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1. Introduction

A large network of blood vessels, called the circulatory system, supplies the
body with oxygen and nutrients, and removes the waste products of meta-
bolism. The circulatory system starts to develop early on during embryonic
development when groups of cells form primitive networks that later connect
to form the circulatory system. Disturbance of blood vessel formation during
the early stages of development is often lethal because without blood vessels
organs do not develop properly. After birth, blood vessel formation continues
to facilitate growth and repair.

The smallest blood vessels, called capillaries, develop in a process that is
called angiogenesis. This process plays an important role in the abovemen-
tioned physiological processes, but it is also important in many diseases. Two
common examples of diseases that involve blood vessel growth are cancer [1]
and eye diseases [2]. When a tumor grows too big to directly extract oxygen
from its environment, tumor cells start secreting growth factors to attract
blood vessels [1]. These new blood vessels supply the tumor with oxygen and
nutrients that enable the tumor to grow [1]. Furthermore, the tumor vascu-
lature acts as a conduit for tumor cells to enter the blood stream, which can
result in tumor metastasis [1, 3, 4]. Blood vessel growth can cause damage to
the retina and this results in an impaired vision or blindness. In various forms
of retinopathy, such as proliferative diabetic retinopathy and retinopathy of
prematurity, hypoxia induces the formation of new blood vessels [2]. These
new vessels can obscure vision or damage the retina. In age-related macular
degeneration blood vessels grow behind the retina which also damages the
retina [2] and results in a loss of central vision.

Recently, blood vessel formation has also be studied outside of the context
of diseases. In the upcoming field of tissue-engineering blood vessel forma-
tion is studied because larger tissues and organs can only function when they
become vascularized [5-7]. When vascularization of a tissue engineered im-
plant depends on blood vessel ingrowth from the host, vascularization takes
a up to several weeks [8]. During this time the core of the implant is deprived
of oxygen and nutrients and this could damage the implant. Recent studies
have focused on improving blood vessel formation after implantation by using
a scaffold or adding angiogenic factors, or on inducing blood vessel growth
before implantation [7, 8].

Blood vessel formation is commonly studied in the wet lab, either in vitro
or in vivo. An alternative approach to research blood vessel formation are
computational models. Classically, computational models have been used to
test or investigate hypotheses generated in the wet lab. This is achieved by
translating the biological hypothesis into a model consisting of rules or equa-
tions. Then, by solving the equations or simulating the model, the hypothesis
can be tested. If the hypothesis is supported by the model, the model can be
used further study the hypothesis. Specific parts of the hypothesis can be



1.1. Blood vessel formation

studied by altering the model components that describe these mechanisms.
Furthermore, in contrast to wet lab experiments, the evolution of any model
component, such as cells or chemical concentrations, can be observed with-
out affecting the system. Therefore, computational modeling is good tool for
studying blood vessels formation. ldeally, computational modeling is used
alongside wet lab experiments. Computational models can help to steer ex-
periments, while wet lab experiments are necessary to validate the model.
Together, these two methods can help us to provide new insights in the devel-
opment of blood vessels in health and disease [9].

In this introductory chapter we first discuss the biological processes by which
blood vessels develop. Following this, we provide an overview of the compu-
tational modeling approaches used to better understand various aspects of
blood vessel formation. Finally, we give an overview of the research that will
be discussed in the remainder of this thesis.

1.1 Blood vessel formation

Blood vessels form via two processes: vasculogenesis and angiogenesis [10].
Vasculogenesis is the de novo formation of blood vessels, which occurs dur-
ing embryonic development. During vasculogenesis endothelial cell precur-
sors, called angioblasts, organize into primitive vascular networks [10]. An-
giogenesis, is the formation of new blood vessels from existing ones. Via this
process the primitive vascular networks that formed during vasculogenesis
are remodeled and extended. After birth, angiogenesis is responsible for the
formation of blood vessels in growing and healing tissue [10]. Altogether,
vasculogenesis is limited to the early stages of embryogenesis while angio-
genesis is the main process of blood vessel formation after early embryoge-
nesis. Therefore, we will mainly focus on angiogenesis and the cells involved
in this process.

There are two mechanisms of angiogenesis: 1) intussusceptive angiogene-
sis and 2) sprouting angiogenesis [11]. In intussusceptive, or splitting, angio-
genesis vessels split along the longitudinal direction by forming intraluminal
tissue [11, 12]. In this manner, blood vessels are remodelled with minimal
endothelial cell proliferation and migration, and without proteolysis of extra-
cellular matrix components [11, 12]. These new blood vessels are formed
during sprouting angiogenesis, which precedes intussesceptive angiogenesis
[12]. Sprouting angiogenesis, is involved in the formation of new blood ves-
sels during growth and regeneration, and in pathological processes such as
tumor vascularization and neovascularization of the eye. In sprouting angio-
genesis a new vessel sprouts from the side of an existing vessel as is illus-
trated in Figure 1.1. The wall of a blood vessel consists of quiescent endothe-
lial cells, called phalanx cells [13], and pericytes partially cover the outside of
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1. Introduction

the vessel (Figure 1.1B). When a tissue becomes hypoxic, it secretes growth
factors that activate the phalanx cells in the vessel wall [14]. One of the cells
becomes the leader cell, which is called the tip cell (Figure 1.1B) [15]. When
the tip cell migrates further it is followed by other activated cells, which are
called stalk cells [15], and simultaneously the pericytes detach from the ves-
sel wall (Figure 1.1C) [14]. The sprout grows longer because the stalk cells
directly behind the tip cell proliferate (Figure 1.1D) [15]. As the tip cell moves
further away, the cells at the base of the new sprout become quiescent pha-
lanx cells that develop a lumen and recruit pericytes (Figure 1.1E) [14]. When
the sprout grows longer new sprouts may split of from the initial sprout result-
ing in branches. Such branches later on connect with other branches, from
the same or another sprout, and thereby form a vascular network.

SRR 8 Rn

T N

m tip cell

O stalk cell
O phalanx cell
@ pericyte

Figure 1.1: Sprouting angiogenesis. A row of phalanx cells (gray) that line a the blood
vessel and pericytes (yellow) that partially cover the vessel on the outside.
B one cell is activated and becomes a tip cell that migrates outwards. C
the stalk cells (green) follow and the pericyte next to these stalk cells dis-
sociates from the vessel. D the sprout elongates because the tip cells
migrates further and the stalk cells proliferate. E at the base of the sprout
a lumen forms and pericytes are recruited.

E

Angiogenesis nor vasculogenesis requires spatial prepatterning or genetic
predetermination [9, 16]. Instead, endothelial cells migrate and thereby re-
spond to and change their own environment. This, can affect the behavior
of other endothelial cells, either close by or further away. For example, for
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sprouting angiogenesis it does not matter which endothelial cell becomes the
tip cell. As long as one cells becomes a tip cell the sprout can develop. As
the sprout growth, the environment changes and an endothelial cells in the
sprout may become a tip cell as well. This cell may either take over the tip [17,
18] or start a new sprout [15]. Thus, endothelial cell collectively self-organize
into blood vessels. Whereas genes do not predetermine the vessels that are
formed, genes do affect cell behavior. Genes are part of the pathways that
regulate cell migration and behavior. These pathways integrate signals from
outside, such a membrane-bound ligands of adjacent cells or diffuse ligand,
with the genes expressed in the cell. In this manner, cell behavior is adapted
to the environment. However, to understand the mechanisms involved in an-
giogenesis and vasculogenesis, it is not necessary to know all these path-
ways. Instead, the cell can be used as the main level of abstraction. In this
manner we can first understand which cell behaviors are important, and then
focus on the source of these behaviors. Therefore, in this thesis we will study
angiogenesis with the cell as base unit. We study how certain cell behaviors
and interactions to differentially behaving cells affect the patterns that form.

1.2 Computational models of angiogenesis

Computational models have been used to study angiogenesis since the 1980s.
Angiogenesis research benefits from this approach in three ways. Firstly,
computational models help to gain an overview in this complex system by
testing which components and interactions are minimally required. These
components and interactions can then be examined to understand their func-
tion and predict their effects [19-35]. Computational models are therefore
not only useful to gain mechanistic understanding of angiogenesis, but also
to find new therapeutic targets. In this manner, computational models can
be used to direct experimental studies. Secondly, computational models can
discriminate between and select from alternative hypotheses [36-39]. Often,
more than one hypothesis explains a biological observation, such as network
formation from dispersed endothelial cells. Computational models can test
the sufficiency of each hypotheses to reproduce the biological observations.
Predictions that result from these models can be validated experimentally
to support or reject the tested hypotheses. Thirdly, computational models
can connect and combine knowledge on single proteins and mechanisms to
examine angiogenesis as a system [17, 40-44]. Experimental research is of-
ten limited to a specific step or protein in angiogenesis and does not grasp
how this part is integrated in the whole. Ultimately, computational models
include processes at multiple scales, like extracellular matrix, cells, and cell-
regulation simultaneously. Such a model can than be used to model angio-
genesis as it happens in the body and predict how modifications at any scale
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affect angiogenesis.

The earliest models of angiogenesis were continuum models that describe
angiogenesis in terms of the spatial density of cells. The cell density is de-
scribed by a set of equations that may include processes such a random cell
movement, proliferation, chemotaxis, etc. The main advantage of these mod-
els is that they can often be solved analytically, but they are often too ab-
stract to mimic angiogenesis realistically. More complex techniques allow for
a more detailed description of angiogenesis, which yields more realistic mod-
els. Such techniques include discrete methods such as particle based model-
ing that describe cells as point-like particles and cell-based models that also
explicitly model the cell shape and membrane. These discrete methods are
often combined with continuum models, creating a hybrid model in order to
utilize the strength of both methods.

In this section we review the contribution of computational modeling to an-
giogenesis research. First, we discuss how computational modeling resulted
in several hypothetical driving mechanisms for vascular network formation.
Second, we describe several computational models that are used study spe-
cific aspects of sprouting angiogenesis. Finally, we review how the knowledge
gained from simple computational models and experiments is used to build
large multi-scale models, which can for example be used to study the effects
of anti-angiogenic drugs.

1.2.1 Network formation

During early vascular development endothelial cells join into a primitive vas-
cular network. Vascular network formation can be mimicked in vitro by seed-
ing endothelial cells on a suitable matrix containing nutrients and angiogenic
factors [45]; for example Figure 1.2A shows human umbilical vein endothelial
cells (HUVECs) seeded on Matrigel matrix forming a network-like pattern. The
conditions in in vitro network formation experiments differ greatly from in
vivo angiogenesis. Yet, specific cases of angiogenesis result in similar vascu-
lar networks such as angiogenesis in the yolk sac and retinal angiogenesis
[46].

In vitro experiments showed that, after the network is formed, almost all
matrix is located beneath the cells [47]. This led to the hypothesis that cells
pull on the matrix, resulting in matrix accumulation below cell clusters. The
pulling forces of the cells also cause the formation of tension lines, radiating
from the clusters, in the surrounding matrix, along which cells migrate [21].
This model assumes that cells can exert traction on the matrix, which results
in matrix deformation and heterogeneity of strain in the matrix. Cells prefer-
entially move along the orientation of high stress. The model suggests that
matrix remodeling suffices for network formation.

Namy and coworkers [22] combined the effects of cell traction with hap-
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Figure 1.2: Overview of vascular network formation. A vasculature developed in vitro
with HUVEC on Matrigel. B networks formed with the mechanical con-
tinuum model [22], C the chemical continuum model [20], D cell-based
model with contact inhibition [28], E the cell-based model with cell elonga-
tion [25]. F the cell-based model with preferential attraction to elongated
structures [31]. All images were reproduced with the publishers’ permis-
sion.
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totactic cell migration along matrix gradients (Figure 1.2B). They found an
optimal cell density at which networks can be created, corresponding with ex-
perimental observations [48]. Similarly, a range of matrix stiffness, which is
linked to the fibrin density of the experimental matrix, was tested. This model
suggested that active cell migration may be required for network formation
which contradicts the observations by Manoussaki et al. [21].

Both previous models consider mechanical interactions between cells and
the matrix to be the driving forces for network formation. Serini et al. [19,
20] proposed that chemotaxis is the driving force of network formation [20].
In the in vitro models cells move predominantly towards regions of high cell
density suggesting that the cells are attracted by a chemoattractant secreted
by the cells. Therefore, Serini et al. built a the computational model in which
cells secrete a chemoattractant to which cells move preferentially. This model
produces network-like patterns as shown in Figure 1.2C. Two important pre-
dictions are made based on this model. First, the model predicts an optimal
cell density for the formation of stable vascular networks and second, the
size of the meshes in the network depend on the diffusivity and decay rate of
the chemoattractant.

The mechanical and chemical hypotheses for vascular network formation
have also been combined in one mechanochemical model [37]. This contin-
uum model hypothesizes that network formation consists of two stages. First,
cells move upwards chemical gradients. Second, at higher local cell density,
the cells do not sense the gradient, but the high cell density signals them
to start remodeling the matrix. This then attracts cells to the high density
regions. The mechanochemical model showed that these assumptions in-
deed lead to network formation and that chemotaxis drives the formation of
networks while mechanical interactions stabilize the formed network. How-
ever, the mechanochemical model cannot reproduce all observations from
both the chemical and mechanical angiogenesis models. Therefore, a more
detailed description of the matrix mechanics is required that also influences
early cell migration.

Clearly, multiple hypotheses can be used to explain the experimentally ob-
served network formation. Moreover, model observations and predictions for
both the mechanical and the chemotaxis model could be reproduced in vitro
[20, 22]. The mechanical models show that matrix thickness and stiffness
may be determining factors in network formation, as has been show exper-
imentally [47]. The chemical models reproduce the VEGF dependence that
has be observed in vitro [20] as well as a characteristic length of the net-
works that depends on the diffusivity of the chemoattractant [49]. Both mod-
els only produce one similar prediction; there is an optimal cell density for
network formation, below this density cells disconnect and above this density
cells aggregate [48]. Therefore, it remains unclear whether the two mecha-
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nisms are involved in angiogenesis in different environments, or that the two
mechanism act consecutive or simultaneously during angiogenesis.

The models discussed so far use a continuum description for both cells and
mechanical or chemical fields, meaning that cells and fields are described as
densities. This kind of description is appropriate for mechanical and chemical
fields; for example, the concentration of a specific chemical can be measured
at a specific position and can have any value. However, generalization of
cells into cell densities ignores cell behavior, cell size and shape, and cell-
cell interactions, which are often key to morphogenic processes such as an-
giogenesis. Therefore, cells should be the basis of an angiogenesis model.
Cell-based models incorporate detailed cell-cell interactions as well as cell
shape and size, which can also be measured experimentally for quantifica-
tion of the parameters and the predictions of the models [9]. Dynamic cell
properties and behavior can be added by extending each cell with regulation
networks, such as signaling or genetic pathways. Altogether, cell-based mod-
els are a solid basis for computational angiogenesis models that can be used
to explain tissue effects at the cell level [16].

Various hypotheses for vascular network formation have been modeled us-
ing cell-based models. One of these models is a hybrid cell-based model,
using the cellular Potts method (CPM), which is based on the assumption that
cells chemotact toward a chemoattractant that they themselves secrete [25-
29]. This assumption is similar to the assumption used for the continuum
chemotaxis model [20]. In this cell-based model the cells’ shape, size and
membrane surface are described explicitly, and chemicals are described as
continuous fields. One of the main advantages of this cell-based model is
the more realistic chemotactic response of cells. This cell based model can
be used to simulate network formation solely by defining cell behavior and
properties. When only autocrine chemotaxis is included, network formation
only occurs for narrow parameter ranges: strongly adhering cells or steep
chemical gradients [26, 27]. However, three alternative hypotheses are pro-
posed that allowed network formation for a much wider range of parameters:
contact inhibition [28], cell elongation [25] and ECM-chemoattractant binding
[29].

The contact inhibition hypothesis proposes that cells only respond to the
autocrine chemoattractants where the cell membrane is not in contact with
other cells. This exclusive sensing is thought to be mediated through the
dual function of VE-cadherin; it acts as a homophilic trans-membrane cell-
adhesion molecule and it plays an inhibitor role in the VEGF signaling pathway
[50] which increases cell motility. Therefore, cells that are surrounded by
other cells do not respond to VEGF. This process appears to contribute to both
network formation (Figure 1.2D) and sprouting angiogenesis. The reasons
for this are best understood in the context of sprouting angiogenesis and will
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therefore be discussed in section 1.2.2.

The cell elongation hypothesis is based on the biological observation that
cells elongate during network formation. In this model, the combination of
elongated cells with autocrine chemotaxis results in network formation [25].
The final network, which can be observed in Figure 1.2E, is similar to in vitro
networks. When cell elongation is omitted, cells aggregate instead of form-
ing network, indicating that cell elongation drives network formation in this
model. The evolution of network properties over time, such as the number of
nodes and meshes, corresponds with data from in vitro experiments with HU-
VECs on Matrigel. This suggests that cell elongation may play an important
rule during network formation. In this model network formation occurs at two
time-scales. First, cell elongation induces a persistent movement along the
long axis of the cell. This causes the formation of thin branches of connected
cells. Second, the network coarsens by fusion of branches and mesh col-
lapse. This is driven by the chemotaxis that enables slow migration of cells
along their short axis.

The ECM-chemoattractant binding hypothesis is based on binding of the
chemoattractant to the ECM. VEGF is a known chemoattractant for endothe-
lial cells and it has heparin binding domains that cause VEGF to bind to the
ECM [51]. K&hn-Luque et al. [29] developed a model based on this hypothe-
sis using the CPM. In this model unbound VEGF is produced everywhere and
ECM molecules that bind VEGF are produced by cells. Unbound VEGF can bind
to the ECM molecules resulting in bound VEGF. When cells respond more to
bound VEGF than unbound VEGF, a network forms that is similar to the net-
work that develops during the first two ours of HUVECs on Matrigel [52]. In-
terestingly, cells in the branches of the network elongate by themselves. This
may suggest that cell elongation is a second step in network formation that
drives the formation of longer branches and network coarsening.

An alternative hypothesis that is not based on chemotaxis was proposed by
Szabé et al. [30, 31, 38]. Their experiments suggested that neither mechani-
cal interactions nor chemotaxis are required for network formation [30] and
that cells move preferential towards elongated cells. From these observation
they propose that network formation is driven by the preferential attraction
to elongated structures. This hypothesis has been used as a basis for both
a particle based model [30] and a cell-based model [31, 38]. In the particle
based model cells are represented by point particles that diffuse and are at-
tracted by their neighbors. While this model lacks some key cell properties,
including cell shape, it suffices as a proof-of-concept model for preferential
attraction to elongated structures. The more detailed cell-based models are
used to investigate network formation from dispersed cells [31] and sprout-
ing from a blob of cells [38]. This model suggests that cells can indeed form
networks due to short range cell-cell interactions, as is shown in Figure 1.2F.
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Sprouts formed in these networks only become stable when they connect to
other sprouts, suggesting that anastomosis stabilizes the formed network.
Because they all produce similar morphological patterns, none of the mod-
eled hypotheses can be ruled out as a driving force for network formation.
Cell-based models [25-28] suggest that autocrine chemotaxis, combined with
cell properties such as contact inhibition of cell elongation, may drive angio-
genesis. Other cell-based angiogenesis models [30, 31, 38] have suggested
that chemotaxis may not be necessary at all. Furthermore, mechanical inter-
actions between the cells and the matrix may facility network formation. It is
likely that each of these mechanisms plays a role in vascular network forma-
tion and that it depends on the circumstances which mechanism is dominant.

1.2.2 Sprouting

Sprouting angiogenesis is the formation of new vessels by creating a sprout
from the wall of the existing vessel (Figure 1.1). This form of angiogenesis
is often observed in the vicinity of hypoxic tissue that secretes angiogenic
factors, e.g., a growing tumor, which activates and attracts endothelial cells
from the existing vessels [53]. By stimulating the formation of a new vascula-
ture, a tumor is able to grow and proliferate. The mechanisms underlying the
dynamics of sprouting angiogenesis are still poorly understood. What mech-
anisms guide the growing sprout? How do biochemical and biomechanical
interactions of the ECM with cells effect sprouting? Is proliferation required
and where is proliferation located in the sprout? How are tip cells selected in
the vessel and what causes sprouts to branch? Computational models have
contributed to a better understanding of these issues.

Experiments in corneal angiogenesis show that migration of activated en-
dothelial cells and initial sprouting precedes stalk cell proliferation [55] and
this proliferation is necessary for sprout elongation [56]. These observations
indicate that sprouts will not reach the tissue that induced sprouting when en-
dothelial cells cells are not able to divide. A continuum model [32] describes
the change in cell density over time due to cell migration driven by cell diffu-
sion, chemotaxis and haptotaxis. The initial configuration of the simulation
consists of a blood vessel at one side and a tumor at the other side of the sim-
ulation domain. This tumor secretes a chemoattractant, resulting in a gra-
dient of chemoattractant that attracts cells towards the tumor. Haptotaxis
is induced by fibronectin that the cells secrete themselves. The highest lev-
els of fibronectin are present where the cell density is maximum. Therefore,
haptotaxis and chemotaxis work in opposite directions. The continuum model
suggests that, in absence of proliferation, the sprouting is restricted. The au-
thors propose that this is caused because haptotaxis outweighs chemotaxis
and increasing the number of cells would increase the chemotactic response.

