
Title: Mechanical cell-substrate feedback explains pairwise and collective

endothelial cell behavior in vitro

Running title: Modeling mechanical cell-ECM feedback
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Abstract

In vitro cultures of endothelial cells are a widely used model system of the collective behavior of

endothelial cells during vasculogenesis and angiogenesis. When seeded in a extracellular matrix,

endothelial cells can form blood vessel-like structures, including vascular networks and sprouts.

Endothelial morphogenesis depends on a large number of chemical and mechanical factors, in-

cluding the compliancy of the extracellular matrix, the available growth factors, the adhesion of

cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models

have been proposed to explain the role of each of these biochemical and biomechanical effects,

the mechanisms underlying in vitro angiogenesis are still poorly understood. Most explanations

focus on predicting the whole vascular network or sprout from the underlying cell behavior,

and ignore the intermediate organizational levels of the system. Here we show, using a hybrid
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Cellular Potts and finite-element computational model, that a single set of biologically plausible

rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the result-

ing strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for

reproducing the behavior of individual endothelial cells and the interactions of endothelial cell

pairs in compliant matrices. With the same set of rules, the model also reproduces network for-

mation and sprouting from epithelial spheroids. Combining the present, mechanical model with

aspects of previously proposed mechanical and chemical models may lead to a more complete

understanding of in vitro angiogenesis.

Introduction

How the behavior of the cells in a multicellular organism is coordinated to form structured

tissues, organs and whole organisms, is a central question in developmental biology. Keys to

answering this question are chemical and mechanical cell-cell communication and the biophysics

of self-organization. Cells exchange information by means of diffusing molecular signals, and by

membrane-bound molecular signals for which direct cell-cell contact is required. In general, these

developmental signals are short-lived and move over short distances. The extracellular matrix

(ECM), the jelly or hard materials that cells secrete, provides the micro-environment the cells

live in. Apart from its supportive function, the ECM mediates molecular (1) and biomechanical

(2) signals between cells. Mechanical signals, in the form of tissue strains and stresses to which

cells respond (3), can act over long distances and integrate mechanical information over the

whole tissue (4), and also mediate short-range, mechanical cell-cell communication (2). How

such mechanical cell-cell communication via the ECM can coordinate the self-organization of

cells into tissues is still poorly understood. Here we propose a cell-based model of endothelial

cell motility on compliant matrices to address this problem.

A widely used approach to study the role of cell-ECM interactions in coordinating collective

cell behavior is to isolate cells and the ECM (potentially from an exogenous source) in a cell

culture. This makes it possible to study the intrinsic ability of cells to form tissues in absence
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of potential organizing signals or pre-patterns from adjacent tissues. A problem particularly

well-studied in cell cultures is the ability of endothelial cells to form blood vessel like struc-

tures, including the formation of vascular-like networks from dispersed cells and the sprouting

of spheroids. To this end, endothelial cells are seeded on top of an ECM material (e.g. Matrigel,

collagen, or fibrin) in dispersed, initial configurations (5, 6), as cellular spheroids embedded in

the ECM (7, 8), or as confluent monolayers (9, 10, 11). Although the conditions required for

vascular-like development in these in vitro culture systems are well established, the mechanisms

driving pattern formation of endothelial cells are heavily debated, and a wide range of plau-

sible mechanisms has been proposed in the form of mathematical and computational models

reproducing aspects of angiogenesis (reviewed in (12, 13, 14)).

Typical ingredients of network formation models are (a) an attractive force between endothe-

lial cells, which is (b) proportional to the cell density, and (c) inhibited or attenuated at higher

cellular densities. The attractive force can be due to mechanical traction or due to chemotaxis.

For example, Manoussaki and coworkers (15, 16) proposed a mechanical model in which en-

dothelial cells exert a uniform traction force on the ECM, dragging the ECM and the associated

endothelial cell towards them. The traction forces saturated at a maximum cell density. Namy

and coworkers(17) replaced the endothelial cells’ passive motion along with the ECM for active

cell motility via haptotaxis, in which cells move actively towards higher concentrations of the

ECM. Both models also included a strain-biased random walk term for the endothelial cells,

but they found that it had little effect on network formation; the mechanism was dominated by

cell aggregation. In their model based on chemotaxis, Preziosi and coworkers (18, 19) assumed

that cells attract one another via the secreted chemoattractant VEGF. Due to diffusion and

first-order degradation, the chemoattractant forms exponential gradients around cells leading to

cell aggregation in much the same way as that assumed in the Manoussaki and Namy models.

