5 be a prime.Then for any m,r e ~;?:I 

we have 

( r) ( r- l ) 3 r { A ~ 2 
w mp =w mp modp for A~=landB;;::l,e=-l 

and 

r r-1 3r { B ~ 2 
w(mp-l)=w(mp -l)modp for B=landA?::l,e=(-l)A. 

Proof. The proof is very technical. See [12, pp. 49-55].11 

4. BINOMIAL COEFFICIENTS. 

Since the work of Fermat it is known that every prime p = 1 mod 4 can be written as 

p = a2+b2 for integers a and bin an essentially unique way. Without loss of 

generality we may assume that a = 1 mod 4. Gauss proved by counting the number of 

solutions of the elliptic curve e: Y2 :::: x4+1 mod p in two, essentially different ways, 

that 



6 supercongruences 

(p-1 J 
p~I = 2a modp (12) 

By applying Corollary 3 on the elliptic curve e, congruence (12) can be generalized to 

; 1 = (a+bi) · : 1 modpr (mp'-lJ (mpr-l_lJ 
mp - mp' -1 
-4- 4 

where m,r are positive integers and m = 1 mod 4. Here i denotes a p-adic integer 
such that i2 = -1 and bi= -a modp. Beukers conjectured in [4] the congruence 

( :n" (a+bi) modp2 

(13) 

(14) 

This was proved by Chowla, Dwork and Evans [_10]. Van Hamme [18] generalized (14) 
to 

~~n" (a+bi) -(,.~~! J modp' (15) 

for any positive integer r. This congruence can be generalized to the supercongruence 

(mp'-1) (mpr-1_1 J 
; 1 = (a+bi) · : 1 modp2 ' mp - mp' -1 
-4- 4 

(16) 

We get another example by considering primes p = 1 mod 3. Then 4p = e2+3f2 for 
certain values e andf. Without loss of generality we may assume that e = -1 mod 3. 

Choose thep-adic number ic = (e+3J/3)12 such that I iclP = 1 . Starting from the 
elliptic curve e: Y2 = 1-4 x3, Corollary 3 implies the congruence 

(}(mp' - l)J _ (}(mpr-l - l)J r = n· modp 
t(mpr -1) t(mpr-l -1) 

for any positive integers m,r with m = 1 mod 3. However congruence (17) can be 
improved to the supercongruence 

(17) 
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(~ (mpr - 1 )) = IT·(~ (mpr-1 - 1 )) mod P2r 

t(mpr -1) t(mpr-1 -1) 

In the general case we define for a,~ positive integers with a+~ s d the binomial 

coefficient 

{((a.+~~(n-l)J 
v(n) = a.(n-1) 

d 

0 

ifn = 1 mod d 

else. 

We have for these coefficients the congruence _ 

( r) - ( r- 1 ) d r v mp = rr: ·v mp mo p 

7 

(18) 

(19) 

(20) 

~ v(n) n. 
This result can be found using formal group theory (namely f(T) = .£... -- · T is a formal 

n=l n 

logarithm over ~ p for p = 1 mod d) or the p-adic r-function ( cf. [22, pp. 111-114 ]). In 

the case that d = 2, 3, 4 or 6 we can improve congruence (20). The following theorem 

deals with the improvement. 

Theorem 5. Let d be 2, 3, 4 or 6. Let p be a prime with p = 1 mod d. Let m and r be 

positive integers with m = 1 mod d. Let a,~ E ~;::-: 1 with a+~ s d .. Then the 

binominal coefficient v(n) satisfies the supercongruence 

v(mp') = g(p)mpr-l. ii·v(mpr-l) modp2r 

_ r (~)r (~) 
where g(p) E ~P with g(p) = 1 mod p and rr: = P d ~ d • 

rpca.;) 

(21) 

Proof. We prove congruence (21) using the p-adic r-function. The proof is based on a 

formula of Gross and Ko blitz [ 17] which expresses the p-adic r-function in terms of 

Gauss sums and on a formula of Diamond [14] which expresses the logarithmic derivative 

in terms of the p-adic logarithm. See [l l].111 
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6. VALUES OF THE LEGENDRE POLYNOMIALS. 

This section contains joined work with L. van Hamme. Nice supercongruences exist for 
the values of some Legendre polynomials. These polynomials can be defined by 

n (n) ( + k · (t 1 )k 
Pn(t) = k~ k . n k } ; 

and they satisfy 

1 00 n 
F(X) = = L Pn(t)X 

./1-2tX+X2 n=O 

Let K be an algebraic extension of CQ. Let p be a prime which splits in K as 

p = nic. Lett e K with I tip ~ 1 and consider the differential form 

dX 00 n 
-;:::::=== = IP~(t)X dX 
./l-2tX2 +X4 n=O 

(22) 

(23) 

(24) 

on the elliptic curve e : y2 = x(x2 +Ax+ B) . The theory of formal groups predicts a 
congruence of the form as described in Corollary 3 

(25) 

for any positive integer r and positive odd integer m. 