A drawback of this model is that it describes cells as a density field, hence it

11
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Figure 1.3: Overview of the computational models of angiogenic sprouting. A corneal
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angiogenesis as modeled in the discrete model based on tip cell elasticity
and stalk cell adhesion [35]. B networks formed with the discrete model
with chemotaxis and fibrinectin induced haptotaxis [54]. C sprouting in-
duced by preferential attraction to elongated structures in a cell-based
model [38]. D sprouting angiogenesis in a cell-based model with a hetero-
geneous ECM [34]. E sprouting induced by contact inhibition of chemo-
taxis [28]. F tip cell selection and sprouting in an agent-based model [41].
All images were reproduced with the publishers’ permission.
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cannot describe how the sprout breaks up due to lack of proliferation. There-
fore, a discrete modeling approach has been introduced to study cell prolif-
eration in the sprout [35]. As illustrated in Figure 1.3A, the model mimics a
cornea with a lesion in the center from which VEGF is secreted. A sprout grows
from the periphery and consist of multiple cell types; one leading tip cell and
multiple following stalk cells. The tip cell is attracted by VEGF and therefore
migrates towards the center of the cornea. Tip cell migration is limited by the
elasticity of the tip cell and the strength of the adhesion between stalk cells.
Adding proliferation enables unlimited sprout extension. This model suggests
that basic cell properties can explain the need for proliferation in sprouting.

The previous two sprouting models only considered cell behavior and chem-
ical fields, ignoring all ECM and stromal tissue. Anderson and coworkers
[54] created a particle based, hybrid model describing sprouting angiogen-
esis. In this model cells are represented as point particles on a grid while the
chemotactic and haptotactic fields are still described as continuum equa-
tions. This model was used to investigate how the balance of haptotaxis and
chemotaxis influences branching and anastomosis. As shown in Figure 1.3B
branching and anastomosis occur in the model, but these behaviors only oc-
cur when cells are able to move perpendicular to the chemotactic field, which
is enabled by haptotaxis. When the haptotactic forces are strong enough
branches can split and reconnect in order to form a functional vasculature.

Anderson et al.’s model [54] suggests that haptotaxis is key to branching,
but it did not show how cells interact with their heterogeneous environment.
A more recent, cell-based, model represents the ECM as a static, heteroge-
neous configuration of matrix fiber bundles, interstitial fluid and immobile
tissue-specific cells [34]. The endothelial cells in the model are motile and ad-
here stronger to matrix fibers than to the surrounding matrix. Immobile cells
act as obstacles that hinder the migration of endothelial cells. The tip cell
is influenced by a chemoattractant field and it degrades ECM components.
Degradation of the extracellular matrix during sprouting enables cells to mi-
grate and branch off the main sprout as shown in Figure 1.3D. The model
suggests that a heterogeneous composition of the matrix is necessary for
the formation of branches; the inhomogeneities in the matrix enable cells to
split from the main branch. Furthermore, the model suggests that the pro-
liferation region determines sprouting dynamics but does not affect the final
sprout morphology.

A follow-up model was used to investigate cell-ECM interaction in more de-
tail [33]. In this model all cells respond to the chemoattractant and that the
immobile tissue cells are removed, i.e., only fibers cause matrix heterogene-
ity. The model suggests that sprouting only occurs in a specific range of ma-
trix densities, which corresponds with experimental observations. Moreover,
simulation results suggest that low fiber density results in cell elongation.

13
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Similar changes were observed when the random fibers were replaced by a
specific fiber pattern, for example long fibers cause cells to elongate in the
same direction as the fibers. The authors propose that contact guidance,
due to cell-matrix interactions, is key to role in vascular sprouting because it
enables sprout branching in an inhomogeneous matrix.

All of the discussed models assumed an external source that induces sprout-
ing. In contrast, both Szabé et al. [38] and Merks et al. [28] have proposed that
cells can form sprouts in absence of external signals and in a homogeneous
matrix. They supported their hypothesis with cell-based models that describe
cell shape, cell membrane and cell migration in much more detail than the
models discussed before.

The model by Szabé et al. [38] incorporates preferential attraction to elon-
gated structures, cell polarity and self-propulsion (i.e. persistence of motion).
The model also differentiates between tip and stalk cells. The tip cell is polar-
ized, causing directed movement in the direction of the polarization vector.
The results shown in Figure 1.3C suggest that both preferential attraction
and self-propulsion are necessary to reproduce realistic sprouting behavior.
Cell polarization may be regulated by cell-cell contacts and VE-cadherin may
be a key player for this. Moreover, the model suggest that differential behav-
ior at the sprout tip may drive sprout formation.

In contrast, Merks suggested that sprouting can occur in absence of matrix
heterogeneity or differential cell behavior [28] ( 1.3E). The model assumes
cells are attracted towards an autocrine chemoattractant, using similar rules
as in chemotaxis-based network model (section 1.2.1). Contact inhibition me-
diated by VE-cadherin causes cells to be only sensitive to the chemoattrac-
tant at positions of the cell membrane adjacent to the ECM. Sprouting occurs
in two ways. First, when cells are arranged in an aggregate, only the outer
layer of cells sense the chemoattractant. These cells tend to migrate to-
wards the center of the aggregate causing a buckling instability that induces
sprouting. This effect enables cells, even those with a low motility, to move
against the chemotactic gradient. Second, another mechanism may explain
sprouting for highly motile cells. To move away from the parent vessel and
form a sprout, cells must migrate against a steep gradient of self-secreted
chemoattractant. Once a small sprout is created by a motile cell, the gradi-
ent around this outgrowth is less steep than the rest of the gradient, so cells
within the sprout have higher motility than elsewhere, causing an instability.

Several of the previously discussed models defined the cell leading a sprout
as the tip cell [34, 35, 38]. However, tip cell fate is regulated during an-
giogenesis via intercellular Dll4-Notch [57-60] signaling and VEGF signaling
[60-63]. Bentley et al. [41] investigate the molecular and biophysical mech-
anisms driving tip and stalk cell differentiation using an agent-based, com-
putational model [41] of a single row of endothelial cells. In this model, tip

14



1.2. Computational models of angiogenesis

cell fate is induced by VEGF and regulated by lateral inhibition of tip cell fate
via Dll4-Notch signaling. When a cell becomes a tip cell, it starts extending
long filopodia away from the blood vessel (Figure 1.3F). Based on this model
Bentley et al. proposed that the balance between VEGF signaling and Dll4-
Notch determines the transition from normal to abnormal sprouting [41, 42].
An extension of the same model was used to study tip cell competition in an-
giogenic sprouts. Time-lapse microscopy has shown how stalk cells migrate
along the sprout and compete with the leading tip cell [17]. Cells that are
treated such that they express higher levels of the VEGF receptor VEGFR2 are
found more often at the sprout tip than wild-type cells. Blockage of Notch
signaling neutralized this effect. Based on these observations Jakobsson et
al. [17] proposed that tip cell compete for the tip position and that this is
controlled by both VEGF signaling and Dll4-Notch signaling. In the compu-
tational model this hypothesis reproduced tip cell shuffling, suggesting that
this mechanism may explain tip cell shuffling.

1.2.3 Predictive angiogenesis models

The models discussed so far, all isolated specific aspects of angiogenesis. To
build predictive models of in vivo angiogenesis, we must incorporate the in-
teractions with the rest of the body in a multi-scale model. Angiogenesis is
induced by hypoxic tissue which, for example, can be a tumor or an active
muscle. The change in oxygen and nutrient supply due to the new vascula-
ture changes the signals coming from the tissue, resulting in a dynamic feed-
back loop between angiogenesis and the needs of the tissue. Also blood flow
may be key to this feedback. Dysfunctional vessels are not able to support
blood flow and do not contribute to the perfusion of the tissue. Endothelial
cells change their behavior due to the shear stresses induced by blood flow
[64]. The inclusion of these processes in a multi-scale angiogenesis model
would be a great tool to study pathological processes either involve exces-
sive or insufficient blood vessel growth. Such multi-scale models can be used
to formalize and validate hypotheses, and to predict the effects of pro- or
anti-angiogenic therapies on the vasculature and the other tissues involved.

In order to build these multi-scale models, researchers often extend existing
models. For example, the particle-based sprouting model by Anderson et al.
[54] has been extended with blood flow [65]. This model suggested that most
vessels are not perfused due to the lack of anastomosis, and thus drugs can
not reach the target. More complex approaches have been used to combine
more detailed angiogenesis models with blood flow and the kinetics of oxygen
and VEGF [44, 66, 67]. With these models vascularization in a heterogeneous
ECM [44] and in skeletal muscle [43] has been simulated.

Also, cell-based models have been extended to include multiple tissues. Shi-
rinifard et al. [68] combined cell-based models of blood vessel formation and
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tumor growth to investigate how tumor growth and vascular remodeling in-
teract. In this model the tumor induces angiogenesis in a peripheral vascula-
ture. The new blood vessels supply the tumor with oxygen and growth factors
and thereby affect the tumor development. Another example of a multi-scale,
cell-based model was presented by Kleinstreuer et al. [40]. They modeled
vasculogenesis including several types of cells and proteins in order to test
the effects of various toxins on vascular development. For this they classi-
fied the effects of the toxins on the behavior of a single cell and included this
in the model. The model was able reproduce the pattern formed in HUVEC
cultures treated with various toxins, showing that this approach is useful to
further study the effects of toxins on vascular development.

These first approaches on multi-scale, cell-based modeling of blood vessel
formation indicate that this is a suitable approach for predictive modeling.
However, extra steps, such as including mechanical interactions with the ECM
and blood flow, subcellular signaling, and interactions between endothelial
cells, perivascular and stromal cells, should be included to create reliable,
predictive models of angiogenesis. Before, such effects can be included, they
should be studied thoroughly in more simple, cell-based models.

1.3 Thesis outline

In this thesis we focus on the role of specialized cells in angiogenesis. This
includes cells with distinctive behaviors, such as elongated cells, or cells with
a specific role, such as tip cells or pericytes. These specialized cells are ob-
served in vivo [15, 69-71], but in vitro blood vessel formation there specific
properties are dispensable. Therefore, we aim to better understand the role
of these specialized cell types in blood vessel formation. For this we use sim-
ple, cell-based models of vascular network formation, either via sprouting
angiogenesis or vasculogenesis. In these models we focus on the cell scale
and therefore we do not include the cause of the cell behaviors in the models
or incorporate any high-level rules. Furthermore, we assume that the envi-
ronment of the cells does not provide any structural, mechanical or chemical
guidance to the cells. In this manner we build models in which we isolate cell
behavior, similar to what happens in various in vitro models of blood vessel
formation.

The cell behaviors we study in our models is not limited to the behavior that
is described in the literature. Potential cell behaviors may still be undiscov-
ered. And, often cell behavior is described at a level that is not applicable for
our modeling approach. With our model we can assign any kind of behavior
to the cells and study how this affects morphogenesis. In this manner we can
predict the behavior of cells involved in blood vessel formation that have not
been described in the literature. In order to study large ranges of cell behav-

16



1.3. Thesis outline

iors with cell-based models, large parameter sweeps were necessary. Unlike
classic methods, such as PDE models, no standard methods are available for
this. Therefore, in chapter 5, we present a protocol for setting up, running and
analyzing large scale parameter sweeps with cell-based models. In chapter
5 we demonstrate how this protocol was used to obtain the results presented
in chapter 2. Furthermore, we show how the method can be applied to an
alternative cell-based model.

In chapter 2 we further analyze the formation of blood vessels by elongated
cells. Previously, it was shown that elongated cells form networks [25], but
the precise mechanisms by which elongated form networks remained un-
clear. To better understand how elongated cells form networks, we quan-
tify the alighment of cells during network formation and show that elongated
cells align over time. Using these analyses we show that elongated cells align
and that due to this alignment the rotation of the cells becomes limited. As
a result the cells form a network-like structure that is in a state of dynamic
arrest.

In chapters 3 and 4 we study how mixing of specialized cells, i.e. cells with
different behaviors, affects vascular network formation. In chapter 3 we study
how pericytes, a kind of perivascular cell, affect vasculogenesis. For this we
combined in vitro experiments with a cell-based, computational model. With
our model we studied which interactions between endothelial cells and peri-
cytes could be responsible for the patterns observed in vitro. In this manner
we showed that during blood vessel formation pericytes and endothelial cells
may attract each other by diffusing chemoattractants. In chapter 4 we used
our computational modeling approach to gain new insights in the molecular
and behavioral differences between tip cells and stalk cells. With a large pa-
rameter sweep we searched for those cell behaviors that could make tip cells
lead and affect network formation. In this manner we found that tip cells that
respond less to an autocrine chemoattractant lead sprouts and affect net-
work formation. This result seemed to contradict with the literature because
tip cells are described as highly motile cells that respond more to chemo-
attractants. However, the chemoattractants to which tip cells are reported to
respond more are chemoattractants secreted by hypoxic tissues, while in our
model the chemoattractant is secreted by the endothelial cells. Furthermore,
a literature study of tip cell gene expression in tip and stalk cells indicated
that tip cells do not express the receptor for the endothelial cell chemoat-
tractant Apelin. Blocking Apelin signaling in in vitro sprouting assays reduces
sprouting, but only when tip cells were present in the spheroids. This support
the hypothesis that the differential response of tip and stalk cells to Apelin
could cause tip cells to lead sprouts.

17






Vascular networks due to dynamically
arrested crystalline ordering
of elongated cells

This chapter is published as:

Margriet M. Palm and Roeland M.H. Merks, Vascular networks
due to dynamically arrested crystalline ordering of elongated
cells, Physical Review E, Volume 87(1), 2013

background graphic: ordering in networks formed with elongated cells and chemotaxis (Figure 2.2B)



2. Vascular networks duo to ordering of elongated cells

Abstract

Recent experimental and theoretical studies suggest that crystalliza-
tion and glass-like solidification are useful analogies for understanding
cell ordering in confluent biological tissues. It remains unexplored how
cellular ordering contributes to pattern formation during morphogene-
sis. With a computational model we show that a system of elongated,
cohering biological cells can get dynamically arrested in a network pat-
tern. Our model provides a new explanation for the formation of cellu-
lar networks in culture systems that exclude intercellular interaction via
chemotaxis or mechanical traction.

2.1 Introduction

By aligning locally with one another, cells of elongated shape form ordered,
crystalline configurations in cell cultures of, e.g. fibroblasts [72, 73], mes-
enchymal stem cells [73], and endothelial cells [74]. Initially the cells form
small clusters of aligned cells; the clusters then grow and the range over
which cells align increases with time [73, 75]. To study the emergence of such
crystalline cellular ordering, it is useful to make an analogy with liquid crys-
tals [73]. For example, a “cellular temperature” can be defined to describe the
cell-type specific persistence (low cellular temperature) or randomness (high
cellular temperature) of cell motility, where cells of high cellular temperature
(e.g., fibroblasts) are less likely to form crystalline configurations than cells
of low temperature (e.g., mesenchymal stem cells) [73]. It was similarly pro-
posed that collective cell motion in crowded cell sheets can be understood
as system approaching a glass transition [76, 77]. Although these studies
provide useful insights into the ordering of cells in confluent cell layers, it re-
mains unexplored how crystallization and glass-like dynamics contribute to
the formation of more complex shapes and patterns during biological mor-
phogenesis.

Cells’ organizing into network-like structures, as it occurs for example dur-
ing blood vessel development, is a suitable system to study how cellular or-
dering participates in pattern formation. In cell cultures after stimulation by
growth factors (VEGFs, FGFs), endothelial cells elongate and form vascular-
like network structures [78-80]. The mechanisms that drive the aggrega-
tion of endothelial cells and their subsequent organization into network is a
subject of debate. Most models assume an attractive force between cells,
either due to chemotaxis [19, 20, 25-29, 49, 81] or due to mechanical trac-
tion via the extracellular matrix [21-24, 82, 83]. In vitro experiments show
that astroglia-related rat C6 cells and muscle-related C212 cells can form
network-like structures on a rigid culture substrate [30], which excludes for-
mation of mechanical or chemical attraction between cells. Therefore a sec-
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2.2. Model description

ond class of explanations proposed that cells form networks by adhering bet-
ter to locally elongated configurations of cells [30] or elongated cells [31].
Here we show that, in absence of mechanical or chemical fields such mech-
anisms are unnecessary: elongated cells organize into network structures if
they move and rotate randomly, and adhere to adjacent cells. As the cells
align locally with one another, a network pattern appears. Additional, long-
range cell-cell attraction mechanisms, e.g., chemotaxis or mechanotaxis, act
to stabilize the pattern and fix its wave length.

round - chemotaxis long - chemotaxis long - no chemotaxis

&

o

Figure 2.1: Effect of chemotaxis and cell shape on pattern formation. A round,
chemotacting, and adhesive cells (10,000 MCS), B elongated, chemotact-
ing and adhesive cells (10,000 MCS), and C elongated, non-chemotacting
and adhesive cells (250,000 MCS). In all panels 700 cells are seeded on
the center 500x500 pixels of an 800x800 lattice.

2.2 Model description

To model the collective movement of elongated cells, we use the cellular
Potts method (CPM), also known as the Glazier-Graner-Hogeweg model [84,
85], a lattice-based, Monte-Carlo model that has been used to model develop-
mental mechanisms including somitogenesis [86, 87], convergent extension
[88] and fruit fly retinal patterning [89]. The CPM represents cells as con-
nected patches of lattice sites with identical spin ¢ € N; lattice sites with spin
o = 0 represent the extracellular matrix (ECM). To simulate stochastic cell
motility, the CPM iteratively displaces cell-cell and cell-ECM boundaries by
attempting to copy the spin of a randomly selected site into a randomly se-
lected adjacent lattice site X, monitoring the resulting change AH of a Hamil-
tonian,

= o

X,X")

H="2 J(o(x),0(x)) (1= (o(x), o (X)) +Y_Ma(a(o)=A)’+Y_ A(l(o)-L)°.
( o =
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A copy attempt will always be accepted if AH < 0, if AH > 0 a copy attempt
is accepted with the Boltzmann probability P(AH) = exp(—AH/u(0)), with
u(o) a “cellular temperature” to simulate cell-autonomous random motility.
For simplicity, we here assume that all cells have identical temperature u. The
time unit is a Monte Carlo step (MCS), which corresponds with as many copy
attempts as there are lattice sites.

The first term of Equation 2.2 defines an adhesion energy, with (X, X') a pair
of adjacent lattice sites and the Kronecker delta returning a value of 1 for
pairs at cell-cell and cell-ECM interfaces, or zero otherwise. In the model
two contact energies are defined: Jeoicen for o > 0 at both lattice sites, and
Jeewecm for o = 0 at one lattice site. The second and third term are shape con-
straints that penalize deviations from a target shape, with A and L a target
area and length, and a(o) and /(o) the current area and length of the cell; Ap
and A_ are shape parameters. We efficiently estimate /(o) by keeping track of
a cellular inertia tensor as previously described [25].

In a subset of simulations, we further assume that cells secrete a diffusing
chemoattractant ¢, which we describe with a partial differential equation:

Oc(X, t)

T
with diffusion constant D, secretion rate s and decay rate ¢. After each MCS,
a forward Euler method solves Equation 2.2 for 15 steps with At = 2 s and
zero boundary conditions. To model the cells’ chemotaxis up concentration
gradients of the chemoattractant, during each copy attempt from X to x' we
increase AH with a AHchemotaxis = Ac (¢(X) — ¢(X')), with Ac a chemotactic
sensitivity [90].

We use the following parameter settings, unless specified otherwise: u =1,
Jcell,cell = .5, Jcell,ECM = .35, >\A = 1, )\L = .1; )\C = 10, A = 100 Lu.2, L =60
Llu; D = 10718 m2s7 1, ¢ = 18-107% s7!, s = 1.8-10~* s~ 1; where Lu.
denotes a lattice unit which corresponds with 2 um. Adjacent lattice sites
X' are defined as the eight nearest neighbors of lattice site X. Unless stated
otherwise, a simulation is initialized with 175 cells randomly distributed on a
220x220 area at the center of a 400x400 lattice.

= DV2c(%, t) + s(1 — §(0 (), 0)) — € §(o(X), 0)),

2.3 Results

As Figure 2.1 shows, and in agreement with previous reports [25], if we allow
for chemotaxis, rounded cells accumulate into rounded clusters (Figure 2.1A)
and elongated cells aggregate into networks (Figure 2.1B). Interestingly, how-
ever, chemotaxis is not required for network formation: cell-cell adhesion
between elongated cells suffices for forming networks (Figure 2.1B). Movies
corresponding with Figure 2.1B and C (See Supplemental Movie S1, model
without chemotaxis, and Movie S2, model with chemotaxis) suggest that the
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gradual alignment of cells with their neighbors is key to network formation
and network evolution. To characterize this cell alignment, we define 9()?, r)
as the angle between the direction of the long axis V(o (X)) of the cell at X, and
a local director fi(X, r), a weighted local average of cell orientations defined
at radius r around X:

(%, r) = (V(o(¥)) (pezzjz—y|<r} -

Figure 2.2A and B depict the value of 0(X, 3) for simulations without chemo-
taxis (Figure 2.2A) and with chemotaxis (Figure 2.2B), with dark gray values
indicating values of 6(X, 3) — /2. Network branches are separated by large
values of 9()?', 3), indicating that within branches cells are aligned, whereas
branch points are “lattice defects” in which cells with different orientations
meet.

Supplemental Movies S3 and S4 (0(X, 3)) show how the cells align gradually
over time in the absence and presence of chemotaxis. To characterize the
temporal development of cell alighment in more detail, we use an orienta-
tional order parameter [91]:

S(r) = <cos(29(f<(a), r))>
[eg
with )?(0) the center of mass of cell 0. S ranges from O for randomly oriented
cells to 1 for cells oriented in parallel.

Figure 2.2C shows the evolution of the global orientational order param-
eter lim,_.o S(r) and of the local orientational order parameters 5(20) and
5(40). Both with chemotaxis (dashed lines) and without (solid lines), 5(20)
grows more quickly and reaches higher ordering than 5(40). The reason for
this is that in cells of length 50 — 60 Lu., S(20) (covering cells up to a ra-
dius r = 20 from the cell’s center of mass) only detects lateral alignment of
cells, whereas a radius 5(40) also detects linear line-up of cells (Figure 2.2D).
Thus cell-cell adhesion of long cells quickly aligns cells with the left and right
neighbors, while it aligns them more slowly with those in front and behind.
This results in networks with short branches of aligned cells. Interestingly,
chemotaxis aligns cells more rapidly, both along the short and long sides of
cells, resulting in networks with much longer branches than with adhesion
alone.