These chemotaxis-based hypotheses formed the basis for a series of cell-based models based on

the cellular Potts model. Assuming chemotactic cell-cell attraction, and a biologically-plausible

overdamped cell motility, the cells in these CPM models form round aggregates, in accordance
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with the Keller-Segel model of cell aggregation (20). Additional assumptions, including an elon-

gated cell shape (21) or contact inhibition of chemotaxis (22) are needed to transform these

circular aggregates into vascular-like network patterns. Related network formation models stud-

ied the role of ECM-bound growth factors (23, 24) and a range of additional secreted and

exogenous growth factors (24), and studied the ability of the contact-inhibition mechanism to

produce three-dimensional blood-vessel-like structures (25), Szabó and coworkers found that

in culture, astroglia-related rat C6 cells and muscle-related mouse C2C12 cells organize into

network-like structures on rigid culture substrates (26), such that ECM-density or chemoattrac-

tant gradients are excluded. They proposed a model where cells were preferentially attracted

to or preferentially adhered to locally elongated structures. An alternative mechanism for “gel-

free” network formation was found in the cell elongation mechanism (21) that also produces

networks in absence of chemoattractant gradients (27).

Paradoxically, despite the diverse assumptions underlying the mathematical models proposed

for vascular network formation, many are at least partly supported by experimental evidence.

This suggests that a combination of chemotaxis, and chemical and mechanical cell-ECM interac-

tions drives network formation, or that each alternative mechanism operates in a different tissue,

developmental stage, or culture condition. A problem is that one mathematical representation

may represent a range of equivalent alternative underlying mechanisms. For example, a model

representing cell-cell attraction cannot distinguish between chemotaxis-based cellular attraction

(18, 19, 21, 22), attraction via haptotaxis (17), direct mechanical attraction (28, 15) or cell

shape dependent adhesion (26, 29), because the basic principles underlying these models are

equivalent (22, 12). As a solution to this problem, a sufficiently correct complete description of

endothelial cell behavior should suffice for the emergence of the subsequent levels of organization

of the system, an approach that requires that the system has been experimentally characterized

at all levels of organization. The role of cell traction and ECM mechanics during in vitro an-

giogenesis have been characterized experimentally particularly well, making it a good starting

point for such a multiscale approach. Endothelial cells apply traction forces on the extracellular
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matrix, as demonstrated by a variety of techniques, e.g., wrinkle formation on elastic substrates

(9), force-generation on micropillar substrates (30) and traction force microscopy (31, 6). Using

scanning electron microscopy, Vernon and Sage (9) found that ECM fibers radiate from endothe-

lial cells cultured in Matrigel, suggesting that the traction forces reorient the fiber orientation in

the extracellular matrix. The cellular traction forces produce local strains in the matrix, which

can affect the motility of nearby cells (2). Thus endothelial cells can both generate, and respond

to local strains in the extracellular matrix, suggesting a feedback loop that may act as a channel

for mechanical cell-cell communication (2) and hence coordinate collective cell behavior. Here,

we use a hybrid cellular Potts and finite-element model to show that a set of simple assumptions

mimicking mechanical cell-cell communication via the ECM suffices to reproduce observed single

cell behavior (32, 33), pairwise cell interactions (2) and network formation and sprouting .

Mathematical Model

To model the biomechanical interactions between endothelial cells and compliant matrices, we

developed a hybrid of the Cellular Potts model (CPM) (34, 35) to represent the stochastic

motility of the endothelial cells, and a finite-element model (FEM) (36, 37, 38) of the compliant

extracellular matrix. A documented simulation code is provided as part of the Supporting

Material (supporting text and Code S1) and a detailed list of parameter values in given in Table

S1.