It turns out that if e has complex multiplication, congruence (25) can be changed into a 
congruence mod 1t2r. We have the following theorem. 

Theorem 6. Let K = CQ( /=d) with d a squarejree positive integer. Consider the 
elliptic curve 

e :l =x(x2 +Ax+B) withA,B EK. (26) 

Let ro and ro' be periods of e and suppose that -c=ro'/ro (which implies the 
complex multiplication), 't has positive imaginary part and A= 3(.J(ro/2), where ~(z) 

is the Weierstrass ~-function. Let p be an odd prime which does not divided and let 

n,ic e CQ( /=d) such that p = nic. Suppose that w = u + V't and ro't = x + y't 
with u, v, x, y integers and v even. Then we have 
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( A J- mp•- 1 - ( A J r ~(mpr-1-1) lb. = E · n·~(mp•-1-1) lb. modp (27) 

where l:l. = A2-4B and E = iy(l-x)+p- 2 • 

We first give an example in which Theorem 6 can be applied. 

Let e :y2 =x(x2 +3x+2). We can choose periods co and co' in such a way that f.J(co/2) = 
1 and co'/co = t = i. Let p = 1 mod 4 be a prime. Let i be a p-adic number such that 

i2 = -1. Fix the sign of bi such that a= bi mod p. Let 7t = a-bi. Then we have 
7tt = 1ti = b+ai. Hence E = i y(l-x)+p-2 = i-b = (-l)(p-l)/4. We denote 

a(n) = .t. G} (n; k) . The numbers a(n) have been used for proving that log 2 is 

irrational with measure of irrationality 4.622 [1]. Carlitz proved that the numbers a(n) 
satisfy for p = 1 mod 4 the congruence 

(p-1) !.(p-1) 
a - 2- = (-1) 4 • 2a mod p. (28) 

Since a(n) = P n(3), we have for those primes the supercongruence 

m- 1 1 - m - 2 
( 

r 1) ( r-1 1) a p2 = (-1) 4(p- ) • n·a 'P 2 modp 7 • (29) 

Another proof of this supercongruence in the case m = r = 1 has been given by van 
Hamme in [18]. 

Sketch of the proof of Theorem 6. Let L = <Q( /::J.,i) and R ={ex e L: ordrc(cx):?: O}. 
In this proof we will denote 

(30) 

We consider the holorriorphic differential form co= - dx. Let t =:: be a local parameter at 
2y y 

infinity. We express co in terms oft and we get 

dt ~ 2n ro = = £..J c(n) · t dt. 
Jt-2At 2 +1:l.t 4 n=O 

(31) 

Then we define the local parameter z at infinity by 
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dz = ro. (32) 

Hence z can be expressed as a function of t by 

(33) 

and t can be expressed as a function of z by 

i<J(z)- AO(~) 
t = z+ ... = -2 · 2 • 

g<J'(z) 
(34) 

Notice that t(z) is an elliptic function. Since e has complex multiplication we have 

n: e End(e). More specified we have 

t(n:z) = F(t(z)) 

1 + n:a2 t-2 ( z) + n:a4 t-4 ( z) + ... +nap -1 t 1 - P ( z) ( 35) 

l - nd2 t-2 (z) - rcd4 t-4(z) + ... -n4-1 t I -p(z) 

where 11, ai, dj e R, This formula is due to Weber (cf. [23]). Formula (33) imply the 

formulas 

(36) 

and 

~= c(k) 2k+1 
1CZ = ..t.,,1C • --t . 

k=O 2k+ 1 
(37) 

Substitute (35) for t(n:z) in (36). Consider in equations (36) and (37) the coefficient of 
n;p2r 

zm]Y mod --r. We get the coefficients 
mp 

-- · c -(mp - 1) · 11 1 ( 1 r- l ) mp•- l 

mpr-1 2 
(38) 

and 
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1t (1 r ) -r · C - (mp - 1) 
mp 2 

(39) 

respectively from formulas (36) and (37) respectively. This implies the congruence of the 
l 

theorem. We can calculate that rt = iy(l -x)+p-Z · ( //i)2(p-l). See a more detailed proof in 

[13] .• 

There are only 8 values t with these nice supercongruences over tf (cf. [12, pp. 87-89]). 

6. CONCLUSION. 

In section 5 we introduced the numbers a(n), which are generalised Apery numbers. 
They satisfy supercongruence (29). The numbers a(n) are related to an elliptic curve. 
The Apery numbers b(n) and d(n) as defined in section 4 are related to K3 surfaces 
(cf. [7]). They satisfy other congruences which are comparable to congruence (29), 
namely 

and 

(41) 

where a+bi is as defined in section 4 and ir is a root of some polynomial of degree 3 
(see [6] or [24]). Beukers and Stienstra conjectured in [6] and [7] the supercongruences 

and 

(43) 

Van Hamme [19] proved (42) in the case that m = r = 1. Recently Young [24] proved 
(43) in the case that m = r = 1. The rest of the conjectures is at the moment unproved. 
Perhaps, the proof of Theorem 4 gives a good possibility to prove the rest of the 
conjectures. 
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