Next we analyze the mechanisms that drive the orientational ordering in the
cell networks. Visual inspection of the simulation movies suggests that sin-
gle cells move and rotate much more rapidly than locally aligned clusters of
cells. A network of locally aligned cells forms rapidly from initially dispersed
cells. Merging of branches seems to be a much slower process, and poten-
tially prevents a further evolution to global nematic order. To quantify these
observations we measured the translational and rotational diffusion coeffi-
cients of cells as a function of the size of the network branch to which it
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Figure 2.2: Crystalline cell ordering during network formation. A-B 6(X, r) with r = 3
for a simulation with chemotaxis (A) and without chemotaxis (B) after
25,000 MCS. C Temporal evolution of orientational order parameter S(r)
for r = 20 (black curves), r = 40 (gray curves) and r — oo (light gray) with-
out chemotaxis (solid) and with chemotaxis (dashed). Order parameter is
averaged over 10 simulation repeats (gray shadows represent standard
deviation). D cells included in the order parameter with r = 20 and r = 40.

belongs. We loosely define a network branch, or cluster of aligned cells as
a connected set of at least two cells with relative orientations < 5°, i.e., in
Figure 2.2A and B dark gray values separate the clusters. To detect clusters
computationally, we first identify the connected sets for which (X, 3) < 5°,
which are surrounded by lattice sites of 0 = 0 or sites with §(X, 3) > 5°. We
then eliminate connected sets of fewer than fifty lattice sites. The CPM cells
sharing at least 50% of their lattice sites with one of the remaining sets form
a cluster. The translational diffusion coefficient, D;, derives from the mean
square displacement (MSD) of a set of cells:

<|f<(a, t) — X(o, 0)|2> — 4Dyt.

g

Similarly, the rotational diffusion coefficient, D,, derives from the mean square
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Figure 2.3: Relation between cluster size and cell displacement. Clusters are calcu-
lated for each morphology between 500 and 25,0000 MCS (100 simulation
repeats), with an interval of 500 MCS; see text for details. The error bars
represent the standard error of the linear fits used to estimate diffusion
coefficients.

rotation (MSR) of a set of cells:
(o, t) — a5, 0))%) e = 2Dt

with a0, t) — a(o, 0) the angular displacement of a cell between time 0 and
t. During a simulation, cells may move between clusters, and clusters can
merge. Therefore, to calculate D; and D, of cells as a function of cluster size,
for 100 simulations of 250,000 MCS we measured trajectories of each indi-
vidual cell with one data point per 500 MCS, and kept track of the size of the
cluster it was classified into at each time point. We defined cluster size bins,
with the first bin collecting all clusters consisting of two to five cells, and the
next bins running from 6 to 10, 11 to 15, etc. We split up the trajectories into
chunks of 10 consecutive data points, during which the cells stayed within
clusters belonging to one bin. To calculate D; and D, we performed a least
square fitting on the binned MSD and MSR values for these trajectory chunks.

The translational diffusion, D;, increases slightly with cluster size (Figure
2.3A). This may reflect that the probability of hopping between small clusters
will be larger than the probability of hopping between larger clusters, result-
ing in an overrepresentation of slow cells in the small clusters. Interestingly,
the rotational diffusion D, drops with the cluster size (Figure 2.3B), indicat-
ing that cells in large clusters rotate more slowly. These results suggest that
the rotation of cells in big clusters is limited, which reduces the probability
that two clusters rotate and merge into a single larger cluster. Therefore, if
the size of clusters increases, their rotation speeds drop as does the prob-
ability of cluster fusion. Thus, although further alignment of clusters would
reduce the pattern energy H (Equation 2.2), the pattern evolution essentially
freezes.

To corroborate our hypothesis that network patterns are transient patterns
that increasingly slowly evolve towards nematic order, we looked for model
parameters that could speed up pattern evolution. Figure 2.4A shows the ef-
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Figure 2.4: A Relation between compactness and surface tension, with and without
chemotaxis. The compactness was calculated at 100,000 MCS and aver-
aged over 100 simulations (error bars represent standard deviation). Sim-
ulations were initialized with 350 cells on 260x260 path on the center of
a 420x420 lattice. B-D evolution of a simulation initialized with a 128-cell
blob on the center of a 420x420 grid.

fect of surface tension (vceuecm) oN the ability of cells to form networks after
100,000 MCS, as expressed by the configuration’s compactness C = %,
where Apyy is the area of the convex hull of the largest connected group
of cells, and A.s is the summed area of the cells inside the hull. A value
of C — 1 indicates a spheroid of cells, where for networks C would tend
to zero. For values of Yeel,ecM = Jeelecm — % > 0, the equilibrium pat-
tern should minimize its surface area with the ECM. Indeed at increased sur-
face tensions the cells settle down in spheroids or networks with only few
meshes, although they initially still form network-like patterns (see Supple-
mental Movie S5, model without chemotaxis and Yeenecm = 0.3). To confirm
that also for Yeen,eem = 0.1 (i.e., the values used in Figs. 1-3) spheroids are
stable configurations, we initialized our model with a spheroid (Figure 2.4B).
Although initially some cells sprout (Figure 2.4C) from the spheroid due to
their elongation, they then align gradually and the cell cluster remains spher-
ical. No network formation was detected in simulations of 100,000 MCS (Fig-
ure 2.4D), suggesting that spheroids represent the global minimum of the
Hamiltonian. Interestingly, in presence of chemotaxis networks form for a
wide range of surface tensions (inset Figure 2.4A and [25]).
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2.4 Discussion

Our analysis suggests that in the cellular Potts model elongated, adhesive
cells can form networks in a parameter regime where a spheroid pattern
is the minimal energy state. The cells initially align with nearby cells, thus
forming the branches of the network. In order for the pattern to evolve fur-
ther towards the minimal-energy spheroid pattern, the locally alighed clus-
ters of cells must join adjacent branches, for which they must move and ro-
tate. Our analysis of the rotational and translational diffusion of cells in Fig-
ure 2.3 shows that this becomes more difficult for cells belonging to larger
clusters. Thus the networks evolve ever more slowly to the minimal energy
state, and gets dynamically arrested in a network-like configuration, a phe-
nomenon reminiscent of the glass transition, as e.g. observed in attractive
colloid systems [92], collective cell migration of biological cells in vitro [76,
77], and colloid rod suspensions [93] in which gels can form from clusters of
parallel rods [94-96].

Figure 2.4A suggests that the cellular Potts simulations undergo a glass
transition as the surface tension drops: for high surface tension the system
evolves towards equilibrium, for lower surface tensions the system becomes
jammed in a network-like state. Thus our model provides a new explanation
for the formation of vascular networks in absence of chemical or mechanical,
long-range, intercellular attraction [30]. Interestingly, intercellular attraction
via chemotaxis stabilizes the formation of networks in our simulations [25]
and can drive sprouting from spheroids (not shown). This suggests that net-
works are an equilibrium pattern of our system in presence of intercellular
attraction. Nevertheless the present analysis of arrested dynamics provides
new insight into the system with intercellular attraction: chemotaxis rein-
forces local ordering over a distance proportional to the diffusion length of
the chemoattractant producing networks of a scale independent of surface
tension [25].

2.A Supplementary movies

An archive containing all supplementary movies can be found at

http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-22535.

Movie S1 Network formation with elongated cells that chemotact towards a
chemoattractant they secrete themselves. This simulation was per-
formed with 700 cells on a 800x800 lattice and ran for 10,000 MCS.

Movie S2 Network formation with elongation cells that do not chemotact. This
simulation was performed with 700 cells on a 800x800 lattice and
ran for 250,000 MCS.

Movie S3 Evolution of the alignment of elongated cells that chemotact to-
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wards a chemoattractant they secrete themselves. This simula-
tion was performed with 175 cells on a 400x400 lattice and ran for
25,000 MCS.

Movie S4 Evolution of the alignment of elongated cells that do not chemo-
tact. This simulation was performed with 175 cells on a 400x400
lattice and ran for 25,000 MCS.

Movie S5 Pattern formation with adhesive, elongated cells, without chemo-
taxis. This simulations was performed with 175 cells on a 400x400
lattice and ran for 100,000 MCS.
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background graphic: network formed with pericytes and endothelial cells interaction via the contact-dependent signaling scenario.



3. Endothelial cell and pericyte interactions in angiogenesis

3.1

The walls of small blood vessels, which the are arterioles, capillaries and
venules, consist of endothelial cells and pericytes [97] (Figure 3.1). Endothe-
lial cells form the inner layer of the vessel and this layer is covered with the
endothelial basement membrane. Embedded in this membrane are the peri-
cytes [98]. Pericytes are recruited to the walls of established blood vessels
[99]. This pericyte recruitment is thought to stabilize blood vessels by stim-
ulating the formation of the basement membrane [100] and inhibiting en-
dothelial cell proliferation [101]. Several in vivo observations challenge the

30

Abstract

Pericytes are perivascular cells that are responsible for the stabiliza-
tion of small blood vessels. However, in certain in vivo systems; such as
the mouse retina, central nervous system and tumors; pericytes are ob-
served in developing blood vessels. This suggest that pericytes can also
play an active role in angiogenesis. How pericytes and endothelial cells
interact during angiogenesis remains unclear. Therefore, we combined in
vitro vasculogenesis assays with computational modeling to study how
pericytes affect endothelial cells and vice versa. With the experiments
we can find what patterns endothelial cells and pericytes form together.
Then, by varying the interactions between endothelial cells and pericytes
included in the model, we can test which interactions could cause in vitro
patterns.

In the vasculogenesis assay endothelial cells and pericytes initially
formed a network. This network quickly collapsed into a blob from which
new sprouts extended. In our model we can reproduce the network col-
lapse when endothelial cells attract pericytes and vice versa via chemo-
taxis. Furthermore, when the chemoattractant for endothelial cells is
secreted by endothelial cells adjacent to pericytes instead of pericytes,
sprouts extend from the blobs. Thus, our study suggests that during an-
giogenesis endothelial cells and pericytes attract each other via secreted
chemoattractants, and pericytes may regulate the chemoattractant se-
cretion of endothelial cells.

Introduction

basement

pericyte
membrane

endothelial cell

Figure 3.1: Schematic cross section of a small blood vessel.



3.1. Introduction

view that pericytes are recruited to established vessels where they stabilize
the vasculature. In the mouse retina and central nervous system, pericytes
are integrated into the developing vessels [69, 70] and in tumor angiogene-
sis pericytes can lead sprouts [71], suggesting that pericytes interact actively
with endothelial cells during blood vessel formation. However, most research
focused on the role of pericytes in vessel stabilization and therefore the pre-
cise role of pericytes in blood vessel formation remains unclear. To clarify
the role of pericytes in blood vessel formation we study how pericytes and
endothelial cells interact. For this we combine in vitro experiments and com-
putational modeling. By attempting to reproduce the patterns formed in vitro
with a computational model we can reconstruct which cell behaviors could
cause those patterns.

Pericytes and endothelial cells can signal over long distances via diffusive
ligands, such as transforming growth factor-3 (TGF3), platelet-derived growth
factor B (PDGFB), angiopoietin-1 (Ang-1), and vascular endothelial growth
factor (VEGF). Juxtacrine signaling, via membrane-bound ligands and recep-
tors, occurs for example via N-cadherin, and Jaggedl and Notch3 [97, 98,
102]. Endothelial-pericyte signaling regulates the behavior of pericytes and
endothelial cells, the differentiation of pericytes and pericyte progenitors,
and the maturation and stabilization of blood vessels. Because we are study-
ing how endothelial cells and pericytes interact while forming blood vessels,
we only consider the interactions that affect the migration of endothelial cells
or pericytes and exclude interactions that only affect pericyte differentiation
or vessel stabilization. Both the juxtacrine signaling pathways listed above
are involved in vessel maturation and do not affect cell migration. This leaves
the four diffusive ligands, which all affect endothelial cell or pericyte migra-
tion, as sources of endothelial-pericyte interactions. TGF3 is secreted by both
pericytes and endothelial cells [103-105] in a latent form that must be chem-
ically modified to become active [106]. This activation does not occur in peri-
cyte or endothelial cell monocultures, but in endothelial-pericyte cocultures
TGFg is activated via an unknown mechanism [103-105]. In endothelial cells
TGF regulates cell migration via activin receptor-like kinase (Alk)-1 and Alk-5
[98]. Alk-1 signaling promotes proliferation and migration while Alk-5 signal-
ing inhibits these processes [107-109]. Because of the opposing effects of
Alk-1 and Alk-5 signaling, the exact effect of TGFS signaling on endothelial
cell behavior remains unclear. In pericytes TGFS signaling induces differenti-
ation to vascular smooth muscle cells [110]. PDGFB is secreted by endothelial
cells [111, 112] and is sensed by pericytes via PDGF receptor-beta (PDFGRS)
[111]. PDGFB-PDGFRS signaling induces chemotaxis in pericytes [113] and
thereby endothelial cells can attract pericytes. Ang-1 is secreted by pericytes
and is sensed by endothelial cells via the receptor TIE2 [98]. This signaling
induces chemotaxis in endothelial cells [114] and thereby causes pericytes
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3. Endothelial cell and pericyte interactions in angiogenesis

to attract endothelial cells. VEGF is sensed by endothelial cells via VEGF re-
ceptor 2 (VEGFR2) [115], which induces chemotaxis and promotes endothelial
cell survival [116]. VEGF is suggested to play a role in endothelial-pericyte in-
teractions because several studies showed that pericytes cocultured with en-
dothelial cells secrete VEGF [117, 118]. However an alternative mechanism is
suggested by Franco et al. [119] who showed that endothelial cells in contact
with pericytes secrete VEGF. Franco et al. [119] proposed that VEGF secretion
by endothelial cells is induced by the activation of membrane bound inte-
grin ay on endothelial cells by vitronectin that is secreted by pericytes. Thus,
VEGF signaling attracts endothelial cells to pericytes, or to endothelial cells
that are close to pericytes. Altogether, except for TGFS, all diffusive ligands
involved in endothelial-pericyte sighaling induce chemotaxis in pericytes or
endothelial cells.

Overall, based on the literature we propose that attraction via diffusive, se-
creted, ligands is a major mode of endothelial-pericyte interaction. Endothe-
lial cells are known to secrete chemoattractants that attract pericytes, such
as PDGFB, and pericytes secrete chemoattractants for endothelial cells, such
as VEGF, Ang-1, and TGFS3. VEGF may be secreted by endothelial cells, in
close vicinity of pericytes, instead of by pericytes. Thus, exactly via which
chemoattractants pericyte and endothelial cells interact, and which cells se-
crete which chemoattractant remains unclear. Therefore, in this study we will
use a computational model to find if attraction via chemotaxis between peri-
cytes and endothelial cells plays a role during angiogenesis, and if so, which
chemoattractant should be secreted by which cells. For this we first study pat-
tern formation of endothelial cells and pericytes with vasculogenesis assays.
Then, we try to reproduce these patterns with our computational, cell-based
model. In such a model we can study how changes in cell behavior, such
as chemotaxis and chemoattractant secretion, and the chemical properties
of chemoattractants affect pattern formation. Thus, with our model we can
search for the chemotaxis scenario that could cause the in vitro patterning.

3.2 Results

To study how endothelial cells and pericytes interact during blood vessel for-
mation we used in vitro experiments in combination with computational mod-
els. For the in vitro experiments we used a standard vasculogenesis assay
[45] in which cells are seeded on a substrate and the evolution of the pat-
tern is monitored over time. We performed assays with only endothelial cells,
only pericytes, or both pericytes and endothelial cells. Based on the results
of the endothelial cells and pericytes monocultures we built a computational,
cell-based model of endothelial cells and pericytes using the cellular Potts
method and partial differential equations. The behavior of individual peri-
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cytes and endothelial cells is chosen such that simulations with a single cell
type correspond with the corresponding in vitro monocultures. Then, we used
the model to study which endothelial-pericyte interactions may contribute to
the patterns we observed in the in vitro endothelial-pericyte coculture. For
this we assumed that endothelial cells and pericytes interact by secreting
chemoattractants. For simplicity, we refer to the chemoattractant that en-
dothelial cells secrete for pericytes as PDGFB, and we refer to the chemoat-
tractant that pericytes secrete for endothelial cells as VEGF. However, these
chemoattractants represent generic chemoattractants and therefore we did
not use PDGFB and VEGF specific model parameters. For VEGF, it is debated
whether it is secreted by pericytes [117, 118], or by endothelial cells that con-
tact pericytes [119]. With a computational model we can simulate the tissues
that develop based on each of these scenarios. For this, we set up two sce-
narios for endothelial-pericyte signaling: paracrine signaling, and contact-
dependent signaling. In the paracrine signaling scenario, endothelial cells
secrete a chemoattractant for pericytes and vice versa (Figure 3.2A). In the
contact-dependent signaling scenario, we assumed that contact with peri-
cytes induces VEGF secretion in endothelial cells [119]. Therefore, in this
scenario PDCFB is secreted by all endothelial cells and VEGF is secreted by
endothelial cells that are in contact with pericytes (Figure 3.2B).

EC  chemotaxis chemotaxis EC | chemotaxis chemotaxis PC
m m i
[T L
8 g &
o a =
VEGF PDGFB VEGF PDGFB
A paracrine signaling B contact-dependent signaling

Figure 3.2: Alternative scenarios for endothelial-pericyte signaling.

3.2.1 In vitro patterning

We started with the in vitro experiments to elucidate what patterns form when
endothelial cells and pericytes are seeded together. For this we seeded en-
dothelial cells and pericytes, at a 2:1 ratio, and followed the pattern evolu-
tion. As a reference, we repeated the experiments with only endothelial cells,
or only pericytes.

Figure 3.3 shows how the patterns evolved in each of the three assays. In
the endothelial cell monoculture (Figure 3.3A) a network with long branches
formed quickly. Between the second and eighth day the network disintegrated
because the endothelial cells died. In the pericyte monoculture (Figure 3.3B)
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192h (8 days)

pericytes endothelial cells

endothelial cells
+ pericytes

Figure 3.3: Pattern formation in vasculogenesis assays with endothelial cells (A), pe-
ricytes (B), or endothelial cells and pericytes at a ratio of 2:1 (C).

initially some branched structures formed that quickly collapsed into a blob.
After eight days some sprouts extended from this blob. In the endothelial-pe-
ricyte coculture (Figure 3.3C) a network developed quickly. Within 24 hours,
the network collapsed into a blob and later on sprouts extended from the
blob. Comparing the evolution of a blob with only pericytes (Figure 3.3B) with
that of a blob with pericytes and endothelial cells (Figure 3.3C) suggests that
endothelial cells caused the sprouts to extend earlier and become longer.
However, we currently lack quantitative data to support this conclusion.

Altogether, in all cultures networks formed quickly. However, when pericytes
are present, the network collapsed to form a blob. Over time, sprouts ex-
tended from this blob, which seemed to be more numerous in the endothelial-
pericyte coculture. These observations indicate that pericytes induce net-
work collapse, and that endothelial cells may promote sprout formation from
the cell blobs.

3.2.2 Modeling endothelial cells and pericytes

In our attempt to explain what endothelial-pericyte interactions cause the
patterns observed in the in vitro coculture, we set out to develop a compu-
tational, cell-based model of endothelial-pericyte interactions. In this model
we use the cellular Potts method (CPM) to model cells and partial differen-
tial equations (PDEs) to model chemoattractants. Cells are represented as
groups of lattice sites X € Z? on a square lattice identified by an identifier
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o € N. Each cell is associated with a type 7(0) € {EC,PC,ECM}. To mimic cell
motion the CPM iteratively attempts to move the cell membranes. Whether
an attempt is accepted depends on the cell motility ¢ and the prescribed cell
behaviors. The chemoattractant concentrations are projected on the same
lattice as the cells. The concentration of a chemoattractant ¢ at a site X is
described with a PDE:

0c(X, t)
ot
with ¢(X, t) the concentration of ¢, D(c) the diffusion coefficient of ¢, a(, ¢)

the secretion rate of ¢ by a cell of type 7, and &(c) the decay rate of c. The
range over which a chemoattractant has spread in steady state (% =0)is

= D(c)V3c(%, t) + a(r(o(X)), ¢) — (c);

characterized by the diffusion length: { = \/g, which is the distance from the
chemoattractant source, where c()?, t) = (p, at which the concentration has
droppedto 2. Note that, however, when a time step of the CPM is shorter than
time needed for c to reach equilibrium, the chemoattractant will not diffuse

EC ' elongation PC
chemotaxis chemotaxis
O O
i} o
= T =
B MPC

A MEC

as far as predicted.

24h 48h 96h (4 days) 192h (8 days)

endothelial cells

pericytes

Figure 3.4: Models for endothelial cell and pericyte monocultures. A endothelial cells
(ECs) elongate and secrete MEC that induces chemotaxis in endothelial
cells. B pericytes (PCs) secrete MPC that induces chemotaxis in pericytes.
C-D evolution of the pattern formed with 600 endothelial cells (C) or 600
pericytes (D).