Cellular Potts model

We used the cellular Potts model (CPM) (34, 35) to mimic the random motility of cells. The

CPM represents cells on a regular square lattice, with one biological cell covering a cluster

of connected lattice sites. To mimic random cell motility, the CPM iteratively expands and

retracts the boundaries of the cells, depending on the forces acting on them and on the forces

exerted by the cells themselves, which are summarized in a balance of forces represented by the

Hamiltonian,
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H =
∑
s∈cells

λ

(
a(s))−A(s)

A(s)

)2

+
∑

(~x,~x′)

J(s(~x), s(~x′))(1− δ(s(~x), s(~x′))). (1)

The first term is an (approximate) volume constraint, with a(s) the actual volume of the cells,

A(s), a resting volume, and λ an elasticity parameter that regulates the permitted fluctuation

around the resting volume. The second term represents cell-cell and cell-medium adhesion, where

J(s(~x), s(~x′)) is the contact cost between two neighboring pixels. Throughout the manuscript

we use neutral cell-cell adhesion settings for which cells do not adhere J(s(~x), s(~x′)) = 2.5 at

cell-cell interfaces, and J(s(~x), 0) = J(0, s(~x′)) = 1.25 at cell-medium interfaces, with s(~x) > 0

and s(~x′) > 0.

The CPM iteratively selects a random lattice site ~x′ and attempts to copy its state, s(~x′), into

a randomly selected adjacent lattice site ~x. To reflect the physical, “passive” responses of the cells

to forces acting on it, the copy step is always accepted if it minimizes the Hamiltonian. To mimic

the active motility of biological cells, which potentially counteracts forces from neighboring cells,

we accept the moves with Boltzmann probability if they increase the Hamiltonian,

P (∆H) =


1 if ∆H < 0

e−∆H/T if ∆H ≤ 0.

(2)

where ∆H is the change in H if the copying were to occur, and T > 0 parameterizes the intrinsic

cell motility.

During one Monte Carlo Step (MCS), we perform n such copy attempts, with n equal to

the number of sites in the lattice. To prevent cells from splitting up, we apply a connectivity

constraint that rejects moves that would split a cell (21).

Finite Element Model of substrate

A two-dimensional finite element model (FEM; reviewed in (36, 37, 38)) is used to describe the

compliant substrate on the which cells move. The FEM represents the substrate as a lattice of
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elastic finite elements, e, with each element corresponding to a pixel of the CPM. The nodes of

the elements interact with each other via the set of equations,

Ku = f, (3)

with stiffness matrix K, displacement u, and forces f . u contains the displacements of all nodes,

which are the unknowns that the FEM calculates based on the traction forces f that the cells

apply onto the ECM. In a two-dimensional analysis the forces f are divided by the thickness

they are working on. For this we assume an effective substrate thickness t = 10 µm

To a first approximation, in this work we consider an isotopic, uniform, linearly elastic

substrate (39, 40). The global stiffness matrix K is assembled from the element stiffness matrices

Ke. The element stiffness matrices describe the interactions of the nodes of each element, e,

with one another,

Ke =

∫
Ω
BTDBdΩ. (4)

where B—the conventional strain-displacement matrix for a four-noded quadrilateral element—

relates the node displacements ue to the local strains, as,

ε = Bue. (5)

D is the material property matrix. Assuming plane stress conditions,

D =
E

1− v2


1 v 0

v 1 0

0 0 1
2(1− v),

 (6)

where E is the material’s Young’s modulus, and ν is Poisson’s ratio. Throughout this study, we

use a Poisson’s ratio ν of 0.45 and stiffness values E ranging from 0.5kPa to 32kPa, which are

plausible values for most cell culture substrates (41, 42, 40).
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Mechanical cell-substrate coupling

To simulate cell-substrate feedback we alternate the Cellular Potts steps with finite element

iterations. We assume that cells apply a cell-shape dependent traction on the ECM and the

cells respond to the resulting ECM strains by adjusting their cell shape. Using the CPM grid

as the finite-element mesh, the pixels of the CPM become four-node square elements in the

FE-mesh. Adopting the model by Lemmon & Romer (43), we assume that each node i covered

by a CPM cell pulls on all other nodes j in the same cell, at a force proportional to distance

~di,j . The resultant force ~Fi on node i then becomes,

~Fi = µ
∑
j

~di,j(∆x)4, (7)

where ∆x is the lattice spacing and µ gives the tension per unit length. This parameter has been

scaled such that the total cell traction corresponds to experimentally reported values (44). We

used a value of µ = 0.01nN/µm throughout the simulations. The factor ∆x4 reflects the fact

that a change in element size changes the area for node i and the number of nodes j pulling at

node i. The resultant forces point towards the cell centroid, and are proportional to the distance

from it (Fig. 1). In this way a CPM configuration yields a traction force F , which is added to

the forces f for the finite element calculation. To calculate the resulting ECM strains, we solve

Ku = f for the node displacements u with a preconditioned conjugate gradient (PCG) solver

(45), and derive the local strains using Eq. 5.