The cell behaviors in the endothelial-pericyte model were prescribed such
that a simulation with only pericytes or only endothelial cells results in a
pattern similar to the pattern formed in the corresponding in vitro monocul-
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3. Endothelial cell and pericyte interactions in angiogenesis

ture. In the monoculture endothelial cells form networks with long branches.
These networks are similar to the networks formed in a model with elongated
cells that secrete their own chemoattractant [25]. Therefore, we modeled
endothelial cells as elongated cells that secrete and chemotact towards a
chemoattractant that we called “morphogen for endothelial cells” (MEC) (Fig-
ure 3.4A). Pericytes formed a network that quickly collapsed into a blob. This
is similar to the evolution of a model with round cells that secrete their own
chemoattractant [26, 28]. Thus, pericytes were modeled as round cells that
secrete and chemotact towards a chemoattractant called “morphogen for
pericyte” (MPC) (Figure 3.4B). For both endothelial cells and pericytes we fine-
tuned the model parameters such that the pattern evolution was as close to
the in vitro experiments as possible (Table 3.2), starting with the parameter
values used in similar models [25, 28]. Figures 3.4C and D, and Movies S1
and S2, show the evolution of patterns formed by respectively endothelial
cells and pericytes. The evolution of the pattern with endothelial cells is sim-
ilar to the in vitro pattern evolution. The simulated pericytes initially form a
network-like structure that collapses into multiple small blobs (Figure 3.4D).
In the vasculogenesis assay a network formed and collapsed as well, but here
a single blob formed (Figure 3.3C). Thus, our model does not exactly mimic
the in vitro pattern formation, but it reproduces the phenomenology of the
pericyte monocultures (Figure 3.3C).

endothelial-pericyte sighaling is incorporated in the model by adding the
chemoattractants VEGF and PDFGB. For paracrine signaling scenario PDGFB
by all endothelial cells, and VECF is secreted by all pericytes. For the contact-
dependent signaling scenario PDGFB is again by all endothelial cells. But,
VEGF is only secreted by endothelial cells that contact pericytes. An endothe-
lial cell contacts a pericyte when it shares at least 10% of its membrane with
pericytes. We set this, arbitrary, to prevent a few pseudopod extensions from
inducing VEGF secretion.

chemo- sensitivity secretion decay diffusion
attractant rate [s7!] rate[s7!] coefficient [m?s™!]
MEC 500 102 1073 10713

MPC 500 1073 1074 10713

VEGF 500 103 103 101

PDGFB 500 103 103 101

Table 3.1: Parameters related to the chemoattractants.
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3.2. Results

3.2.3 The in vitro patterns cannot be reproduced without
endothelial-pericyte sighaling

24h 48h

96h (4 days) 192h (8 days)

Figure 3.5: Evolution of a simulation with 400 endothelial cells (light) and 200 peri-
cytes (dark).

Before we tested the endothelial-pericyte signaling scenarios, we first tested
if any of these interactions are needed to reproduce the patterns that formed
in vitro. Therefore, we simulated a mixture of elongated endothelial cells and
round pericytes at a 2:1 ratio, which is the same ratio as used in the endothe-
lial-pericyte cocultures. Figure 3.5 and Movie S3 show how the morphology of
this mixture evolved. The first 8 hours a network develops similar to endothe-
lial-pericyte coculture. But, after one day pericytes clustered at the branch
points. This clustering continued, resulting in couple of branch points with
large pericyte clusters. Thus, without signaling between endothelial cells and
pericytes, a network formed quickly, but the network did not collapse as did
happen in the cocultures. This suggests that additional endothelial-pericyte
interactions are needed to induce a network collapse.

3.2.4 Heterotypic, chemotactic endothelial-pericyte attraction
can cause network collapse

EC elongation PC
5 E chemotaxis chemotaxis B
i} 0] O o
= a T LU o =
o >
MEC
VEGF PDGFB

Figure 3.6: Schematic representation of paracrine signaling between pericytes (PC)
and endothelial cells (EC). Pericytes secrete VEGF that attracts endothelial
cells and endothelial cells secrete PDGFB that attracts pericytes.

In the previous section we combined elongated endothelial cells and round
pericytes in one model without endothelial-pericyte signaling. With this model
we could reproduce the network formation, but not the network collapse that
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3. Endothelial cell and pericyte interactions in angiogenesis

occurred in the in vitro coculture. This suggests that an additional mecha-
nism is necessary for network collapse. Therefore, we added attraction be-
tween endothelial cells and pericytes via chemotaxis to the model. In this
section we test the paracrine endothelial-pericyte signaling scenario. In this
scenario endothelial cells secrete PDGFB, attracts pericytes, and pericytes
secrete VEGF, which attract endothelial cells (Figure 3.6). How the chemo-
attractants affect pattern formation with endothelial cells and pericytes de-
pends on the secretion rate and the strength of the chemotactic sensitivity of
the cells, and the diffusive properties of the chemoattractants. Because VEGF
and PDGFB represent generic chemoattractants that attract endothelial cells
or pericytes, the values of these parameter are unknown. Therefore, we var-
ied the values of these parameters in our model to elucidate what patterns
can form.

First, we explored how the secretion rates of VEGF and PDGFB, and the dif-
fusive properties of VEGF and PDGFB affect pattern formation of endothelial
cells and pericytes. To this end we varied secretion and decay rates of VEGF
relative to those for PDGFB. All other chemoattractant parameters remained
unchanged and are listed in Table 3.1. By keeping the diffusion coefficients
constant while varying the decay rate we aim to vary the diffusion length.
However, this is only correct when the PDEs describing the concentrations
are solved until equilibrium during one time step. We choose the ranges of
relative secretion and decay rates such that the PDE solver produced a sta-
ble solution and no other modeling artifacts were observed. Figure 3.7A-P
shows the morphologies that formed for varying ratios of secretion and de-
cay. In this figure we recognized three patterns: 1) a network with blobs of pe-
ricytes at the nodes (Figure 3.7A, B, E-G, I-K, and M-P), 2) a nearly collapsed
network (Figure 3.7C), and 3) cells at the lattice borders (Figure 3.7D, H, and
L). The first pattern is similar to the patterns formed without PDGFB or VEGF.
Thus, for those secretion and decay rates, PDGFB and VEGF have little effect.
The second pattern shares some features with our in vitro observations. The
cells do aggregate, but the network never fully collapsed (Figure 3.7Q and
Movie S4). The third pattern does not represent realistic pattern formation.
For these simulations the high VEGF secretion of pericytes causes endothe-
lial cells to be more attracted to the pericytes than to other endothelial cells.
Therefore, branches of aligned endothelial cells do not become stable, but
endothelial cells leave the branch and migrate outwards together with the
pericytes. Eventually, most of the cells become stuck at the border of the
lattice.

Next, we explored the effects of the chemotactic sensitivity of pericytes to
PDGFB and endothelial cells to VEGF. For this we choose a decay and secretion
rate for VEGF such that the network collapsed, which are the parameter val-
ues used for Figure 3.7C (¢(VEGF) = 10~°s~! and a «(VEGF) = 1073s7!). The
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VEGF secretion rate («(EC,VEGF))

PDGFB secretion rate (a(PC,PDGFB))
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VEGF decay rate (¢(VEGF))
PDGFB decay rate (¢(PDGFB))
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Figure 3.7: A-P Patterns formed after ~192 hours with round pericytes (dark gray)
and long endothelial cells (light gray) with varying ratios of PDGFB and
VEGF secretion, and varying ratios of PDGFB and VEGF decay. Endothelial
cells are attracted to VEGF that is secreted by pericytes and pericytes are
attracted to PDGFB that is secreted by endothelial cells (Figure 3.6). Q
Evolution of pattern in C.
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range of chemotactic sensitivity was chosen such that chemotaxis affect the
patterns, i.e. the morphologies differ from those without endothelial-pericyte
signaling, and such that there are no model artifacts. Figure 3.8 shows how
the final patterns formed with varying chemotactic sensitivity for PDGFB and
VEGF. In this morphospace we see two different kinds of blobs: 1) blobs with
pericytes on the inside and sprouting endothelial cells on the outside, and 2)
blobs with endothelial cells on the inside and pericytes on the outside. The
first kind of blobs are stationary, while the second kind of blobs move towards
the pericytes. This happens because the chemotaxis of endothelial cells to-
wards VEGF pushes the pericytes ahead. As a result, the cell blobs migrate to
the lattice borders where they get stuck.

Altogether, we found that attraction between pericytes and endothelial cells
via chemotaxis can affect the patterns these cells form. When VEGF and
PDGFB are secreted at the same rate and VEGF diffuses much further than
PDGFB, networks formed that collapsed into a blob with long sprouts. Vary-
ing the chemotactic sensitivity to VEGF and PDGFB did not improve this col-
lapse. Overall, with the paracrine signaling scenario we partially reproduced
the network collapse observed in the in vitro cocultures.

3.2.5 Endothelial cell chemotaxis towards endothelial secreted
VEGF enables sprouting after network collapse

We showed that PDGFB secretion by endothelial cells and VEGF secretion by
pericyte can cause partial network collapse. However, the network did not
collapse completely and no new sprouts were formed, which was observed
in the endothelial-pericyte cocultures. Therefore, we tested if the second
signaling scenario, contact-dependent signaling, could improve network col-
lapse and enable sprouting. In this scenario endothelial cells can secrete
both VEGF, which attracts endothelial cells, and PDGFB, which attracts pe-
ricytes. PDGFB is secreted by all endothelial cells, similar to the paracrine
signaling scenario. VEGF is only secreted by endothelial cells that are adja-
cent to pericytes (Figure 3.9). As in the previous section, we tested how the
chemoattractant secretion rate and diffusive properties, and the cells’ sensi-
tivity to the chemoattractant affects the patterns that the cells form.

First, we tested how the relative decay and secretion rates of VEGF and
PDGFB affected pattern formation. The ranges of relative decay and secretion
rates were chosen such that there were no modeling artifacts, and such that
all observed patterns were included. Figure 3.10A-P shows the patterns that
formed with juxtacrine endothelial-pericyte signaling. For almost all tested
secretion and decay rates networks formed with a few groups of pericytes
on the networks nodes (Figure 3.10A and B, and E-P). A single pericyte clus-
ter evolved for only one parameter setting (Figure 3.10C and Q, and Movie
S5). For one other parameter setting the initial network collapsed into a few
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Figure 3.8: Patterns formed after ~192 hours with 200 round pericytes (dark) and
400 long endothelial cells (light) with varying chemotaxis strengths for
pericytes towards PDGFB and endothelial cells towards VEGF after ~192
hours. Endothelial cells are attracted to VEGF that is secreted by pericytes
and pericytes are attracted to PDGFB that is secreted by endothelial cells
(Figure 3.6).
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Figure 3.9: Schematic representation of contact-dependent signaling between peri-
cytes (dark) and endothelial cells (light). Endothelial cells secrete PDGFB
that attracts pericytes, and endothelial cells that are in contact with peri-
cytes secrete VEGF that attracts endothelial cells.

blobs that later connected via long, thick branches of endothelial cells (Fig-
ure 3.10D and R, and Movie S6). Thus, compared with the paracrine signaling
scenario, the contact-dependent signaling scenario did not seem to improve
network collapse.

Next, we studied the effects of varying the chemotactic sensitivity of en-
dothelial cells to VEGF and pericytes to PDGFB to test if and how this affects
the formed patterns. For this we use a VEGF secretion rate of 1073s~! and
VEGF decay rate of 10~°s™! because for those settings the network partially
collapsed (Figure 3.10C). Figure 3.11 shows the patterns that evolved after
eight days for varying chemotactic sensitivity towards VEGF and PDGFB. While
varying the PDGFB sensitivity of pericytes has little effect on the final mor-
phologies, varying the VEGF sensitivity of endothelial cells had a prominent
effect. For a low VEGF sensitivity, a few clusters of pericytes formed inside the
network. For higher VEGF sensitivity, a single pericyte cluster formed, from
which long branches extended. Interestingly, not all of these branches were
part of the initial network. In some simulations new sprouts of endothelial
cells extended from the blob (see Figure 3.12 and Movie S7).

Overall, as with the paracrine signaling scenario, for the contact-dependent
signaling scenario a blob formed when VEGF had a large diffusion length and
was secreted at the same rate as PDGFB. In contrast to the paracrine signal-
ing scenario, here network collapse improved with a higher VEGF chemotaxis.
Furthermore, with a higher VEGF chemotaxis new sprouts extended from the
collapsed networks. Thus, with the contact-dependent signaling scenario the
model reproduced the phenomenology of the endothelial-pericyte cocultures:
network collapse and sprout formation.

3.3 Discussion

In this work we studied how pericytes may be involved in angiogenesis using
in vitro experiments and computational modeling. By including hypothesized
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Figure 3.10: A-P Patterns formed after ~192 hours with 200 round pericytes (dark)
and 400 long endothelial cells (light) with varying ratios of PDGFB and
VEGF secretion, and varying ratios of PDGFB and VEGF decay. Endothelial
cells are attracted to VEGF that they secrete when they are in contact
with pericytes and pericytes are attracted to PDGFB that is secreted by
endothelial cells (Figure 3.9). Q evolution of the pattern in C. R evolution
of the pattern in D.
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Figure 3.11: Patterns formed after ~192 hours with 200 round pericytes (dark) and
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400 long endothelial cells (light) with varying chemotaxis strengths for
pericytes towards PDGFB and endothelial cells towards VEGF. Endothelial
cells are attracted to VEGF that they secrete when they are in contact
with pericytes and pericytes are attracted to PDGFB that is secreted by
endothelial cells (Figure 3.9).
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Figure 3.12: New sprout extending from a blob when VEGF is secreted by endothe-
lial cells that are in contact with pericytes. The snapshots were ob-
tained from a simulation with «(ECVEGF) = 107?), ¢(VEGF) = 107°,
X(EC,VEGF) = 750, and x(PC,PDGFB) = 500) that ran with 400 endothe-
lial cells and 200 pericytes.

endothelial-pericyte interactions in a computational, cell-based model of an-
giogenesis we tested which interactions could cause the patterns formed in
vitro. The experiments showed that pericytes induce a collapse of the net-
work formed by endothelial cells, and endothelial cells induce sprouting in
a endothelial-pericyte blob. Based on endothelial-pericyte interactions de-
scribed in the literature we proposed that endothelial cells and pericytes in-
teract via chemoattractants. With the model we tested two scenarios of
endothelial-pericyte signaling: paracrine signaling, and contact-dependent
signaling. In the paracrine signaling scenario endothelial cells secreted a
chemoattractant for pericytes and vice versa. With this scenario the model
reproduced network collapse, but not sprouting. In the contact-dependent
signaling scenario endothelial cells secreted a chemoattractant for pericytes,
and when endothelial cells are in contact with pericytes they also secrete a
chemoattractant for themselves. With this scenario the model reproduced
both network collapse and sprouting. Thus, our model supports the hypoth-
esis that endothelial cells and pericytes interact during angiogenesis by se-
creting chemoattractants. Furthermore, our model indicates that sprouting
after network collapse could be the result of pericyte induced secretion of a
endothelial cell chemoattractant by endothelial cells. This fits with the obser-
vation by Franco et al. [119] that endothelial cells secreted the endothelial
cell chemoattractant VEGF when they are in contact with pericytes.

In the model we incorporated generic chemoattractants because there exist
multiple candidates for each chemoattractant, including VEGF, PDGFB, TGF3,
and Ang-1. By varying the chemical properties of the chemoattractants, the
source and rate of chemoattractant production, and the response of cells
to the chemoattractants we characterized the cell behavior and chemoat-
tractant properties needed to reproduce the patterns formed in vitro. We
found that the endothelial cell chemoattractant should diffuse further than
the chemoattractant for pericytes. Furthermore, a strong response of en-
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dothelial cells to their chemoattractant improves network collapse. To link
these properties to a chemoattractant we need experimental data such a dif-
fusion length and the relative strength of chemotaxis. However, this informa-
tion is scarce and not available for all the chemoattractants we discussed in
the introduction. Therefore, we cannot directly link our model predictions to
specific chemoattractants.

Our modeling study indicates that the patterns endothelial cells and peri-
cytes form in vitro are the result of chemoattractants secreted by endothe-
lial cells and/or pericytes. This hypothesis should be validated experimen-
tally. Because we do not know the identity of the chemoattractants, we can-
not use genetic knockouts, trap the chemoattractants, or block the recep-
tors. Instead, we can use two alternative approaches. First, we can test if
chemical gradients do indeed play a role in pattern formation. This can be
tested by removing the gradients from the culture, for example by constantly
tilting the cultures an by seeding the cells on a substrate to which chemo-
attractants cannot bind. If pattern formation remains unchanged in such cul-
tures, chemotaxis cannot have caused the patterns. Second, we can compare
if the distribution of pericytes and endothelial cells predicted by our model
matches with in vitro observations. In our model, pericytes form the center of
the blob, and endothelial cells form the outer layer and sprouts. By labeling
endothelial cells and pericytes with different colors, or even by staining the
cultures, the distribution of endothelial cell and pericytes can be compared
to the model predictions. A difference between the distribution of cells in vitro
and in the model indicates that the model contains incorrect assumptions, or
misses vital cell behavior.

Because we could not completely reproduce the experimental observations,
it is likely that the model is missing essential cell behaviors or endothelial-
pericyte interactions. In our model we did not account for proliferation, apop-
tosis and differentiation, which are, among others, regulated by TGF/ and
VEGF. TGF affects proliferation and differentiation in both pericytes and en-
dothelial cells [98]. However, opposing effects are ascribed to the two TGF3
receptors Alk-1 and Alk-5. Therefore, TGF signaling should be understood
at the single cell level before it can be added to a cell-based model. VEGF
induces proliferation and inhibits apoptosis in endothelial cells [120]. If pe-
ricytes are indeed necessary for the production of VEGF, this would explain
why the endothelial cells in the monoculture died. Incorporating VEGF reg-
ulation of proliferation and apoptosis in the model could result in apoptosis
of endothelial cells in sprouts without pericytes and proliferation in the cell
blob. Another aspect that may not be represented with sufficient detail is the
shape of pericytes. In the model pericytes are modeled as round cells, while
in reality pericytes have long extensions via which they contact multiple en-
dothelial cells. Because these extension allow pericytes to interact with mul-
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tiple endothelial cells and sense chemoattractants much further away from
the cell body, they could play an important role in the model.

3.4 Methods

3.4.1 In vitro vasculogenesis assay

Pattern formation of endothelial cells and pericytes was analyzed with in vitro
vasculogenesis assays with immortalized human umbilical vein endothelial
cells (ECRF) and/or human brain vascular pericytes (HBVP). The HBVP were
obtained form CellSystems (Troisdorf, Germany) and the ECRF were provided
by Ruud Fontein (Academic Medical Center, Amsterdam). Suspensions of ECRF,
HBVP, or ECRF and HBVP at a 2:1 ratio were seeded on Matrigel and endothe-
lial growth media (EGM), obtained from Lonza (Breda, The Netherlands), was
added. The assays were incubated at 37 °C for eight days (192 hours). At
4, 24, 48 and 192 hours images of the assays were obtained using phase
contrast microscopy.

3.4.2 Cellular Potts model

The cellular Potts model (CPM) [84, 85] represents cells on a regular lattice.
Each lattice site X € Z? is associated with an index o € N. Cells are sets of
lattice sites with the same ¢ > 0 and the remaining lattice sites, with o = 0,
represent the extracellular matrix (ECM). Cell movement and deformation is
modeled by attempts to copy the index of a randomly chosen lattice site X
to one of its eight nearest neighbors X’. Whether a copy attempt is accepted
depends on the change in the effective energy (AH) that is associated with
the copy:

1 when AH < 0;
paccept(AH) - { _AH -

e » when AH > 0;

where p denotes the cell motility. During one time step of the CPM, called a
Monte Carlo step (MCS), as many of copies are attempted as there are lattice
sites.

The effective energy depends on the cell behavior that is prescribed in the
model. This cell behavior is prescribed for each modeled cell type, which is
identified by 7(¢) € {ECM,EC,PC}. In the standard CPM, the effective energy
includes cell adhesion and area conservation:

H= Z J(r, 7)1 = 6(o,0")) + Z)\A(T) (a(o) — A(T))2 i
(X.%") o

= o

X, X

cell adhesion area conservation

Cell adhesion depends on the cost J(7,7’) of an interface (x,x’) between
types 7 and 7/, with 0 = o(X), 7 = 7(0(X)), 0/ = o(X') and 7" = 7(c(X)).

47



3. Endothelial cell and pericyte interactions in angiogenesis

Area conservation is modeled by comparing the actual area a(c) with the tar-
get area of that cell A(7(¢)). How much the actual cell area fluctuates around
the target area depends on the elasticity parameter A(T).

Extra cell behaviors are added by extending the effective energy function.
For the endothelial-pericyte model we added cell elongation and chemotaxis.
To model cell elongation we added a term similar to the area conservation
with a target length /(o) an elongation strength A, (7) [25]:

Helongation = Z )‘L(T) (/(J) - L(T))2 .

The cell length is estimated based on the largest eigenvalue A\p(o) of the

cell’s inertia tensor: /() = 44/ );"(Ef)) [121]. To model chemotaxis towards a

chemoattractant c we added an extra term to the energy change associated
with a copy from X to X' [90]:

AHenemotaxis(c) = — max(x(7, ¢), x(7', €)) (c(X') — ¢(X)),

with x(7, ¢) the chemotactic sensitivity of a cell of type 7 and chemoattrac-
tant c. Because in the model each chemoattractant induces chemotaxis in
one cell type, max(x(7, ¢), x(7’, ¢)) is identical to the chemotactic sensitivity
of the cell type that responds to c. The concentration of the chemoattractant
c is described as:

% = D(c)V%c(%,t) + a(r(0(X)), c) — e(c),
with D(c) diffusion coefficient of chemical ¢, a(7(0(X)), ¢) the secretion rate
of ¢ by the cell at X, (c) the decay rate of c.

All simulations presented in this work were performed on a 400 by 400 pixel
lattice, which corresponds with an area of 800 um by 800 pum. At the start of
the simulation 600 cells are randomly distributed on this lattice. For each cell
type the CPM parameters as listed in table 3.2 are assigned, which our based
on previous work with similar models [25, 28]. Furthermore, all chemoattrac-
tant fields are initialized at zero. During the simulation the PDEs describing
the fields (Equation 3.4.2) are solved with a forward Euler solver with zero
boundaries. The solver runs every MCS with 15 time steps of 2 seconds, thus
an MCS corresponds to 30 seconds. To match the duration of the vasculoge-
nesis assays, which is eight days, the simulations must run for 25 000 MCS.
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Symbol Description Value
J(EC,PC), J(EC,EC), J(PC,PC) cell-cell adhesion 40
J(EC,ECM), J(PC,ECM) cell-ECM adhesion 20
A(EC), A(PC) target area 200 pum?
Aa(EC), Aa(PC) elasticity parameter 25
L(EC) target length 60 pm
AL(EC) elongation strength 10
w(EC), u(PC) cell motility 50
x(EC,MEC), x(PC,MPC) chemotaxis 500
Xx(EC,VEGF), x(PC,PDCFB) chemotaxis 500
Table 3.2: Model parameters describing the behavior of endothelial cells and peri-

cytes.