After a steady-state solution for the finite-element model has been obtained, we run a Monte

Carlo Step of the CPM. We assume durotaxis, i.e., the CPM cells preferentially extend pseu-

dopods on matrices of higher stiffness (e.g., because of strain stiffening). In analogy to existing

chemotaxis algorithms (46) at the time of copying we add the following durotaxis term to ∆H

in response to the strain- and orientation-dependent ECM stiffness E,

∆Hdurotaxis = −g(~x, ~x′)λdurotaxis

(
f(E(ε1))(~v1 · ~vm)2 + f(E(ε2))(~v2 · ~vm)2

)
, (8)
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with g(~x, ~x′) = 1 for extensions and g(~x, ~x′) = −1 for retractions, λdurotaxis is a parameter,

~vm = ~̂x− ~x′, the copy direction, and ε1 and ε2, and v1 and v2 eigenvalues and eigenvectors of ε

representing the principal strains and strain orientation. The sigmoid f(E) = (1 + exp(−β(E −

Eθ))) sets threshold stiffness Eθ, and β, the steepness of the sigmoid. This function starts at

zero, goes up when there is sufficient stiffness, and eventually reaches a maximum. This means

that a certain level of stiffness is needed to cause a cell to spread. Due to limitations of our

current finite element code and for reasons of computational efficiency, we assumed a linearly

elastic, isotropic material in the FEM, thus precluding explicit strain stiffening effects in the

FEM calculations. Instead, we implemented the effect of strain-stiffening in the cell response,

where cells perceive increased ECM stiffness as a function of the local strain,

E(ε) = E0(1 + ε/εst), (9)

where E0 sets a base stiffness for the substrate, and εst is a stiffening parameter.

Results

Durotaxis

First we set out to capture, at a phenomenological level, the response of endothelial cells to

static strains in the ECM in absence of cellular traction forces. When grown on statically,

uniaxially strained collagen-enriched scaffolds, murine embryonic heart endothelial cells (H5V)

cells orient in the direction of strain, whereas cells grown on unstrained scaffolds orient in random

directions (47). Because the collagen fibers make the scaffold stiffen in the direction of strain, we

hypothesized that the observed alignment of cells is due to durotaxis, the propensity of cells to

migrate up gradients of substrate rigidity (48) and to spread on stiff substrates (49, 50). In our

model we assumed (a) strain stiffening: a strained ECM is stiffer along the strain orientation

than perpendicular to it, such that (b) due to durotaxis the endothelial cells preferentially

extend pseudopods along the strain orientation, along which the ECM is stiffest, giving cells get
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the most grip. To keep the finite-element problem computationally tractable, we assumed an

isotropic and linearly elastic ECM. With these assumptions it is not possible to model strain

stiffening explicitly. We therefore mimicked durotaxis by increasing the pseudopods’ probability

of extension along the local strain orientation, and reducing the probability of retraction (see

Methods for detail).

Fig. 2 A shows the response of the simulated cells to static stress. With increasing values

of the durotaxis parameter λdurotaxis (see Eq. 8, the endothelial cells elongate more. To test the

sensitivity of the durotaxis method for lattice effects, we varied the orientation of the applied

stress over a range [0 − 180]◦ and measured the resulting orientation of the cells. Fig. 2 shows

that the average orientation of the cells follows the orientation of the stretch isotropically. Thus

the durotaxis component of our model phenomenologically reproduces published responses of

endothelial cells to static stress (47).

Cell traction

We next attempted to mimic the forces applied by cells onto the extracellular matrix, in absence

of durotaxis. Traction-force microscopy experiments (31, 49) show that endothelial cells contract

and exert tensional forces on the ECM. The forces are typically directed inward, towards the

center of the cell, and forces concentrate at the tips of pseudopods. A recent modeling study

(43) found that an accurate prediction of the direction and relative magnitudes of these traction

forces within the cell can be obtained by assuming that each volume element i in the cell pulls on

every other volume element in the cell j with a force proportional to their relative distance, di,j .