3.A Supplementary movies

An archive containing all supplementary movies can be found at

http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-22536

Movie S1

Movie S2

Movie S3

Movie S4

Movie S5

Movie S6

Movie S7

Evolution of a simulation with 600 endothelial cells (light) and no
pericytes (Figure 3.4C).

Evolution of a simulation with 600 pericytes (dark) and no endothe-
lial cells (Figure 3.4D).

Evolution of a simulation with 400 endothelial cells (light) and 200
pericytes (dark) (Figure 3.5).

Evolution of a simulation with paracrine signaling and a low VEGF
decay rate (Figure 3.7C).

Evolution of a simulation with contact-dependent signaling and a
low VEGF decay rate (Figure 3.10C).

Evolution of a simulation with contact-dependent signaling and a
low VEGF decay rate and a high VEGF secretion rate (Figure 3.10D).

New sprout extending from a blob when VEGF is secreted by en-
dothelial cells that are in contact with pericytes. This simulation
was performed with 400 endothelial cells and 200 pericytes, and
the following parameters: «(EC,VEGF) = 1073), ¢(VEGF) = 1075,
X(EC,VEGF) = 750, and x(PC,PDGFB) = 500).
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4. Screening of cell-based models of tip cell behavior in angiogenesis

Abstract

Angiogenesis involves the formation of new blood vessels by sprouting
or splitting of existing blood vessels. During sprouting, a highly motile
type of endothelial cell, called the tip cell, migrates from the blood ves-
sels followed by stalk cells, an endothelial cell type that forms the body
of the sprout. In vitro models and computational models can recapitulate
much of the phenomenology of angiogenesis in absence of tip and stalk
cell differentiation. Therefore it is unclear how the presence of tip cells
contributes to angiogenesis. To get more insight into how tip cells con-
tribute to angiogenesis, we extended an existing computational model
of vascular network formation based on the cellular Potts model with tip
and stalk differentiation, without making a priori assumptions about the
specific rules that tip cells follow. We then screened a range of model
variants, looking for rules that make tip cells (a) move to the sprout tip,
and (b) change the morphology of the angiogenic networks. The screen-
ing predicted that if tip cells respond less effectively to an endothelial
chemoattractant than stalk cells, they move to the tips of the sprouts,
which impacts the morphology of the networks. A comparison of this
model prediction with genes expressed differentially in tip and stalk cells
revealed that the endothelial chemoattractant Apelin and its receptor
APJ may match the model prediction. To test the model prediction we
inhibited Apelin signaling in our model and in an in vitro model of angio-
genic sprouting, and found that in both cases inhibition of Apelin or of its
receptor APJ reduces sprouting. Based on the prediction of the compu-
tational model, we propose that the differential expression of Apelin and
APJ yields a “self-generated” gradient mechanisms that accelerates the
extension of the sprout.

4.1 Introduction

Angiogenesis, the formation of new blood vessels from existing vessels, is
important in numerous mechanisms in health and disease, including wound
healing and tumor development. As a natural response to hypoxia, normal
cells and tumor cells secrete a range of growth factors, including vascu-
lar endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs).
These activate quiescent endothelial cells to secrete proteolytic enzymes, to
migrate from the blood vessel and organize into an angiogenic sprout. Angio-
genic sprouts are led by tip cells, a highly migratory, polarized cell type that
extends numerous filopodia [15]. Tip cells express high levels of the VEGF re-
ceptor VEGFR2 [15], Delta-like ligand 4 (DU4) [122] and, in vitro, CD34 [123].
The tip cells are followed by stalk cells [15], a proliferative and less migratory
type of endothelial cell, which expresses low levels of Dll4 [122] and, in vitro,
CD34[123]
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The behavior of tip and stalk cells during angiogenic sprouting has been
well characterized in mouse retina models and in endothelial spheroids [17,
18]. From a mechanistic point of view, however, it is not well understood
why two types of endothelial cells are involved in angiogenesis. Experimental
and computational lines of evidence suggest that in absence of tip and stalk
cell differentiation, endothelial cells can form blood-vessel like structures,
albeit with abnormal morphological parameters. In cell cultures, endothe-
lial cells organize into network-like structures, without obvious differentiation
into tip and stalk cells [124, 125], although the individual endothelial cells
were found to vary in other aspects of their behavior, e.g., their tendency
to occupy the nodes of vascular networks [80]. Computational models have
suggested a range of biologically-plausible mechanisms, by which popula-
tions of identical endothelial cells can self-organize into vascular network-
like structures [20, 21, 25, 28, 30, 31, 126] and sprout-like structures can
form in endothelial spheroids [28, 38, 126]. Experimental interference with
tip and stalk cell differentiation modifies, but does not stop the endothelial
cells’ ability to form networks. In mouse retinal vascular networks, inhibition
of Notch signaling increases the number of tip cells and produces denser and
more branched vascular networks [57, 58, 60], while in gain-of-function ex-
periments of Notch the fraction of stalk cells is increased, producing less ex-
tensive branching [57]. In vitro, similar effects of altered Notch signaling are
observed [127-129]. Taken together, these observations suggest that dif-
ferentiation between tip and stalk cells is not required for vascular network
formation or angiogenic sprouting. Instead they may fine-tune angiogenesis,
e.g., by regulating the number of branch points in vascular networks.

The exact mechanisms that regulate the differentiation of tip and stalk cell
fate are subject to debate. Activation of the VEGFR2 by VEGF-A, which is se-
creted by hypoxic tissue, upregulates Dll4 expression [60-63]. Dll4 binds to
its receptor Notch in adjacent endothelial cells, where it induces stalk cell
phenotype [130], which includes downregulation of Dll4. The resulting lat-
eral inhibition mechanism, together with increased VEGF signaling close to
the sprout tip, may stimulate endothelial cells located at the sprout tip to dif-
ferentiate into tip cells “in place”. Detailed fluorescent microscopy of grow-
ing sprouts in vitro and in vivo shows that endothelial cells move along the
sprout and “compete” with one another for the tip position [17, 18]. Endothe-
lial cells expressing a lower amount of VEGFR2, and therefore producing less
Dll4, are less likely to take the tip cell position, while cells that express less
VEGFR1, which is a decoy receptor for VEGFR2 [131, 132], are more likely to
take the tip cell position [17]. These results suggest that the VEGF-Dll4-Notch
signaling loop is constantly re-evaluated and thereby tip cell fate is contin-
uously reassigned. A series of recent observations, however, support an op-
posing view in which tip cells differentiate more stably. Tip cells express the
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sialomucin CD34, making it possible to produce “tip cell” (CD34+) and “stalk
cell” (CD34-) cultures using fluorescence-activated cell sorting (FACS) [123].
CD34+ cells have a significantly lower proliferation rate than CD34- cultures
during the first 48 hours, suggesting that during this time they do not rediffer-
entiate into stalk cells. In cultures of CD34-negative endothelial cells (stalk
cells), the wild-type ratio of tip and stalk cells reestablishes only after around
ten days. Thus within the time frame of in vitro vascular network formation
of around 24 to 48 hours [45] cross-differentiation between tip and stalk cells
is relatively rare. These data suggest that the differentiation between tip and
stalk cells depends on a balance between (a) lateral inhibition via the DIl4-
Notch pathway [57-60], and (b) a stochastically “temporary stabilized” tip or
stalk cell fate, potentially correlated with CD34 expression [123].

To develop new hypotheses on the role of tip and stalk cell differentiation
during angiogenesis, we developed an explorative approach inspired by Long
et al. [133] who used a genetic algorithm to identify the transition rules be-
tween endothelial cell behaviors that could best reproduce in vitro sprouting.
Here we use a cell-based, computational model of angiogenesis [28] that is
based on the Cellular Potts model (CPM) [84, 85]. We extend the model with
tip and stalk cell differentiation, and systematically vary the parameters of
the tip cells to search for properties that make the “tip cells” behave in a
biologically realistic manner: i.e., they should move to the sprout tip and af-
fect the overall branching morphology. We consider both a “pre-determined”
model in which ECs are stably differentiated into tip and stalk cells throughout
the simulation time of the model, and a “lateral inhibition” model, in which tip
and stalk cells cross-differentiate rapidly via Dll4-Notch signaling. We com-
pare the tip cell properties that our model predict with differential gene ex-
pression data, and experimentally test the resulting gene candidate in vitro.

4.2 Results

To develop new hypotheses on the role of tip cells during angiogenesis, we
took the following “agnostic” approach that combines bottom-up modeling,
bioinformatical analysis and experimental validation. We started from a pre-
viously published computational model of de novo vasculogenesis and sprout-
ing angiogenesis [28]. Briefly, the model simulates the formation of sprouts
and vascular networks from a spheroid of identical “endothelial cells”, driven
by an autocrine, diffusive chemoattractant that drives endothelial cells to-
gether (see [28] for details). In the first step, we assumed that a fraction of
the cells are “tip cells” (tip cell fraction) and the remaining cells are “stalk
cells”, hence assuming that cross-differentiation between tip and stalk cells
does not occur over the course of the simulation. We next systematically
varied the model parameters of the tip cells to look for cell behavior that (a)
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takes the tip cells to the sprout tips, and (b) changes the morphology of the
simulated vascular networks formed in the model. The predicted differences
between tip cell and stalk cell behavior were then expressed in gene ontology
terms, so as to compare them with published gene expression differences be-
tween tip and stalk cells [123]. The analysis yielded a gene candidate that
was further tested in an in vitro model of spheroid sprouting.

As a computational model for angiogenesis, we used our previous cell-based
model of de novo vasculogenesis and sprouting angiogenesis [28]. The model
assumes that endothelial cells secrete an autocrine, diffusive chemoattrac-
tant to attract endothelial cells. Due to the resulting attractive forces be-
tween the endothelial cells, the cells aggregate into a spheroid-like config-
uration. If the chemotactic sensitivity of the endothelial cells is restricted
to the interfaces between the endothelial cells and the surrounding ECM by
means of a contact inhibition mechanism, the spheroids sprout in microvas-
cular network like configurations. Although our group [25, 126, 134] and oth-
ers [19-23, 30] have suggested numerous plausible alternative mechanisms
for de novo vasculogenesis and sprouting, in absence of a definitive explana-
tory model of angiogenesis we have selected the contact inhibition model for
pragmatic reasons: It agrees reasonably well with experimental observation
[28, 135], it focuses on a chemotaxis mechanism amenable to genetic anal-
ysis, and it has a proven applicability in studies of tumor angiogenesis [68],
age-related macular degeneration [136], and toxicology [40].

The computational model is based on a hybrid, cellular Potts and partial
differential equation method [84, 85, 90]. The cellular Potts method (CPM)
represents biological cells as patches of connected lattice sites on a finite
box A of a regular 2D lattice A C Z? with each lattice site X € A containing
a cell identifier o € Z+° that uniquely identifies each cell. Each cell ¢ is also
associated with a cell type 7(o) € {tip, stalk, ECM}. To mimic amoeboid cell
motility the method iteratively attempts to move the interfaces between ad-
jacent cells, depending on the active motility of cells (expressed as a “cellular
temperature” [76] u(7)) and a balance between the active forces the cells ex-
ert on their environment (e.g. due to chemotaxis or random motility) and the
reactive adhesive, cohesive and cellular compression forces. Assuming over-
damped motility, the CPM solves this force balance as a Hamiltonian energy
minimization problem (see section 4.4.1 for details).

The angiogenesis model considers the following endothelial cell properties
and behaviors that we will modify in tip cells: cell-cell and cell-matrix adhe-
sion, volume conservation, cell elasticity, and chemotaxis at cell-ECM inter-
faces. To describe cell-cell adhesion we define a contact energy J(7,7') that
represents the cost of an interface between cells of type 7 and 7’. We assume
that cells resist compression and expansion by defining a resting area A(7).
In practice the cells fluctuate slightly around their resting area depending on
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the elasticity parameter A(7). The cells secrete a diffusive chemoattractant
c at a rate o(7), with 4 = DV?t — ¢(7)c + o(7), where D is a diffusion co-
efficient, € is a degradation rate, which is zero inside cells, and a(ECM) = 0.
Chemotaxis at cell-ECM interfaces is incorporated by biasing active cell ex-
tension and retractions up chemoattractant with a factor x(7), which is the
chemoattractant sensitivity. Table 4.1 lists the values used for these param-
eters, yielding the baseline collective cell behavior shown in Figure 4.1A.

Table 4.1: Parameter values for the angiogenesis and tip cell selection model. Under-
lined parameters are varied in the screen for tip cell behavior

Symbol Description Value

u(tip),u(stalk)  cell motility 50
J(tip,stalk)

J(tip,tip) cell-ECM adhesion 20

J(stalk stalk)

J(tip,ECM) cell-ECM adhesion 20

J(stalk,ECM)

A(tip), A(stalk) target area 100 pixels

A(tip), A(stalk) elasticity parameter 25

x(tip), x(stalk) chemoattractant sensitivity 500

a(tip), a(stalk) chemoattractant secretion rate 1073 st

M

ECM) chemoattractant decay rate in ECM 1073 s
tip), e(stalk)  chemoattractant decay rate below cells 0
chemoattractant diffusion coefficient 10713 m2s~1

(
(

U(’h

4.2.1 Computational screening for putative tip cell behavior

We next set up a screen for differences in the parameters of tip cells and
stalk cells that affect the outcome of the model. In particular, we looked for
models in which tip cells lead sprouts in such a way that the network morphol-
ogy is affected. In the angiogenesis model, a fraction (Fp) of the endothelial
cells is assumed to be the “tip cell”, 7(¢) = tip, and the remaining fraction
1 — Fyp is set to 7(0) = stalk. We assigned the baseline parameters used
previously [28], and which are shown in Table 4.1, to “tip cells” (7(c) = tip)
and “stalk cells” (7(¢) = stalk). We varied the underlined parameters in Ta-
ble 4.1 to change the behavior of “tip cells” and ran the simulation for 10
000 time steps for a series of tip cell fractions and a series of parameters.
Figure 4.1B illustrates a typical range of morphologies, or morphospace, that
we obtained in this way. We analyzed the position of tip cells in each mor-
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Figure 4.1: Overview of the angiogenesis model and the parameter search. A Time-
lapse of angiogenesis model behavior B For each parameter P that is
tested in the parameter search a morphospace is created to compare the
different parameter values for different tip cell fractions. C Each morphol-
ogy is studied in detail to see if the sprout tips are occupied by tip cells
(red). D Each row of morphologies is studied to find rows in which the mor-
phologies change, indicating that network formation depends on the tip
cell fraction.
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phology (Figure 4.1C) and analyzed the morphology of the vascular network
in function of the tip cell fraction, Fyp.

To evaluate whether tip cells occupy sprout tips we simulated the model with
a tip cell fraction of F, = 0.2 and automatically detected sprouts with tip
cells on the tip and counted the percentage of sprouts with at least one tip
cell at the sprout tip. If more sprout tips were occupied by a tip cell than in
the control experiment with identical tip and stalk cells, the parameter values
were retained for further analysis. Details on the automatic detection of tip
cells on the sprouts tips are given in section 4.4.4.
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Figure 4.2: Differences in cell properties can enable cells of one type to occupy sprout
tips. The percentage of sprout tips occupied by at least one tip cell was
calculated at 10 000 MCS and averaged over 50 simulations (error bars
depict the standard deviation). In each simulation 20% of the cells were
predefined as tip cells. For each simulation one tip cell parameter was
changed, except for the control experiment where the baseline parame-
ters were used for both tip and stalk cells. p-values were obtained with a
one sided Welch'’s t-test for the null hypothesis that the number of tip cells
at the sprout tips is not larger than in the control simulation.

Figure 4.2 shows the percentage of sprouts tips occupied by one or more
tip cells for all parameters tested. More sprouts are occupied by tip cells
that: (a) are less sensitive to the autocrine chemoattractant than stalk cells
(x(tip) < x(stalk)), (b) adhere more strongly to the ECM than stalk cells
(J(tip,ECM < J(stalk,ECM)), (c) adhere stronger to stalk cells than stalk cells
to stalk cells (J(tip,stalk) < J(stalk,stalk)), (d) secrete the chemoattractant
at a lower rate than stalk cells (a(tip) < a(stalk)), or (e) have a higher active
motility than stalk cells (u(tip) > p(stalk)). Surprisingly, tip cells also move
to the sprout tip if stalk cells adhere stronger to the ECM than tip cells while
previous studies with the CPM showed that cells with the strongest ECM ad-
hesion engulf other cells [85]. In the angiogenesis model stalk cells only sur-
rounded tip cells when stalk cells adhere much stronger to the ECM than tip
cells (Supplementary Figure S1A). Otherwise, chemotaxis prevented engulf-

58



4.2. Results

ment and groups of tip cells occupied the sprout tips (Supplementary Figure
S1B). Because such grouping of tip cells does not correspond with experimen-
tal observations [15], we omitted reduced stalk-ECM adhesion in our further
analysis.

Out of the cell behaviors that turned out to make cells move to the sprout
tips, we next selected cell behaviors that also affect network morphology. We
quantified network morphology using two measures. The compactness, C =
Acluster/Anul is the ratio of the area of the largest cluster of connected cells,
Acwuster, and the area of the convex hull enclosing the connected cluster, Anuy
[28]. It approaches C = 1 for a disk and tends to C — 0 for a sparse network.
We also counted the number of “gaps” in the network, or lacunae, Nacunae. For
details see section 4.4.3.

Figure 4.3A-F plots the compactness C (black curves) and the number of
lacunae NMcunae (blue curves) as a function of tip cell fraction, and compares
them with ‘baseline’ simulations containing only ‘stalk cells’ (as in Figure 4.1A).
Closed symbols indicate a significant difference with the baseline simulations
(Welch’s t-test, p < 0.05, n = 10). Cell behaviors that affected network mor-
phologies for at least half of the tip cell fractions tested were kept for fur-
ther analysis. The screening thus selected three putative tip cell behaviors:
reduced chemoattractant sensitivity (x(tip) < x(stalk); see Figure 4.3A), re-
duced chemoattractant secretion by tip cells (a(tip) < a(stalk); see Figure
4.3E), and increased tip-ECM adhesion (J(stalk,ECM) > J(tip,ECM); see Fig-
ures 4.3B-C). Among the latter two (panels B and C) it turned out that for
J(tip,ECM) = 5 (Figure 4.3C) networks could not form with too many tip cells
(see Supplementary Movie S1). For this reason we will model increased ECM
adhesion for tip cells by reducing the adhesion of stalk cells with the ECM
(J(stalk,ECM)).

To estimate how much tip cell behavior may differ from stalk cell behavior in
our model, we repeated the screening for additional values of x(tip), a(tip),
and J(stalk,ECM) (Supplementary Figure S2) . The screening showed that for
each behavior there is a range of parameter values for which tip cells occupy
the sprout tips and affect network formation, with two exceptions: (1) When
the chemoattractant sensitivity of tip cells became 100 or less, the networks
disintegrated (Supplementary Figure S2J) (2) If the adhesion between of tip
cells became too strong because the adhesion energy between stalk cells and
ECM (J(stalk,ECM)) became 70 or more, they spread out over the stalk cells,
covering the whole network (Supplementary Figure S2K). Because the values
of the parameters associated with chemotaxis were estimated in absence of
experimental values, we repeated the screening for three alternative sets of
baseline parameter values for which network formation was not affected. The
results of these extra screenings were similar to those of the screening with
the baseline parameters (Supplementary Figures S3 and S4).
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Figure 4.3: Effects of different tip and stalk cell properties on network morphology. A-
F Trends of compactness (black rectangles) and number of lacunae (blue
circles) calculated with the morphologies at 10 000 MCS. For each data
point 10 morphologies were analyzed and the error bars represent the
standard deviation. p-values were obtained with a Welch’s t-test for the
null hypothesis that the mean of the sample is identical to that of a refer-
ence with the baseline parameters listed in Table 1. For B this reference
is the data for tip cell fraction 1 and for all other graphs this is the data
for tip cell fraction 0. G-L Morphologies after 10 000 MCS for each tested
parameter value with Fjp, = 0.2.

Altogether, the computational screening presented in this section identified
three tip cell parameters that affect tip cell position in the sprout and the
morphology of the networks formed in our computational model: reduced se-
cretion of the chemoattractant, reduced sensitivity to the chemoattractant,
and increased tip-ECM adhesion. It is possible, however, that these effects
are due to spatial or temporal averaging of tip and stalk cell parameters, not
due to interaction of two different cell types. The next section will introduce
a control for such effects.
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4.2.2 Comparison with control model selects “reduced
chemotactic sensitivity” model for further analysis

The computational screening highlighted three tip cell parameters that both
affected the position of tip cells in the sprouts and affected network morphol-
ogy: increased tip-cell ECM adhesion, reduced chemoattractant secretion by
tip cells, and reduced chemoattractant sensitivity of tip cells. Because it was
unsure whether these effects were due to (a) the differential cell behavior of
tip and stalk cells, or (b) due to temporal or spatial averaging of the param-
eters differentially assigned to tip and stalk cells, we compared the results
against a control model with a uniform cell type with “averaged” parameters,
P(cell) = (1 — Fyp) - P(stalk) + Fyp - P(tip), with P(tip) the tip cell parameter
value and P(stalk) the stalk cell parameter value.

For each of the three parameters identified in the first step of the computa-
tional screening, we compared the morphologies formed in the control model
after 10000 MCS with the morphologies formed in the original model with
mixed cell types (Figure 4.4). With increased ECM adhesion, the morphologies
resulting from the model with mixed cell types (Figure 4.4A) did not appear
visually different from the control model (Figure 4.4B). Although small differ-
ences were observed in the compactness values (Figure 4.4E), the morpho-
metric measures for branching did not differ significantly between the con-
trol and ‘mixed” model (Figure 4.4C-D). Next, we compared the model with re-
duced chemoattractant secretion rates in tip cells with the averaged control.
Visual comparison of the results and suggested that the model with mixed cell
types produces similar morphologies as the control model (Figure 4.4F-G).
This observation was confirmed by all three morphometric measures (Figure
4.4H-J). Finally, we compared the results of the mixed and control model for
tip cells with reduced chemoattractant sensitivity. The networks formed with
mixed cells had larger lacunae and thinner branches, and were less regular
than those formed by the control model (Figure 4.4K-L), and observation that
was confirmed by the morphometrics for almost all tip cell fractions (Figure
4.4M-0). From these results we concluded that among the tip cell parameters
that we have tested in our model, only in the reduced chemoattractant sen-
sitivity model the position of the tip cells affected the morphology. We thus
retained only this model for further analysis.

4.2.3 Local tip cell selection regularizes network morphology

In the parameter screenings presented in the previous sections, to first ap-
proximation we assumed that a subpopulation of endothelial cells are “pre-
determined” to become tip cells, e.g., due to prior expression of CD34 [123].
It is likely, however, that tip cell fate is continuously “re-evaluated” in a DlI4-
Notch-VEGFR2 signaling loop [57-60]. Tip cells express Dll4 on their cell
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properties. A, F, and K morphologies for mixed tip (red) and stalk (gray)
cells (Fyp = 0.5). B, G, and L morphologies for averaged cells (Fi, = 0.5).
C-E, H-J, and M-O morphometrics for a range of tip cell fractions for both
the control and mixed model. The morphometrics were calculated for 50
simulations at 10 000 MCS (error bars represent the standard deviation).
p-values were obtained with a Welch’s t-test for the null hypothesis that
the mean of mixed model and the control model are identical.
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membranes [122], which binds to the Notch receptor on adjacent cell mem-
branes. This leads to the release of the Notch intracellular domain (NICD),
activating the stalk cell phenotype [57, 59]. Via this lateral inhibition mecha-
nism, cells adjacent to tip cells tend to differentiate into stalk cells. To simu-
late such “dynamic tip cell selection”, a simplified genetic regulatory network
(GRN) model of Dll4-Notch signaling was added to each simulated cell, as de-
scribed in detail in section 4.4.2. Briefly, the level of NICD in each cell is a
function of the amount of Dll4 expressed in adjacent cells, weighed accord-
ing to the proportion of the cell membrane shared with each adjacent cells. If
the NICD level in a cell exceeds a threshold, Oyicp, it differentiates into a stalk
cell, otherwise it becomes a stalk cell [57-59].

Figure 4.5 shows the behavior of the initial ‘static model” (Figures 4.5A-F)
in comparison with the ‘dynamic tip cell selection” model (Figures 4.5G-L).
In the dynamic model the tip cell fraction was set using the values of ©ycp,
such that the exact tip cell fractions depended on the local configurations.
In comparison with the initial, ‘static’ model (Figure 4.5A-F), the model with
‘dynamic’ selection (Figure 4.5G-L and Supplementary Movie S3) seems to
form more compact and regular networks. To quantify this difference in net-
work regularity, we determined the variation of the areas of the lacunae of
the networks at the final time step of a simulation. Figure 4.5M shows this
measurement averaged over 50 simulations for a range of tip cell fractions.
Lacunae in networks formed from mixtures of stalk cells and 10% to 60%
‘static’ tip cells have more variable sizes than lacunae in networks formed by
the ‘dynamic tip cell’ model.

To further analyze how dynamic tip cell selection regularized network mor-
phologies in our model, we studied in detail how tip cells contributed to net-
work formation in the ‘static’ and ‘dynamic’ tip cell models. Figure 4.5N-Q
shows the evolution of a part of a network formed with 20% ‘static tip cells’.
At first, some tip cells locate at sprout tips and others are located adjacent
to or within the branches (Figure 4.5N). The chemoattractant gradually ac-
cumulates ‘under’ the branches, with a curvature effect producing slightly
higher concentrations at the side of the lacunae. This attracts the stalk cells
(Figure 4.50), ‘squeezing’ the tip cells out of the branch and away from the la-
cuna, due to their reduced chemoattractant sensitivity (Figure 4.5P and Sup-
plementary Movie S2). The resulting layered configuration with tip cells at
the outer rim drives a drift away from the lacuna (Figure 4.5Q): Due to their
stronger chemotactic sensitivity, the stalk cells attempt to move to the cen-
ter of the configuration, pushing the tip cells away, thus leading to directional
migration driven by a “self-generated gradient” mechanism [137].

In the ‘dynamic tip cell selection” mechanism, such migration directed by
self-generated gradients will occur only at the sprout tips, where tip cells
are selected. The model thus suggests that tip cells could assist in produc-
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Figure 4.5: Effects of tip cell selection on network formation. A-F Networks formed
with varying fractions of predefined tip cells (Fyp) with x(tip) = 400 at
10 000 MCS. F-L Networks formed with selected tip cells for varying NICD
thresholds (©nicp) at 10 000 MCS. M Standard deviation of lacuna area in
a network after 10 000 MCS. N-Q Close up of the evolution of a network
with 20% predefined tip cells (marked area in B). R-T Comparison of the
morphometrics for networks formed with predefined and selected tip cells
with reduced chemoattractant sensitivity (x(tip) = 400) and network at
10 000 MCS. For the simulations with tip cell selection, the average tip cell
fraction was calculated for each NICD threshold. For all plots (M and R-T)
the values were averaged over 50 simulations and error bars depict the
standard deviation.
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ing a local, self-generated gradient mechanism that directs the migration of
sprouts, a mechanism that requires tip cells to differentiate only at sprout
tips. For tip cells to “drag” just the sprouts, only a limited number of tip cells
must be present in the network. To test this idea, we compared network mor-
phologies for the ‘dynamic’ and the ‘static’ tip cell models for a range of tip
cell fractions (Figure 4.5R-T). Indeed, the network morphologies were prac-
tically identical for high tip cell fractions, whereas they differed significantly
for all three morphometrics for tip cell fractions between 0.1 and 0.3: In the
dynamic selection model the networks become more disperse (Figure 4.5R)
and formed more branches (Figure 4.5S) and lacunae (Figure 4.5T) than in
the ‘static’ model.

To validate the ‘dynamic’ tip cell model, we compared the effect of the tip
cell ratio on network morphology with published experimental observations.
The in vivo, mouse retinal angiogenesis model is a good and widely used
model for tip/stalk cell interactions during angiogenesis [17, 18, 57, 58, 60,
61, 138-140]. Networks formed with an increased abundance of tip cells be-
come more dense and form a larger number of branches [57, 58,60, 61] than
wild type networks. Our computational model is consistent with this trend for
tip cell fractions between 0 and up to around 0.2 (Figure 4.5R-T), but for tip
cell fractions > 0.2 the vascular morphologies become less branched (Fig-
ure 4.5S-T). To investigate in more detail to what extent our model is con-
sistent with these experimental observations, we tested the effect of the tip
cell fraction in the ‘dynamic’ tip cell selection model in more detail. In par-
ticular we were interested in how the difference in chemotactic sensitivity
between tip and stalk cells affected network morphology. Figure 4.6 shows
the effect of the NICD threshold (increasing the NICD threshold is compara-
ble to inhibiting Dll4 expression or Notch signaling, and hence controls the
tip cell fraction) for a range of tip cell chemotactic sensitivities. When the dif-
ference in the chemotactic sensitivity between tip and stalk cells is relatively
small (x(tip) > 300)), increasing the NICD threshold results in the formation
of denser network with fewer lacunea. In contrast, when the difference in
chemotactic sensitivity between tip and stalk cells is larger (x(tip < 200),
there exists an intermediate state in which the networks are both compact
an d have a large number of branch points (Figure 4.6A4 and 4.6B4). This
intermediate state resembles the dense, highly connected networks that are
observed when tip cells are abundant in the mouse retina [57, 58, 60, 61].
Thus, when the difference in the chemotactic sensitivity of tip and stalk cells
is sufficiently large, the model can reproduce both normal angiogenesis and
the excessive angiogenic branching observed for an abundance of tip cells
[57].
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4.2.4 Survey for chemoattractant receptors reduced in tip cells
reveals Apelin as candidate

The comparative, computational model analysis of the role of tip cells in an-
giogenesis, predicted that-among the models tested—a model where tip cells
show reduced sensitivity to an autocrine chemoattractant best matches tip
cell phenomenology: The tip cells lead the sprouts, and facilitate the forma-
tion of vascular networks of regular morphology for tip cell fractions of up to
around 0.2. Could a chemoattractant with these, or very similar properties
be involved in vascular development? To answer this question, we evaluated
four comparative studies of gene expression in tip and stalk cells [123, 141-
143]. These studies identified three receptors involved in endothelial chemo-
taxis that were differentially expressed in tip cells and stalk cells: VEGFRZ2,
CXCR4, and APJ. VEGFR2 is upregulated in tip cells [123, 140, 141]. VEGFR2
is a receptor for the chemoattractant VEGF that is secreted by hypoxic tis-
sue [116]. Whether or not VEGF is secreted at sufficiently high levels to act
as an autocrine chemoattractant between ECs has been under debate [28,
119, 144], with the emerging being that it is most likely a long-range guid-
ance cue of angiogenic sprouts secreted by hypoxic tissues ([15]; reviewed in
Geudens and Gerhardt 2011 [145]). The chemokine CXCL12 and its recep-
tor CXCR4 [146] are both upregulated in tip cells [123, 141, 143], suggest-
ing that tip cells would have higher, not lower sensitivity to CXCL12 signal-
ing than stalk cells. Interestingly, CXCL12 and CXCR4 are key components
of a self-generated gradient mechanism for directional tissue migration in
the lateral line primordium mechanisms [137]. Because of the key role of
CXCL12/CXCR4 in angiogenesis (see, e.g., [147]) it is therefore tempting to
speculate that CXCL12/CXCR4 may be part of a similar, self-generated gradi-
ent mechanism during angiogenesis. However, because CXCL12 expression
is upregulated in tip cells relative to stalk cells, not downregulated, we will
focus here on a third receptor/ligand pair differentially expressed in tip and
stalk cells: APJ and Apelin. APJ is a receptor for the endothelial chemoattrac-
tant Apelin [148-150] that is secreted by endothelial cells [149, 150]. Apelin
expression is upregulated in tip cells [123, 142, 143], whereas its receptor
APJ is not detected in tip cells [142]. Thus the expression pattern of Apelin
and its receptor APJ fits with our model prediction: Apelin is an endothelial
chemoattractant that is secreted by endothelial cells and tip cells are less
responsive to Apelin than stalk cells. In our model the chemoattractant is se-
creted at the same rate by tip and stalk cells, whereas Apelin is preferentially
expressed in tip cells. The next section will therefore add preferential secre-
tion of Apelin by tip cells to the model, and test if and how this changes the
predictions of our model.
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4.2.5 Model refinement to mimic role of Apelin/APJ more closely
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Figure 4.7: Effects of increasing tip cell Apelin secretion rate for varying levels of tip
cell chemotaxis. Average compactness of the final network (10 000 MCS)
with the morphologies for x(tip) = 100 for tip cell Apelin secretion rates of
a(tip) = 1.6-1073, a(tip) = 4.0-1073, a(tip) = 1-1072, a(tip) = 1.6- 1072,
and a(tip) = 4.0 - 1072 as insets. Except for a(tip), all parameters have
the values listed in Table 4.1. Data points show average values for n = 50
simulations with error bars giving the standard deviation.

The computational analyses outlined in the previous sections suggest that
Apelin and its receptor APJ might act as an autocrine chemoattractant in
the way predicted by our model: Both stalk cells and tip cells secrete Apelin
and APJ [149, 150] and the tip cells do not express the APJ receptor [142].
Gene expression analyses [123, 142] also suggest that tip cells secrete Ape-
lin at a higher rate than stalk cells. We therefore tested if the simulation
results still held if we changed the model assumptions accordingly: In addi-
tion to a reduced chemotactic sensitivity in tip cells (x(tip) = 100), we as-
sumed tip cells secrete chemoattractant at a higher rate than stalk cells:
a(tip) > a(stalk). Although the absence of APJ expression in tip cells sug-
gests that tip cells are insensitive to the chemoattractant, x(tip) = 0, to
reflect the phenomenological observation that ECs are attracted to one an-
other, we set x(stalk) > x(tip) > 0. Such intercellular attraction could, e.g.,
be mediated by cell-cell adhesion, by alternative chemoattractant-receptor
pairs (e.g., CXCR4-CXCL12 [151]), or by means of mechanical EC interactions
via the extracellular matrix[152]. Figure 4.7 shows how the Apelin secre-
tion rate in tip cells (a(tip)) affects the morphology of the vascular networks
formed in our model, as expressed by the compactness. For tip cell secretion
rates of up to around a(tip) = 0.01 the model behavior does not change. The
networks became more compact for tip cell chemoattractant secretion rates
of a(tip) > 0.01, in which case stalk cells were attracted to tip cells and lat-
erally inhibited tip cells. Except for those cases, after correcting the model to
better mimic the expression pattern of Apelin and APJ, it formed vascular-like
networks similar to those formed in the original model with only reduced tip
cell chemotaxis.
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4.2.6 Apelin or APJ silencing inhibits sprouting in vitro and in
silico

To validate the possible role of Apelin signaling in angiogenic sprouting pre-
dicted by our model, we asked if and how silencing of Apelin signaling affects
angiogenic sprouting from endothelial spheroids in vitro. Previous studies
have shown that Apelin promotes angiogenesis of retinal endothelial cells
seeded on Matrigel [149], as well as in in vivo systems such as the mouse
retina, xenopus embryo, and chick chorioallantoic membrane [153]. Further-
more, in vivo inhibition of Apelin or APJ reduced sprouting in xenopus embryos
[153], zebrafish [154], and the mouse retina [142, 155]. These results sug-
gest that Apelin signaling indeed regulates angiogenic sprouting, but they
do not imply a relation between Apelin signaling and tip cell driven angio-
genesis. To assess the relation between tip-stalk cell interaction and Ape-
lin signaling, we inhibited Apelin signaling in an in vitro model of angiogenic
sprouting in which the fraction of CD34- (“stalk”) cells could be controlled.
Spheroids of immortalized human microvascular endothelial cells (HMEC-1s)
were embedded in collagen gels and in collagen enriched with VEGF. After cul-
turing the spheroids for 24 hours at 37 degrees Celcius under 5% CO,, the
cultures were photographed and the number of sprouts were counted using
the semi-automated image analysis software ImagedJ. We compared sprout-
ing in a “mixed” spheroid of HMEC-1s with a population enriched in “stalk
cells”, i.e., a population of CD34- HMEC-1s sorted using FACS. To inhibit Ape-
lin signaling, the spheroids were treated with an siRNA silencing translation
of Apelin (siAPLN) or of its receptor (siAPJ).

Figure 4.8A-F and K-L show how the spheroid morphology is affected by the
silencing RNA treatments. Relative to a control model with non-targeting
siRNA (siNT), mixed spheroids treated with siAPLN or siAPJ formed fewer (Fig-
ure 4.8 A-C and G, Supplementary Figure S5, and Supplementary Table S1).
The effects of siAPJ and siAPLN on the average sprout length are inconclu-
sive because of large variations in the results of the duplicate experiments. In
CD34- spheroids these different effects were observed (Figure 4.8D-F and H).
siRNA treatments interfering with Apelin treatments slight improved sprout-
ing in some experiments and reduced it in others (Supplementary Figure S5,
and Supplementary Table S2). Thus in spheroids containing a wild-type mix of
CD34+ and CD34- inhibition of Apelin signaling reduced sprouting, whereas
results for spheroids enriched in CD34- cells were variable.

We next asked if the observed reduction of sprouting associated with in-
hibition of Apelin-signaling also occurred in the computational model. To
mimic application of siAPLN in the computational model, we reduced the se-
cretion of the chemoattractant both in tip and stalk cells to a(tip) = 1073
and a(stalk) = 10~*. To mimic wild-type spheroids we used Oycp = 0.2,
which yields a mix of CD34+ and CD34- cells. To mimic spheroids enriched
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Figure 4.8: Effects of Apelin or APJ silencing in spheroid sprouting assays. A-F Mi-
croscopy images of the WT and CD34- spheroids in VEGF-enriched collage
after 24 hours. G-H Number of sprouts after 24 hours for spheroids with
mixed cells and CD34- spheroids. These metrics are the average of all
successfully cultured spheroids in all duplicate experiments with the error
bars depicting standard deviation. The * denotes p < 0.05, see section
4.4.6 for details of the statistical analysis. I-L Comparison of final mor-
phologies (10 000 MCS) formed by the computational angiogenesis model
without and with inhibited Apelin-signaling. M Average compactness of
the final morphology (10 000 MCS) for 50 simulations with the error bars
depicting the standard deviation. The * denotes p < 0.05 and the p-values
where obtained with a Welsh’ t-test.

in stalk cells reduced the NICD-levels to Oncp = 0, for which all cells are
stalk cells. Figure 4.8I-M shows how the model responds to the inhibition of
Apelin-signaling: For both the NICD thresholds, inhibition of Apelin-signaling
reducing sprouting (appearing as an increased compactness and visible in
Supplementary Movie S4), as in the experiment with wild-type mixtures of
CD34+ and CD34- endothelial cells. Because the CD34- spheroids may con-
tain a few tip cells, we repeated the simulations with an NICD threshold that
allows for a few tip cells (©ncp = 0.05), which yielded results similar to those
for @N|CD =0.
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4.3 Discussion

In this work we asked how and by what mechanisms tip cells can participate
in angiogenic sprouting. We employed a suitable computational model of
angiogenic network formation [28], which was extended with tip and stalk
cell differentiation. In the extended model, the behavior of tip and stalk cells
could be varied independently by changing the model parameters. Instead
of testing preconceived hypotheses on tip and stalk cell behavior, we took a
“reversed approach” in which we could rapidly compare series of alternative
hypothesis: We systematically searched for parameters that led tip cells to
occupy the sprouts tips, and that changed the morphology of the angiogenic
networks relative to a baseline set of simulations in which tip and stalk cells
have identical behavior. We studied two cases, reflecting the two extremes
in the range of known molecular mechanisms regulating tip and stalk cell
differentiation. In the first case, we assumed that endothelial cells are differ-
entiated stably between a tip and stalk cell phenotype within the characteris-
tic time scale of angiogenic development (approximately 24 to 48 hours). In
the second case, we assumed a much more rapidly-acting lateral inhibition
mechanism, mediated by Dll4 and Notch. Here endothelial cells can switch
back and forth between tip and stalk cell fate at time scales of the same or-
der of cell motility. Our analysis showed that in a model driven by contact-
inhibited chemotaxis to a growth factor secreted by ECs, tip cells that respond
less to the chemoattractant move to the tips of the sprouts and speed up
sprout extension. Under the same conditions, more regular and more dense
networks formed if ECs switched between tip and stalk cell fate due to lat-
eral inhibition. This change in morphology occurred because without tip cell
selection tip cells can be present anywhere in the network, whereas with tip
cell selection tip cells are limited to growing sprouts. Therefore, with tip cell
selection a “self-generated gradient mechanism” [137] drives extension of
the sprout at the right position: only at the tips of growing sprouts. We next
asked if a growth factor with the predicted properties is involved in angiogenic
sprouting. To this end we looked for matching, differential gene expression
patterns in published data sets of gene expression in tip and stalk cells. In par-
ticular the Apelin-APJ ligand-receptor pair turned out to be a promising can-
didate. Because Apelin is a chemoattractant for endothelial cells that is se-
creted by endothelial cells and the receptor APJ is only detected in stalk cells.
We then included the expression pattern of Apelin and APJ in the model and
predicted that inhibition of Apelin signaling inhibits sprouting. In agreement
with those model predictions, in vitro experiments on endothelial spheroids
showed that inhibition of Apelin or its receptor APJ reduced in vitro spheroid
sprouting. Thus the reversed bottom-up simulation approach employed in
this study, combined with an analysis of published, top-down gene expression
studies here helped identify a candidate molecule mediating the interaction
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between tip and stalk cells during angiogenesis.

Our approach was inspired by a recent study that used a computational
model to identify what cell behavior changed when endothelial cells were
treated with certain growth factors [133]. This study used an agent-based,
3D model of angiogenesis in which sprouts extend from a spheroid. With
a genetic algorithm the parameters for which the model reproduces exper-
imental results are derived. In this way Long et al. [133] could hypothesize
what changes in cell behavior the growth factors caused and successfully
derived how certain growth factors affect cell behavior in 3D sprouting as-
says. Here, we used a similar approach to study what behavior makes tip
cells lead sprouts and affect network formation, using high-throughput pa-
rameter studies instead of objective optimization approaches. Tip-stalk cell
interactions have been studied before with several hypothesis-driven models
where specific behavior was assigned to the tip cells based on experimen-
tal observations, and tip cells were either defined as the leading cell [33-35,
156-158] or tip cell selection was modeled such that the tip cell could only
differentiate at the sprout tip [40, 44, 159]. These models have been used to
study how extracellular matrix (ECM) density [156], ECM degradation [156],
ECM inhomogeneity [33, 34], a porous scaffold [157, 158], cell migration and
proliferation [35, 44], tip cell chemotaxis [159] and toxins [40] affect sprout-
ing and angiogenesis. Thus these studies asked how a specific hypothesis
of tip cell behavior and tip cell position affected the other mechanisms and
observables in the simulation. Our approach aims to develop new models for
the interaction between tip and stalk cells that can reproduce biological ob-
servation. These new hypotheses can be further refined in hypothesis-driven
model studies, as we do here, e.g., in Figure 4.7.