Because this model gives experimentally plausible predictions for fibroblasts, endothelial cells

and keratocytes (43), we adopted it to mimic the cell-shape dependent contractile forces that

endothelial cells exert onto the ECM. Fig. 1 shows the contractile forces (black) and resulting

ECM strains (blue) generated in our model by two adjacent cells. The traction forces and ECM

strains become largest at the cellular “pseudopods”, qualitatively agreeing with traction force

fields reported for endothelial cells (31).
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Mechanical cell-ECM feedback qualitatively reproduces effect of substrate

stiffness on cell shape

The two previous sections discussed how the simulated cells can respond to and induce strain

in the ECM in an experimentally plausible way. To test how the simulated cells respond to the

strains they generate themselves, we studied the behavior of simulated, single cells in presence

of both the durotaxis and the cell traction mechanisms. As Fig. 3 and Movie S1 demonstrate,

matrix stiffness affects both the morphology and motility of the simulated cells. On the most

compliant substrate tested (0.5 kPa) the simulated cells contract and round up, whereas cells

spread isotropically on the stiffest substrate tested (32 kPa). On matrices of intermediate

stiffnesses (around 12 kPa) cells elongate. Such dependence of cellular morphology on the

stiffness of the ECM mimics the behavior of endothelial cells (49) and cardiac myocytes (33) in

matrices of diverse stiffness. Thus the model rules for cell traction and stretch guidance based on

durotaxis and strain stiffening suffice to reproduce an experimentally plausible cellular response

to matrix stiffness.

Mechanical cell-ECM feedback coordinates behavior of adjacent cells

Reinhart-King and co-workers (2) demonstrated that strains induced by endothelial cells on a

compliant substrate can affect the behavior of adjacent cells (2). On soft substrates (5.5 kPa or

below) the cells reduced the motility of adjacent cells, whereas on stiff substrates (33 kPa) such

an effect was not found. On substrates of intermediate stiffness (5.5 kPa), adjacent endothelial

cells repeatedly attached and detached from one another. They also showed that on 5.5kPa

substrates cells move more slowly in close vicinity of other cells, than when they are on their

own. Because the extent to which cells could affect the motility of nearby cells depended on

matrix compliancy, Reinhart-King et al.(2) proposed that mechanical traction forces could act

as a means for cell-cell communication. To test if the simple strain-based mechanism represented

in our model suffices for reproducing such mechanical cell-cell communication, we initiated the

simulations with pairs of cells placed adjacent to one another at a distance of fourteen lattice
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sites corresponding with a distance of 3.5 µm, and ran a series of simulations on substrates of

varying stiffness (Fig. 4 A and Movie S2). The cells behaved similar to the single cell simulations

(Fig. 3), with little cell-cell interactions at the lower and higher stiffness ranges. Consistent with

the observations by Reinhart-King (2), cell pairs on substrates of intermediate stiffness (12-14

kPa) dispersed more slowly than individual cells, whereas individual cells and cell pairs dispersed

at identical rates on stiff (16 kPa or more) or soft (below 10 kPa) substrates (Fig. 4, B-D). Also

in agreement with the observations of Reinhart-King et al. (2), on a simulated substrate of

intermediate stiffness (12 kPa) the cells responded to the matrix strains induced by the adjacent

cell by repeatedly touching each other, and separating again (Fig. 4 E).

Mechanical strain can also coordinate the orientation of cells. Fibroblasts seeded on a com-

pliant gel tend to align in a nose-to-tail fashion along the orientation of mechanical strain (51).

Bishofs and Swartz (40) proposed a computational model to explain this observation. Their

model assumes that cells prefer the direction of maximal effective stiffness, where the cell has to

do the least work to build up a force. This work is minimal between two aligned cells, because

maximum strain stiffening occurs along the axis of contraction. Interestingly, visualization of

our model results (Fig. 2 C) suggested similar nose-to-tail alignment of our model cells at around

12 kPa. To quantify such alignment in our simulations, we measured the angle α between the

lines l1 and l2, defining the long axes of the cells and crossing the centers of mass as the cells

(Fig. 4 F). We classified the angles as acute (α < π/2; i.e. no alignment) or obtuse (α ≥ π/2;

alignment). At matrix stiffnesses up to around 10 kPa, about half of the angles α were obtuse,

corresponding with the expected value for uncorrelated cell orientations. However, at 12 kPa and

14 kPa significantly more than half of the cell pairs had oriented into obtuse triangles (78/100

for 12 kPa, p = 7.95× 10−9 and 72/100 for 14 kPa, p = 6.29× 10−6, binomial test), suggesting

that the mechanical coupling represented in our model causes cells to align in a head-to-tail

fashion.
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Mechanical cell-cell communication drives biologically-realistic collective cell

behavior

After observing that the local, mechanical cell-ECM interaction assumed in our model sufficed for

correctly reproducing many aspects of the behavior of individual endothelial cells on compliant

matrices and of the mechanical communication of pairs of endothelial cells on compliant matrices,

we asked what collective cell behavior the mechanical cell-cell coordination produced. When

seeded subconfluently onto a compliant matrix (e.g., Matrigel), endothelial cells tend to organize

into polygonal, vascular-like networks (5, 52, 6, 53). To mimic such endothelial cell cultures,

we initialized our simulations with 450 cells uniformly distributed over a lattice of 300 × 300

pixels (0.75 × 0.75 mm2), corresponding with a cell density of 800 endothelial cells per mm2.

In accordance with experimental observations (6), after 3000 MCS networks had not formed on

soft matrices (0.5-4 kPa) or on stiff matrices (16-32 kPa) (Fig. 5 A): the cells tended to form

small clusters (Fig. 5 A). Interestingly, on matrices of intermediate stiffness after around 300

MCS the cells organized into chains (8 kPa) or network-like structures (10 kPa and 12 kPa)

similar to vascular network-like structures observed in endothelial cell cultures (5, 52, 6, 53).

Fig. 5 B and Movie S3 show a time-lapse of the development of a network configuration on

a substrate of 10kPa. The cells organize into a network structure with a few hundred Monte

Carlo steps. The networks stay dynamically stable, with minor remodeling events taking place,

including closure and splitting of lacunae. Fig. 5 C shows such a splitting event in detail. In

an existing lacuna (t=1800) stretch lines bridge the lacunae, and connect two groups of cells

penetrating the lacuna (t=1980). The cells preferentially follow the path formed by these stretch

lines (t=2150) and have reached the other side of the lacuna by t=2400. Interestingly, similar

bridging events were observed in endothelial cell cultures (6).

We next asked if the mechanical model could also reproduce sprouting from endothelial

spheroids (7, 8). Fig. 6 shows the results of simulations initiated with a two-dimensional spheroid

of cells after 3000 MCS. On soft (0.5-8 kPa) and on stiff (32 kPa) matrices the spheroids stayed

intact over the time course of the simulation. On intermediary stiffnesses (10-12 kPa) the
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spheroids formed distinct sprouts, visually resembling the formation of sprouts in in vitro en-

dothelial spheroids (7, 8). On the 14 kPa and 16 kPa matrices the cells migrated away from the

spheroid, with some cell alignment still visible for the 14 kPa matrices. Observation of a sprout

protruding from a spheroid at 10 kPa suggests that a new sprout starts when one of the cells at

the edge of the cluster protrudes and increases the strain in front of it. In a positive feedback

loop this strain, via an increase in perceived stiffness, guides the protruding cell forward. The

strain in its wake then guides the other cells along (Fig. 6 C).

Discussion

In this paper we introduced a novel computational model of the in vitro collective behavior

of endothelial cells seeded on compliant substrates. The model is based on the experimentally

plausible assumptions that (a) endothelial cells generate mechanical strains in the substrate

(43, 31), (b) they perceive a stiffening of the substate along the strain orientation, and (c) they

extend preferentially on stiffer substrate.(47). Thus, in short, the assumptions are: cell traction,

strain stiffening, and durotaxis. The model simulations showed that these assumptions suffice to

reproduce, in silico, experimentally observed behavior of endothelial cells at three higher-level,

spatial scales: the single cell level, cell pairs, and the collective behavior of endothelial cells.

In accordance with experimental observation (49, 33), the simulated cells spread out on stiff

matrices, they contracted on soft matrices, and elongate on matrices of intermediate stiffness

(Fig. 3). The same assumptions also suffice to reproduce experimentally observed pairwise

cell-cell coordination. On matrices of intermediate stiffness, endothelial cells slow down each

other (Fig. 4 B) and repeatedly touch and retract from each other (Fig. 4 E and Movie S2), in

agreement with in vitro observations of bovine aortic endothelial cells on acrylamide gels (2).