In order to make this “reversed’ approach possible, we have simplified the
underlying genetic regulatory networks responsible for tip-stalk cell differen-
tiation. These molecular networks, in particular Dll4-Notch signaling, have
been modeled in detail by Bentley et al. [41, 42]. Their model describes a
strand of endothelial cells, and was used to study how lateral inhibition via
Dll4-Notch signaling in interaction with VEGF signaling participates in tip cell
selection. With this model Bentley and coworkers predicted that the shape
of the VEGF gradient determines the rate of tip cell selection, and that for
very high levels of VEGF the intracellular levels of DlIl4 and VEGFR2 oscil-
late. Based on their experimental observations that tip cells migrate within
a sprout, cell movement has been added to model by allowing cells to switch
positions along the sprout [17]. Bentley and coworkers reproduced tip cell
migration in the sprout and showed that the VEGFR2 levels in a cell deter-
mine the chance of that cell to become a tip cell. The migration of tip cells
in a sprouts was further studied using a model that included a cell migration
model [140]. Bentley and coworkers [140] thus showed that the differences
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in VE-cadherin expression between tip and stalk cells could cause tip cell mi-
gration to the sprout tip. Altogether, these models gave useful insights in
the role of Dll4-Notch signaling and VEGF signaling in tip cell selection in a
growing sprout. Here, instead of focusing at single sprouts, we focused on
the scale of a vascular network. By combining a tip cell selection model with
a cell based model of angiogenesis, we showed that tip cell selection can aid
the development of dense networks by limiting the destabilizing effects of tip
cells.

The model prediction that tip cells respond less to a chemoattractant se-
creted by all endothelial cells fits with the expression pattern of the chemoat-
tractant Apelin, which is secreted by all endothelial cells and of which the
receptor is not detect in tip cells. Previous studies indicated that Apelin in-
duces angiogenesis in vitro [149, 150]. Apelin-APJ signaling is necessary for
vascular development in vivo systems such as in the mouse retina [155], frog
embryo [150, 153], and chicken chorioallantoic membrane [153]. Further-
more, high levels of vascularization in human glioblastoma are correlated
with high expression levels of Apelin and APJ [150]. Based on these observa-
tions Apelin is considered to be a pro-angiogenic factor. Similar to other pro-
angiogenic factors such as VEGF [160], Apelin is expressed near areas where
blood vessels develop and Apelin expression is induced by hypoxia [154]. The
pro-angiogenic role of Apelin is linked to its role as a chemoattractant [153,
154] and mitogenic factor [153, 154]. However, the role of Apelin in prolifera-
tion may be disputed because Apelin did not promote proliferation in a series
of sprouting assays with human umbilical vein endothelial cells, human um-
bilical arterial endothelial cells, and human dermal microvascular endothe-
lial cells [150]. In this work we show that Apelin can promote angiogenesis if
we assume that Apelin is an autocrine chemoattractant and that its receptor
APJ is only expressed in stalk cells. Thus our model suggests that chemo-
taxis towards Apelin can induce angiogenesis independent of Apelin-induced
proliferation.

In line with our model prediction, inhibition of Apelin signaling does inhibit
sprouting in our 3D sprouting assays. This inhibition of sprouting is mani-
fested as a decrease in the number of sprouts. As mentioned above, Apelin
may promote proliferation, and thus inhibition of Apelin signaling may results
in a reduced proliferation rate. A reduced proliferation rate would cause the
sprouts to shorten, but no tot decrease the number of sprouts. This indicates
that the mechanism that drives sprouting is affected by the inhibition of Ape-
lin signaling. However, whereas in the model inhibition of Apelin signaling
inhibits sprouting for all tested cases, in the experimental assays the effects
of Apelin or APJ inhibition depended on the fraction of tip cells and the en-
vironment. In mixed spheroids, Apelin and APJ inhibition reduced sprouting
in both plain and VEGF-enriched collagen. In CD34- spheroids, i.e., spheroids
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enriched in stalk cells, Apelin or APJ inhibition slightly inhibited sprouting in
plain collagen, whereas it enhanced sprouting in VEGF-enriched collagen ma-
trices. This suggests that, in a VEGF rich environment, Apelin-APJ signaling
inhibits sprouting by stalk cells. VEGF has been shown to induce tip cell fate
[139, 161], as well as APJ expression [162, 163]. However, it remains unclear
how the combination of a VEGF rich environment and Apelin signaling could
inhibit sprouting.

The importance of VEGF in our validation experiments suggests that we can-
not ignore VEGF in our tip cell selection model. Dll4-Notch signaling and
VEGF signaling interact directly in two ways. First, Dll4 is upregulated by
signaling between VEGF and VEGF receptor 2 (VEGFR2) [139, 161]. Second,
Dll4-Notch signaling downregulates VEGFR2 [58, 128, 141, 164] and upreg-
ulates VEGF receptor 1 (VEGFR1) [141, 165], which acts as a decoy receptor
for VEGF [166]. Because in vivo VEGF acts as an external guidance cue for
angiogenesis, the interplay between VEGF signaling and DIl4-Notch signaling
could promote tip cell selection in the growing sprouts. The expression lev-
els of VEGFR2 also directly reduce adhesion between cells because VEGFR2-
VEGF binding causes endocytosis of VE-cadherin [167]. This reduced adhe-
sion may enable cells with high VEGFR2 levels, such as tip cells, to migrate to
the sprout tip [140]. Because of this complex interplay between between cell
behavior and Dll4, Notch, VEGF, and the VEGF receptors, future studies will re-
place the simplified tip cell selection model for a tip cell selection model with
explicit levels of Dll4, Notch, VEGF, VEGFR1 and VEGFRZ2, and link those lev-
els directly to tip and stalk cell behaviors. Furthermore, future studies should
include explicit levels of Apelin and APJ to study if and how VEGF-induced
Apelin secretion affects network formation. Such an extended model will pro-
vide more insight into how the interaction between stalk cell proliferation [15,
168], ECM association of VEGF [169], and pericyte recruitment and interac-
tion [102, 168], which all have been linked to Apelin signaling and/or VEGF
signaling, affects angiogenesis.

4.4 Materials and methods

4.4.1 Cellular Potts model

In the cellular Potts model [84, 85] cells are represented on a finite box A C Z?
within a regular square lattice. Each lattice site X € A is associated with a cell
identifier o € Z{+0}, Lattice sites with o = 0 represent the extracellular ma-
trix (ECM) and groups of lattice sites with the same ¢ > 0 represent one cell.
Each cell o has a cell type 7(0) € {ECM,tip,stalk}. The balance of adhesive,
propulsive and compressive forces that cells apply onto one another is de-
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scribed using a Hamiltonian,

H=> Jr7)(1=5(0,0))+ Y Ar(0))(alo) = A(r(0)))",
(X.%) o

X, X

cell adhesion area constraint

with (X, X') a set of adjacent lattice sites, 7 = 7(0(X)) and 7/ = 7(c (X)), 0 =
o(X)and o’ = o(X'), J(r, 7') the contact energy, the Kronecker delta: 6(x, y) =
{1,x = y;0, x # y}, the elasticity parameter A\(7), and the target area A(7). To
mimic random pseudopod extensions the CPM repeatedly attempts to copy
the state o(X) of a randomly chosen lattice site X, into an adjacent lattice site
X' selected at random among the eight nearest and next-nearest neighbors
of X. The copy attempt is accepted with probability,

1 if AH <0;

acce AH) = )
Paccept(AH) {e«fﬁ) if AH > 0;

with

min(u(7), u(7')) ifo>0ando’ > 0;
max(u(7), u(7')) otherwise.

Here is p(7) is the cell motility and 7 = 7(0(X)) and 7/ = 7(0(X/)) are short-
hand notations. One Monte Carlo step (MCS) - the unit time step of the CPM -
consists of |A| random copy attempts; i.e., in one MCS as many copy attempts
are performed as there are lattice sites in the simulation box.

The endothelial cells secrete a chemoattractant at rate a(7) that diffuses
and decays in the ECM,

Oc(X, t)
ot

with ¢ the chemoattractant concentration, D the diffusion coefficient, and ¢

— DV2¢(%, t) + a(r(a(%)))(1 — 8(0(X), 0)) — £8(0(F), 0)c(%, t),

the decay rate. After each MCS equation 4.4.1 is solved numerically with a
forward Euler scheme using 15 steps of At = 2s with absorbing boundary
conditions (¢ = 0 at the boundaries of A); thus one MCS corresponds with
30 seconds. Chemotaxis is modeled with a gradient dependent term in the
change of the Hamiltonian [90] associated to a copy attempt from X to X':

«x)  __<x) >
1+sc(x) 14sc(x)/)’

AHchemotaxis = _X(Tv 7-/) (

with x(7, 7’) the chemoattractant sensitivity of a cell of type 7 towards a cell
of type 7/ and vice versa, and s the receptor saturation. In the angiogen-
esis model we assumed that chemotaxis only occurs at cell-ECM interfaces
(contact-inhibited chemotaxis; see [28] for detail); hence we set x(7) = 0 if
T # ECM and 7’ # ECM. For the remaining, non-zero chemoattractant sensi-
tivities we use the shorthand notation x(7).
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4.4.2 Tip cell selection model

The differentiation between tip and stalk cells is regulated by a simplified tip
and stalk cell selection model. The model is based on lateral inhibition via
Dll4-Notch signaling: If Dll4 binds to Notch on a adjacent cell it causes the
dissociation of Notch, resulting in the release of Notch intracellular domain
(NICD) [170]. We assume that tip cells express Notch at a permanent level of
N (tip) and Delta at a level of D(tip); stalk cells express Delta and Notch at
permanent levels of N (stalk) and D(stalk). The level of NICD in a cell, Z(o),
is given by,
N(7(9))

I(U):W Z D(7(n))Lorn,

nEneighbors

in which N(7) and D(7) are the levels of Notch and Delta in a cell of type
7, and L,n, is the length of the interface between cells ¢ and n. To model
differentiation between the stalk and tip cell type in response to the release
of NICD [57, 59] the cell type is a function of the cell’s NICD level,

tip if Z(o) < Onico;
(o) =
stalk if Z(o) > Onico,

with ©nicp threshold representing the NICD-level above which the cell dif-
ferentiates into a stalk cell. To prevent rapid cell type changes, we intro-
duced a hysteresis effect by setting the Notch levels to: A (tip) = 0.3 and
N(stalk) = 0.5. The Dll4 levels are set according to the experimental ob-
servation that tip cells express more membrane bound Dll4 than stalk cells
[122]: D(tip) = 4 and D(stalk) = 1.

4.4.3 Morphometrics

To quantify the results of the sprouting simulations we calculated the com-
pactness of the morphology and detect the lacunae, branch points and end
points. The compactness C is defined as C = Acey/Anut, With Acey the to-
tal area of a set of cells and A, the area of the convex hull around these
cells. For the compactness we used the largest connected component of lat-
tice sites with ¢ > 0. This connected component was obtained using a stan-
dard union-find with path compression [171]. The convex hull around these
lattice sites is the smallest convex polygon that contains all lattice sites which
is obtained using the Graham scan algorithm [172].

Lacunae are defined as connected components of lattice sites with o(X) =
0 (ECM) completely surrounded by lattice sites with o(X) > 0. These areas
are detected by applying the label function of Mahotas on the binary image
{)? €N, 1(,(;):0}, i.e., the image obtained if medium pixels are set to 1 and
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all other pixels are set to 0. The number of labels areas in this image is the
number of lacuna, and the number of lattice sites in a labeled area is the area
of a lacuna.

To identify the branch points and end points, the morphology is reduced to
a single pixel morphological skeleton [173]. For this, first the morphology
is obtained as the binary image {)‘(’ e, 10(;)>0}. Rough edges are removed
from the binary image by applying a morphological closing [174] with a disk of
radius 3. Then, 8 thinning steps are performed in which iteratively all points
that are detected by a hit-and-miss operator are removed from the image
[174]. In the skeleton, pixels with more than two first order neighbors are
branch points and pixels with only one first order neighbor are end points.
The skeleton may contain superfluous nodes. Therefore, all sets of nodes
that are within a radius of 10 lattice units are collected and replaced by a
single node at: fimerged = (X) {zenodes:|i—x| <10} -

All morphological operations are performed using the Python libraries Ma-
hotas [175] and Pymorph [176]. Mahotas implements standard morpholog-
ical operations, except for the closing and thinning operations required for
skeleton generation. For these we use Pymorph, that implements a more com-
plete set of morphological operation than Mahotas. However, as it is imple-
mented in pure Python it is computationally less efficient than Mahotas.

4.4.4 Tip cell detection

Cells at the sprout tips were automatically detected in two steps: (1) detection
of the sprouts in the network; (2) detection of the cells on the sprout tip. For
the first step, detectlng sprouts, a sprout is defined as a connection between
a branch point, B and an end point, E. To find the branch point B that is
connected to end point E all nodes, except E are removed from the morpho-
logical skeleton (Figure 4.9B). In the resulting image one part of the skeleton
is still connected to E, this is the branch. Then, all nodes are superimposed
on the image with the branch (Figure 4.9C) and the node connected to Eis
the branch point B. Next, we search for the cells at the tip of the sprout, which
are the cells in the sprout furthest away from og. To find these cells we use
a graph representation of the morphology. In this graph, G(v, r), each vertex
v represented a cell and vertices of neighboring cells shared an edge (Figure
4.9D). Now, we calculate the shortest path between each vertex v and the
vertex belonging to the cell at the branch point vg using Dijkstra’s algorithm
[177]. Then, we iteratively search for vertices with the longest shortest path
to vp starting at the vertex associated to og (vg). To limit the search to the a
single sprout, the search is stopped when vg is reached. When the search is
finished, the node or nodes with the longest shortest path to vg represent the
cells or cells that are at the sprout tip.
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Detection of sprouts in a network Detection of cells at sprout tip
E E E
I ] cell at
B Sprout tip

/ N~ .
i~/
\
A B C *
Figure 4.9: Detection of cells at the tips of sprouts. A-C detection of sprouts in a net-
work. A Skeleton with branch points and end points. B Skeleton from which
all nodes except E are removed. C The union of the nodes and the con-
nected component in B that contains E. The node that, in C, is part of
the same connected component as E is the branch point B. D detection

of cells at the sprout tip (red vertices), which are farthest away from the
branch point vg (black vertex).

4.45 Model implementation and parameter sweeps

The simulations were implemented using the cellular Potts modeling frame-
work CompuCell3D [178] which can be obtained from http: / /www.compucel13D.
org.The simulation script is deposited in Supplementary File S1. File S1 also
includes two extensions to CompuCell3D, called steppables, which we devel-
oped for the simulations presented in this paper. Steppable RandomBloblni-
tializer is used to initialize the simulations with a blob of cells, and steppable
TCS contains the tip cell selection model. To efficiently set up, run and ana-
lyze large parameters sweeps including the ones presented in this paper, we
have developed a pipeline to set up, run, and analyze large numbers of simu-
lations of cell-based models on parallel hardware using software like Compu-
Cell3D, described in detail elsewhere [179]. Briefly, the pipeline automatically
generates simulation scripts for a list of parameters values, runs the simula-
tions on a cluster, and analyzes the results using the morphometric methods
described in sections 4.4.3 and 4.4.4.

4.4.6 In vitro sprouting assay

Immortalized human dermal endothelial cells (HMEC-1s) were cultured in 2%
gelatin-coated culture flask at 37 °C under 5% CO; with a M199 medium
(Gibco, Grand Island, NY, USA) supplemented with 10% foetal calf serum (Bio-
whittaker, Walkersvillle, MD, USA), 5% human serum and 1% Penicillin-strep-
tomycin-glutamine (Gibco). The HMEC-1 cells used in this study were a kind
gift of Prof. Dr. P. Hordijk (Sanquin, Amsterdam, the Netherlands). Cell sus-
pensions were obtained from the cultures by TrypLE (Gibco) treatment of ad-
herent endothelial cell monolayers. After the cells were extracted from the
culture they were seeded in methylcellulose (Sigma-Aldrich) containing me-
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4.A. Supplemtentary movies

dium to allow spheroid formation [180]. After 18 hours, the spheroids were
embedded in a collagen gel containing human serum. In the period that these
experiments were performed, the lab had to change collagen gels because of
availebility issues. Therefore, the following three gels were used: Purecol
bovine collagen (Nutacon, Leimuiden, the Netherlands), Nutacon bovine col-
lagen (Nutacon, Leimuiden, the Netherlands), and Cultrex rat collagen | (R&D
Systems, Abingdon, United Kingdom). The gels may be supplemented with
VEGF-A (25 ng/ml). After 24h images of the sprouts were obtained using
phase-contrast microscopy. Using ImageJ [181] with the Neurond plugin [182]
the number of sprouts and the length of the sprouts in the image were counted.

To study sprouting in absence of tip cells, CD34 negative HMEC-1s [123]
were extracted using Fluorescence-activated cell sorting (FACS). For this the
cells were washed in PBS containing 0.1% bovine serum albumin. Cells were
incubated with anti-CD34-phycoerythrin (anti-CD34-PE; clone QBend-10) and
analyzed by flow cytometry on a FACSCalibur (Becton Dickinson, Franklin
Lakes, NJ, USA) with FlowJo 6.4.7 software (Tree Star, San Carlos, CA, USA).

To inhibit Apelin signaling HMEC-1s were transfected with a silencing RNA
(siRNA) against Apelin (siAPLN) or against the Apelin receptor APJ (siAPJ),
and a non-translating siRNA (siNT) was used as a control. For each siRNA
the HMEC-1s were transfected with 25 nM siRNA (Dharmacon, Lafayette, CO,
USA) final concentration and 2.5 nM Dharmafect 1 (Dharmacon) for 6 hours
using the reversed transfection method [183]. Transfection efficiency was
evaluated with gPCR and a knockdown of RNA expression above 70% was
considered as an effective transfection. The significance of each treatment
was analyzed in a two-step procedure. First, groups in which the means differ
significantly were identified with analysis of variance (ANOVA). Second, for
the groups with different means, the results of the siAPJ and siAPLN treat-
ments are compared to the results of the siNT treatment using Tukey’s range
test [184, 185].

4.A Supplemtentary movies

An archive containing all supplementary movies can be found at

http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-22537.

Movie S1 Cells aggregate instead of forming a network with 20% predefined
tip cells and J(tip,ECM) = 5.

Movie S2 Close up of tip cells on the side of a branch that cause network
expansion. For this simulation the 20% of the cells were predefined
as tip cells with x(tip) = 400.

Movie S3 Selected tip cells do not pull apart the network in a simulation with
Onicp = 0.1 and x(tip) = 200.
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Movie S4 Sprouting is strongly inhibited for ©ycp = .2 and 90% inhibition of
Apelin secretion (a(tip) = 1073s~! and a(stalk) = 107*s™1).

Movie S5 When the model is adapted for Apelin, ‘predefined’ tip cells get sur-
rounded by stalk cells. For this simulation 10% of the cells were
predefined as tip cells with x(tip) = 400 and «(tip) = 0.01.

4.B Supplementary files

File S1 Simulation script and code needed to run the simulations in the CPM
modeling framework CompuCell3D [178]. The simulation script (an-
giogenesis.xml) can be used when the two CC3D steppables, Random-
Bloblnitializer and TCS, are compiled and installed. RandomBloblni-
tializer is needed to initialize a simulation with a circular blob and
this steppable may be replaced with CC3D’s Bloblnitalizer. TCS is the
steppable that runs the Dll4-Notch genetic network and should be
omitted to run simulations with predefined tip cells. This file can be
found at http://persistent-identifier.org/?identifier=urn:nbn:nl:
ui:18-22538.

4.C Supplementary tables

Exp. 1 Exp. 2 Exp. 3 Exp.4 Pooled

siAPLN up no effect down down down
siAPJ no effect down down down down
siAPLN+VEGF  down down down down down
siAPJ+VEGF down no data down down down

Table S1: Overview of the effects of siAPJ and siAPLN on sprouting of spheroids with
mixed cells for each individual experiment. Effects considered to be signifi-
cant if p < 0.05, see section 4.4.6 for details of the statistical analysis.
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4.D. Supplementary figures

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Pooled

siAPLN  down down no effect up up no effect
siAPJ down no effect down no effect no effect down
siAPLN

VEGF up up up up no effect up

siAPJ

VEGF no effect up up up up up

Table S2: Overview of the effects of siAPJ and siAPLN on sprouting of spheroids with
CD34- cells for each individual experiment. Effects considered to be signifi-
cant if p < 0.05, see section 4.4.6 for details of the statistical analysis.

4.D Supplementary figures

J(stalk,ECM) = 5 J(stalk,ECM) = 10

A

Figure S1: Effects of increasing ECM adhesion for stalk cells. A stalk cells that adhere
more strongly to the ECM than tip cells will engulf tip cells. B stalk cells that
adhere slightly more to the ECM than tip cells do engulf tip cells, because
chemotaxis has the same effect on tip and stalk cells. A-B are the results
of a simulation of 10 000 MCS with 20% tip cells.
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Figure S2: Effects of varying tip cell chemotaxis (A-C), tip cell chemoattractant se-
cretion rate (D-F) and stalk-ECM adhesion (G-l). The morphometrics were
obtained after 10 000 MCS and are the average of 50 simulations (error
bars represent standard deviation). p-values were obtained with a Welch's

t-test for the null hypothesis that the mean of the sample is identical to
that of a reference where all cells have the default properties. J the net-

work disintegrates with x(tip) = 100) and 20% tip cells. K tip cells over the
network for J(stalk,ECM) = 70 and 20% tip cells.
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Figure S3: Differences in cell properties can enable cells of one type to occupy sprout
tips for three alternative parameter sets. For A the decay rate was reduced,
for B the decay rate was increased and for C receptor saturation was in-
cluded in the model. The percentage of sprout tips occupied by at least
one tip cell was calculated at 10 000 MCS. Error bars show the standard
deviation over 50 simulations. In each simulation 20% of the cells were
predefined as tip cells. For each simulation one tip cell parameter was
changed, except for the control experiment where the baseline parame-
ters were used for both tip and stalk cells. p-values were obtained with a
one sided Welch’s t-test for the null hypothesis that the number of tip cells
at the sprout tips is not larger than in the control simulation.
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Figure S4: Effects of tip cells with J(stalk,ECM (A-C), a(tip) (D-F) or x(tip) (G-I) on the
network morphology for the three alternative parameter sets. The mor-
phometrics were obtained after 10 000 MCS and are the average of 10
simulations (error bars represent standard deviation). p-values were ob-
tained with a Welch'’s t-test for the null hypothesis that the mean of the
sample is identical to that of a reference sample in which all cells have the

default properties.
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Figure S5: Effect of siAPJ and siAPLN on sprout lengths for all experiments. These
metrics are the average of all the successfully cultured spheroids per ex-
periments with the error bars depicting the standard deviation. The * de-
notes p < 0.05, see section 4.4.6 for details of the statistical analysis.
Note that the experiments are done with different collagen gels: Purecol
collagen (A,E), Nutacon collagen (B, F, G), and Cultrex rat collagen (C, D,
H,1).
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5. Parameter studies with cell-based models

Abstract

Computational, cell-based models, such as the cellular Potts model have
become a widely-used tool to study tissue formation. Most cell-based
models mimic the physical properties of cells and their dynamic behavior,
and generate images of the tissue that the cells form due to their collec-
tive behavior. Due to these intuitive parameters and output, cell-based
models are often evaluated visually and the parameters are fine-tuned by
hand. To get better insight into how in a cell-based model the microscopic
scale (e.g., cell behavior, secreted molecular signals, and cell-ECM inter-
actions) determines the macroscopic scale, we need to generate mor-
phospaces and perform parameter sweeps, involving large numbers of
individual simulations. This chapter describes a protocol and presents a
set of scripts for automatically setting up, running and evaluating large-
scale parameter sweeps of cell-based models. We demonstrate the use
of the protocol using a recent cellular Potts model of blood vessel forma-
tion model implemented in CompuCell3D. We show the versatility of the
protocol by adapting it to an alternative cell-based modeling framework,
Virtualleaf.