Also, in agreement with experimental observations of fibroblasts on compliant substrates (51)

and previous model studies (40) the cells repositioned into an aligned, head-to-tail orientation

(Fig. 4 F). The model simulation further suggest that these pairwise cell-cell interactions suffice

for vascular-like network formation in vitro (Fig. 5 and sprouting of endothelial spheroids (Fig. 6).
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The correlation between pairwise cell-cell interactions and collective cell behavior observed in

our computational model parallels observations in vitro. Cells elongate due to positive feedback

between stretch-guided extension and cell traction, as previously suggested by Winer et al. (54).

Elongated and spindle-shaped cells are considered indicative of future cell network assembly

(6). Our model suggests that the elongated cell shapes produce oriented strains in the matrix,

via which cells sense one another at a distance. In this way new connections are continuously

formed over “strain bridges” (see e.g. Fig. 5 C), while other cellular connections break producing

dynamically stable networks as illustrated in Movie S3. Such dynamic network restructuring

was also observed during early embryonic development of the quail embryo (55) and in bovine

aortic endothelial cell cultures (6), but not in human umbilical vein endothelial cell cultures

(21, 53). Also in agreement with experimental results, the collective behavior predicted by our

model strongly depends on substrate stiffness. The strongest interaction between cell pairs is

found on substrates of intermediate stiffness, enabling network formation (2), whereas network

assembly cannot occur stiff substrates(6).

These agreements with experimental results are encouraging, but our model also lacks a

number of properties of in vitro angiogenesis that pinpoint key components still missing from

our description. In our simulations, single cells dispersed more quickly on soft gels (Fig. 4 B)

than on stiff gels (Fig. 4 D and Fig. S1). This model behavior contradicts experimental ob-

servations showing that endothelial cells move fastest on stiff substrates (2). Also, although

the model correctly predicts the absence of network formation on stiff substrates, it cannot yet

explain the observation that reducing the substrate adhesivity of the endothelial cells rescues

network formation (6). On compliant gels endothelial cells must secrete fibronectin to form

stable networks, whereas fibronectin polymerization inhibitors elicit spindle-like cellular pheno-

types associated with network formation on stiff matrices, under conditions where networks do

not normally form (6). To explain these observations, straightforward future extensions of the

model will include a more detailed description of cell-substrate adhesion, combined with models

of ECM secretion and proteolysis (23, 13, 56, 24).
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The current model also assumes a uniform density and thickness of the extracellular ma-

trix, whereas under some culture conditions the endothelial cells have been reported to pull

the extracellular matrix underneath them (57), producing gradient in matrix density and/or

thickness. Manoussaki et al. (15) and Namy et al.(17) showed that such matrix pulling may

mediate attractive forces between the endothelial cells and drive formation of networks, either

due to passive cell movement along with the matrix (15) or haptotaxis along the ECM density

gradients. These models (15, 17) included an anisotropic diffusion term to simulate preferential

movement along the local strain-direction, but the term was neither necessary nor sufficient for

network formation. This finding contradicts our model in which strain-induced sprouting is the

driving force of network formation and sprouting. Possibly the two models represent the two

extremes of network formation on visco-elastic matrices. Here, the Manoussakl et al. and Namy

et al. models represent patterning on viscous matrices, in which cellular traction forces pull the

matrix together while inducing little strain or stress. Our model would represent elastic mate-

rials, in which pulling forces induce local strains. Future extensions of the model will include

matrix flows (e.g. by assuming a matrix thickness field) allowing us to study the full range of

viscoelastic matrices.

Apart from these biological issues, we made several mathematical simplifications that we

will improve upon in future models of cell-ECM interactions. In the current model, for compu-

tational efficiency, we used a finite element model with linearly elastic materials, and mimicked

durotaxis via a perceived strain-stiffening (Eq. 9) where cells perceive increased ECM stiff-

ness due to local strain. In our ongoing work we are interfacing the open source package FEBio

(http://febio.org) with the Cellular Potts package CompuCell3D (http://compucell3D.org).

This will allow us to run our model with any ECM material available to users of FEBio, including

strain-stiffening materials. Using an actual strain stiffening material may lead to longer-range

interactions between cells, because locally stiffer regions may channel the stress between the cells

(58). A further technical limitation of our model is that we currently only run two-dimensional

simulations, representing cells moving on top of a two-dimensional culture system. The ongoing
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interfacing of FEBio and CompuCell3D will pave the way for modeling cell-ECM interactions

in three-dimensional tissue cultures.

A quite puzzling aspect of vascular network formation and spheroid sprouting is that so many

alternative, often equally plausible computational models can explain it (reviewed in (12)). In-

cluding the present model, there are at least three alternative computational models based on

mechanical cell-ECM interactions (15, 28, 16, 17, 59), a series of models assuming chemoattrac-

tion between endothelial cells (18, 19, 60, 21, 22, 61) and extensions thereof (62, 23, 24), and

models explaining network formation in absence of chemical or mechanical fields (26, 29, 27).

Each of the models explain one aspect of vascular network formation or a response to an experi-

mental treatment that the other models cannot explain, e.g. the relation between spindle shaped

cell phenotypes and network formation (21, 27) for models, the requirement of VE-cadherin sig-

naling for network formation and sprouting (22, 26), the binding and release of growth factors

from the ECM (23), the role of mechanical ECM restructuring and haptotaxis (15, 28, 17), the

response of vascular networks to toxins (24), or the role of intracellular Ca2+ signaling (62).

Among these alternative models, we must now experimentally falsify incorrect mechanisms, and

fine-tune and possibly combine the remaining models to arrive at a more complete understand-

ing of the mechanisms of angiogenesis. To this end, we are currently quantitatively comparing

the kinetics of patterns produced by chemotaxis-based, traction-based, and cell-elongation based

models with the kinetics of in vitro networks (21, 53). There resulting, more complete model

would likely contain aspects of each the available computational models and assist in explained

the conflicting results obtained from the available experimental systems, culture conditions, and

in silico models of angiogenesis.
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Figure Legends

FIGURE 1. Visualization of simulated traction forces (black arrows) and resulting matrix strains

(blue line segments) generated in the proposed hybrid Cellular Potts and finite-element model
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FIGURE 2. Simulated cellular responses to static strains. Cells do not generate traction forces

in this figure. (A) Cell length as a function of the guidance parameter on a substrate stretched

along the vertical axis. (B) Cell orientation as a function of the strain orientation. α=10

(simulated with α=10). Error bars show standard deviation for n = 100. Insets show five

simulations per value tested

FIGURE 3. (A) Single cells on substrates of varying substrates after 100 MCS. (B) Cell length

as a function of substrate stiffness. (C) Cell eccentricity as a function of cell length

FIGURE 4. Simulated cell-cell interactions on substrates of varying stiffnesses. (A) Visualization

of cell shapes and substrate strains in absence of external strain. Line pieces indicate strain

magnitude and orientation. (B-D) Mean square displacement of individual cells (blue errorbars)

and cell pairs (red errorbars) on simulated substrates. (B) 4 kPa; (C) 12 kPa; (D) 32 kPa. Error

bars indicate standard deviation for n = 100 after 500 MCS. (E) Number of cell-cell contacts

made over 500 MCS between two simulated cells initiated at a distance of fourteen lattice sites

from each other. (F) Quantification of head-to-tail alignment of cells. An obtuse angle between

the two cells’ long axes indicates that cells are oriented head-to-tail. Plotted is the fraction of

Monte Carlo steps that the two cells are aligned head-to-tail, over 100 independent simulations

of 500 MCS on a field of 0.25 × 0.25 mm2 (100 × 100 pixels). Measurements start from 20 MCS

FIGURE 5. Simulated network formation assay. (A) Simulated collective cell behavior on

substrates of varying stiffness, with a uniformly distributed initiated configuration of cells. (B)

Time lapse showing the development of a polygonal network on a 10kPa substrate (time in

MCS). Panels A and B represent a 0.75 × 0.75 mm2 area (300 × 300 pixels) initiated with

450 cells. (C) Close-up of simulated network formation on a 10 kPa substrate, showing the

reconnection of two sprouts. Time in MCS. (D) Sprouting observed in cultures of bovine aortic

endothelial cells, where circled regions highlight endothelial cells sprouting from existing cords.

Time in hours. Bar = 50 µm. Panel �D reproduced from (6) with permission.

FIGURE 6. Simulated spheroid assay. (A) Collective behavior in a simulation initiated with a
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two-dimensional “spheroid” of cells, on substrates of varying stiffness. (B) Time lapse showing

a sprouting spheroid on a 10kPa substrate. Time in MCS. Panels A and B represent a 0.75 ×

0.75 mm2 area (300× 300 pixels) initiated with a spheroid consisting of 113 cells; (C) Close-up

of sprouting on a 10 kPa substrate. Time in MCS. Black line pieces indicate strain magnitude

and orientation
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