5.1 Introduction

To study the mechanisms of tissue morphogenesis, it is often useful to see
a tissue as a swarm of interacting cells that follow a set of stereotypic or
stochastic rules, which would be determined ultimately by their genome. The
decisions of the cells are then guided by present and past interactions with
adjacent cells and the micro-environment. In this view, tissue morphogenesis
is a problem of collective cell behavior, in which tissues emerge, sometimes
via non-intuitive mechanisms, from stereotypic or stochastic rules that the
individual cells follow.

A useful computational tool for studying collective cell behavior is cell-based
modeling [16, 186]. The inputs to a cell-based model are the behavioral rules
that cells follow. The output of a cell-based model is the tissue morphogene-
sis that follows indirectly from the collective behavior of the individual cells.
Cell-based models have been applied to a wide range of problems in develop-
mental biology, including somitogenesis [87], tumor development [187-190]
liver regeneration [191], plant development [192, 193], epithelial branching
[194], cystogenesis [195] and angiogenesis and vasculogenesis [25, 28, 33,
34, 40, 81]. In many cell-based models cell behavior is described at a phe-
nomenological level, based on experimental observations. More recent ap-
proaches have introduced detailed models of genetic networks guiding cell
behavior, see e.g. [87, 196]. These studies demonstrate the utility of cell-
based modeling for elucidating the mechanisms of development.
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Because most cell-based simulations cannot be solved analytically, insight
into their behavior must be obtained using computer simulation. Individual
simulations with visual output can give some initial intuition about the be-
havior and parameter sensitivity of the model. To obtain a more systematic
overview of the range of behaviors the model can exhibit, and its sensitiv-
ity to parameters, it becomes necessary to rerun the simulation many times
for different parameters, and, in case of stochastic models, to obtain sta-
tistical measures of the model results by rerunning many random instantia-
tions of the model. If values for the model parameters cannot be determined
experimentally, we must test the model for a range of experimentally plau-
sible parameter values [28, 197]. And where parameter values are partly
known, systematic parameter studies help predict the response of the sys-
tem to pharmaceutical treatments [40, 81] or evaluate the behavior of a tis-
sue. Thus, systematic parameter studies are a central tool for analyzing cell-
based modeling.

As cell-based models become more complex and take longer to run, per-
forming such parameter studies can become a challenging problem both in
terms of computational power and in terms of data management. Here, we
describe a protocol and release a set of Python scripts to automatically set
up, run and analyze large parameter sweeps of cell-based models on desk-
top machines, computational clusters, or in the cloud. Although the protocol
and parts of the scripts can be used with any kind of simulation tool that can
be started from the command line, we illustrate the protocol in detail with a
simulation of vasculogenesis (blood vessel formation; [25, 134]), developed
using the cell-based simulation package CompuCell3D [178]. CompuCell3D
is an implementation of the Cellular Potts Model (CPM) [84, 85], a widely used
cell-based simulation method. The CPM is lattice-based technique that simu-
lates the stochastic, amoeboid motility of biological cells in response to local
cues from adjacent cells and diffusive signals, in this way making predictions
on collective cell behavior. To illustrate that the parameter sweep can be ap-
plied to any kind of simulation tool with a command-line interface, we also
show how to adapt the Python scripts to set up, run and analyze a parame-
ter sweep for VirtualLeaf [192], which is an alternative cell-based modeling
technique. Furthermore, we show how the protocol was adapted to set up pa-
rameter sweeps as part of a collaborative study of in vitro and in silico tumor
growth.
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5.2 Materials

The following materials and prior knowledge are required for using and ex-
tending the code provided in this protocol.

5.2.1 Python

To use CompuCell3D, and to run the CompuCell3D extensions and param-
eter sweep scripts presented in this chapter, you will use the programming
language Python.

1. Download and install the latest version of the Python 2.x branch (see note
1 in section 5.A) from http://www.Python.org/download/. Alternatively,
Linux users can install Python using their package manager.

2. Familiarize yourself with Python (see note 2 in section 5.A). We recom-
mend http://en.wikibooks.org/wiki/Non-Programmer’s_Tutorial_
for_Python_2.6 for readers with no programming experience and
http://docs.Python.org/2/tutorial for readers with programming
experience in other programming languages.

5.2.2 Cloud computing

Because cell-based simulation models typically take dozens of minutes to
hours to complete, depending on the technique you use and the complexity
of the model, we recommend using a computer cluster or a cloud computing
service to run multiple simulations in parallel. You can acquire access to a
computing cluster via your institute or use online services, like Amazon Web-
services (http://aws.amazon.com). If you want to use a computer cluster,
familiarize yourself with its usage.

5.2.3 CompuCell3D

CompuCell3D [178] offers an easy-to-use graphical user interface for setting
up and running simulations. CompuCell3D is designed as a modular frame-
work and can therefore easily be extended, either using Python or C++.

1. The Python scripts provided in this chapter require the most recent Numpy
version. Download Numpy from http://sourceforge.net/projects/numpy/
files/and install it (see note 3 in section 5.A) before installing Compu-
Cell3D. This will prevent CompuCell3D from installing an older release of
Numpy.

2. Download a suitable CompuCell3D installer from http: //www.compucell3d.
org/SrcBin. Currently installers are available for: Ubuntu Linux 64bit (10.04
and 12.04), OS X (10.5.8, 10.6 and 10.8) and Windows. If there is no in-
staller for your operating system, build CompuCell3D from source: http:
[ /www.compucell3d.org/CompilingCC3D (see note 4 insection 5.A). When
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you are installing CompuCell3D on a cluster, you may also need to com-
pile CompuCell3D because of the absence of suitable installers or because
you are not allowed to run an installer from your account. During the in-
stallation of CompuCell3D you must specify the installation directory, in
the remainder of this chapter we will refer to this directory as CC3DPATH.

3. Familiarize yourself with the CPM [84, 85] and with CompuCell3D. A step-
by-step tutorial explaining the CPM and how to set up and run simulations
with CompuCell3D can be found in [178] and an overview of the functions
of CompuCell3D functions can be found in the reference manual [198].
The CompuCell3D installation includes a variety of example models, which
can be found in the directory "Demos" located in the installation directory
of CompuCell3D.

5.2.4 CC3DSimUtils

As supplementary material to this book chapter, we provide a Python module
CC3DSimUrtils. This module can be used to visualize and analyze simulation
results, and to set up simulations with CompuCell3D.

1. Create a project directory at any location. In this directory we will store
all code, simulation scripts and results. We will refer to the path of this
directory as PROJECTPATH.

2. Create a directory named "src" in PROJECTPATH.

3. Download and extract CC3DSimULtils.zip to the "src" directory. Make sure
that the directory containing CC3DSimUtils is named "CC3DSimUtils". In
the subdirectory "doc" of "CC3DSimUtils" you will find the documentation
of CC3DSimUrtils ("html/CC3DSimUtils.html").

4. Tell Python about the location of CC3DSimUltils. For a Python script that
will be executed from the root of PROJECTPATH, insert the following com-
mands to the beginning of the Python script:

import sys
sys.path.append("src/")

5. Alternatively, experienced users can add the path to CC3DSimUitils to the
system variable PYTHONPATH.
6. Install the following packages, which are required for CC3DSimUltils (see
note 5 in section 5.A):
e Scipy: http://sourceforge.net/projects/scipy/files/ (see note 3
in section 5.A)
e Python imaging library (PIL): www.pythonware.com/products/pil/
* Mahotas: http://luispedro.org/software/mahotas (see note 6insec-
tion 5.A)
* Pymorph: http://luispedro.org/software/pymorph.

91


http://sourceforge.net/projects/scipy/files/
www.pythonware.com/products/pil/
http://luispedro.org/software/mahotas
http://luispedro.org/software/pymorph

5. Parameter studies with cell-based models

Installation instructions for these packages can be found at their websites.
Alternatively, use a Python package manager, such as setup_tools or pip.
For example:

>> pip install pymorph

5.3 Methods

We illustrate the use of CC3DSimUtils using a model of vascular network for-
mation based on the Cellular Potts model, which is implemented in Compu-
Cell3D. The model is described in detail elsewhere [25, 134]. Briefly, the model
captures the self-organization of endothelial cells into vascular network-like
structures, based on the following assumptions: (a) endothelial cells have an
elongated shape, they (b) adhere to one another, and (c) they move and ro-
tate randomly [134]. In a variant of the model, chemotaxis speeds up network
formation and increases the stability of the networks [25, 134].

Overall, the presented workflow is as follows. We first organize the project
directory with several subdirectories that will hold all code, simulation scripts,
simulation data, images and analysis results. We then run the model once
and analyze the dynamics of network formation. Next, we use this model
as the basis for a parameter study: We show how to set up, perform and
evaluate a parameter study using CompuCell3D and CC3DSimUtils. Finally,
we illustrate the versatility of the parameter sweep protocol by adapting the
Python scripts to the alternative cell-based modeling framework VirtuallLeaf
[192].

5.3.1 Organize Project directory

To organize the simulations, we create a project directory in which you store
simulation and analysis scripts, raw simulation data, simulation images and
analysis results. The structure of this directory is based on the structure
suggested by Noble [199].

1. Create a project directory at any location, if you have not yet done so in
section 5.2.4. From now on we will refer to the path to the project direc-
tory with PROJECTPATH. This directory will be used for all examples in this
section.

2. Create the following subdirectories:

* "src": holds all non-executable code, such as the CC3DSimUtils module;

* "bin": holds all executable code, such as analysis scripts;

* "scripts": holds all simulation scripts that will be used with CompuCell3D;

* "log": holds text files that list parameter values and random seeds for
automatically generated simulations;

e "data": holds all raw simulation data;
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* "images": holds all images that show the configuration of cells resulting
from a simulation;

¢ "results": holds all data files and images resulting from analysis meth-
ods.

5.3.2 Run the CompuCell3D model from the command line

We run a simulation of the blood vessel formation model using the command
line interface of CompuCell3D. By running CompuCell3D from the command

line we can bypass the graphical user interface, which reduces simulation

time. Furthermore, using the command line enables us to use a computer
cluster, because clusters are usually unable to run a graphical interface. All
commands provided in this section are designed to be executed from the root
of the PROJECTPATH. When we refer to directories, we refer to subdirectories
of PROJECTPATH.

1.

Download the file "steppables.zip" from the supplementary materials and
extract it to the "src" directory.

Download "longcells_chem.zip" from the supplementary materials and ex-
tract it to the "scripts" directory. The zip-file contains three files: a CC3DML
file (".xml"), and Python file (extension ".py") and a "CompuCell3D" file (ex-
tension ".cc3d"). Together, these three files specify a single CompuCell3D
simulation. Change the variable projectpath on line 5 of "longcells_chem.py"
(in subdirectory "longcells_chem" of the "scripts" directory) to your PRO-
JECTPATH. Windows users can either use the slash (/) or two backslashes
(\\) in path definitions.

. Run the simulation by typing the following in a terminal emulator (Linux

and OS X) or Command Prompt (windows) (see notes 7 to 9 in section 5.A):

. Linux and OS X

>> CC3DPATH/runScript.sh --noOutput -i PROJECTPATH/
scripts/longcells_chem.cc3d

Windows

>> CC3DPATH\runScript.bat --noOutput -i PROJECTPATH\
scripts\longcells_chem.cc3d

This may take up to ~45 minutes.

Next we plot the simulation results, and combine the images for a num-
ber of time steps in a single figure. Download "longcells_chem_draw.py"
and 'default.ctb" from the supplementary materials. Save 'long-
cells_chem_draw.py" in the "bin" directory and "default.ctb”" in your PRO-
JECTPATH. Run "draw_longcells_chem.py" (see note 10 in section 5.A):

>> python bin/longcells_chem_draw.py
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e & d
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Figure 5.1: Morphologies at 500, 2000, 5000, 10 000 time steps, for a simulation with

"longcells_chem".

The directory "longcells_chem" (subdirectory of "images") contains the mor-
phologies of consecutive time steps, and the "results" directory contains
a collage similar to Figure 5.1 ("longcells_chem.png") of the morphologies
for 500, 2000, 5000 and 10 000 simulations steps combined. The mor-
phologies are created with the function makelmages from CC3DSimUltils.
This function draws images using the data files generated by the simula-
tion. The function stacklmages from CC3DSimUtils can be used to com-
bine any set of images of the same size. See the CC3DSimUtils documen-
tation for further details.

5.3.3 Analyzing a single CompuCell3D simulation

Now we have a set of simulation results and images. We next present a series

of methods to quantify these simulation results.

1.

Calculate the compactness of the vascular network simulations. The com-

pactness is defined as: %; with A.eis the total area of the largest con-

nected component and Ah:,/ the area of the convex hull. The convex hull
can be seen as the smallest "gift wrapping" around an object. Download
"longcells_chem_compactness.py" from the supplementary materials, save

it in the "bin" directory and run with:

>> python bin/longcells_chem_compactness.py
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The ‘results" directory will contain a tab-separated text file,
"longcells_chem_compactness.data”, which lists the compactness for ev-
ery time step measured. A plot of this data should look similar to Figure
5.2.

Analyze where the elongated cells align with one another and where de-
fects in alignment occur. To do so, we first quantify and visualize the rel-
ative orientations of the cells. Calculate an angle € between the cell at a
pixel X and the average orientation in the neighborhood of X. The orienta-
tion of a cell, V, is the orientation of the long axis of that cell. Assuming
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Figure 5.2: Time evolution of the compactness for a single simulation of "long-
cells_chem".

that cells are close to elliptic, we can approximate vV by the orientation
of the eigen-vector corresponding to the largest eigen-value of the cell’s
inertia tensor. For a cell C, defined as the set of pixels with coordinates
X = (x1, x2) that the cell occupies, the inertia tensor is defined as:

2
1(C) = xeC X2 ~ Zizec X1X2
X1.X x2 '
XeC *1X2 XeC ™1

The average cell orientation within a disk of radius r centered on X is called
the director:

=1

(X,r)= <\7(U(}7))>{)7€ZZ:|)?7)7|<r}-

The angle 0 between the cell orientation vV and the director i is a measure
for local cell alignment:

O(%,)raw = cos ™ <|ﬁ(x: - V(a(%))> |

i(x, r)[[v(e(x))|
Download "longcells_chem_alignment.py" from the supplementary mate-
rials, save it to the "bin" directory, and then run with:

>> python bin/longcells_chem_alignment.py

This script calculates 6 for r = 3 at each pixel and plots it on the mor-
phology. The script stores the resulting images in the subdirectory "long-
cells_chem" of "images". It also creates a collage similar to Figure 5.3
("longcell_chem_reldir_r=3.png" in "results"), which combines plots of 6 for
r = 3 at time steps 500, 2000, 5000 and 10 000.

3. The 2D nematic order parameter S(r) = (cos(20(X(0), r)))o, with X (o) the
center of mass of cell o, quantifies the degree of local alignment in a mor-
phology with a number between 0 and 1. S(r) — 1 for cells aligning with
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Figure 5.3: Angle 6 between cells and the local director (for r = 3) mapped on the

morphologies at 500, 2000, 5000, 10 000 time steps, for a simulation with
"longcells_chem".

one other on overage over a distance r, and 5(r) — 0 for cells with ran-
dom orientations. Download "longcells_chem_orderparameter.py" from
the supplementary materials and save it in the "bin" directory. Run the
script with:

>> python bin/longcells_chem_orderparameter.py

This script produces a file, named "longcells_chem_orderparameter.data’,
in the "results" directory that contains the order parameter for radii 20,
40 and 600 for every 250th time step. Note that radius r = 600 the disk
covers the whole 400x400 simulation domain, so 5(600) becomes a global
order parameter. Plotting the evolution of the order parameters should
result in an image similar to Figure 5.4.

order parameter

0 2000 4000 6000 8000 10000
time [MCS]

Figure 5.4: Time evolution of the order parameter for radii 20, 40 and 600 (global).
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5.3.4 Setting up and running a parameter sweep with
CompuCell3D

We showed how to set up, run and analyze a single simulation using Com-
puCell3D and CC3DSimUtils. To gain insight into how specific parameters
affect the model behavior, a model should be simulated repeatedly with dif-
ferent parameter values. In case of a stochastic model, such as the CPM,
the simulation for each parameter value should be repeated multiple times
to obtain good statistics. Here we show how to set up and run such a param-
eter sweep. First, we create a driver script that runs and analyzes a single
simulation. Next, we show how to automatically create the simulation scripts
for each parameter value and simulation repeat. In this example we vary the
surface tension and turn chemotaxis on or off.

1. Download "driver.py" from the supplementary materials and save it a sub-
directory of PROJECTPATH called "bin". The driver script runs a simula-
tion (section 5.3.2) and analyzes the simulation results (section 5.3.3).
Change the variables projectpath and cc3dpath in "driver.py" such that
projectpath points to your PROJECTPATH and cc3dpath points to your
CC3DPATH. For example, to run the driver script for "longcells_chem.cc3d"
run the driver script with:

>> python bin/driver.py longcells_chem

The concept of collecting all operations concerning a single simulation
in one driver script can be applied to any modeling method that can be
invoked from the command line.

2. (for cluster users) When a driver script is used on a cluster, you may also
include commands to compress and pack the data to facilitate data trans-
fer to your desktop machine. The command system in the Python module
"os" can call the compression utilities from your driver script. To create a
compressed archive containing all files starting with "longcells_chem_001-
1" and ending with ".data", append the following line to the driver script:

os.system("tar -czf data_longcells_chem_001-1.tar.gz
longcells_chem_001-1x.data")

3. To automatically set up the simulation, we use template simulation scripts.
Download "templates.zip" from the supplementary materials and extract
it in the root of PROJECTPATH. This will create a new folder named "tem-
plates" andin it you find four files: "longcells_chem.py", "longcells_chem.xml",
"longcells_nochem.py" and "longcells_nochem.xml". The first two files serve
as templates for the simulations with chemotaxis and the second two files
serve as templates for the simulations without chemotaxis.

4. Automatically generate the scripts needed to run a CompuCell3D simula-

tion. Download "preprocess.py" from the supplementary materials, save it
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in the "bin" folder and run with:

>> python bin/preprocess.py

For each parameter value specified in ‘preprocess.py’ this script creates for
each repeat: a CompuCell3D script, and a directory containing a CC3DML
script and Python script in the "scripts" directory. For each simulation re-
peat a unique random seed is generated to ensure that each simulation
is different (see note 11 in section 5.A). Each simulation is identified by an
automatically generated simulation name, constructed as: [description]_
[number]-[repeat]. We use the [description] to differentiate between sim-
ulations with and without chemotaxis: "longcells_chem" and "longcells_
nochem". The three-digit simulation [number] is used to link a simulation
to a parameter value. The [repeat] is a number that is used to set apart the
simulation repeats. Besides the scripts for CompuCell3D, "preprocess.py"
also generates log files (in the directory "log") that store the parameter
values ("longcells_1-10.sim") and the random seeds ("longcells_1-10_10x
.seed"). "preprocess.py" is specific for changing the surface tension in a
set of templates. For other CompuCell3D models and/or other parameter
sets, adapt "preprocess.py" using the functionality in the Experiment class
of CC3DSimUtils. See the CC3DSimUtils documentation for more details.
(for cluster users) The simulations become faster if you save the simula-
tion results on a section of the file system local to the node you are running
on (often called scratch space, and move the data to your home directory
when the simulation is finished. Point the variable datapath in "prepro-
cess.py" to the scratch space, and add commands to the driver to copy
the data back to your home directory. For this we recommend using the
Python standard library modules os and shutil.

(for cluster users). The script "preprocess_cluster.py” automatically gen-
erates the job scripts needed to schedule the simulations on cluster us-
ing PBS [200]. Download "preprocess_cluster.py" from the supplementary
materials to the "bin" directory, create a directory "clusterscripts" in PRO-
JECTPATH, and run "preprocess_cluster.py":

>> python bin/preprocess_cluster.py

After running the script, there will be a number of PBS scripts in the "clus-
terscripts" directory and should look like:
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#PBS -S /bin/bash

#PBS -1nodes=1:cores8:ppn=8

#PBS -1walltime=8:00:00

cd \$HOME

python driver.py longcells_chem_001-1 > log/
longcells_chem_001-1.0out 2> log/longcells_chem_001
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-1.err &

python driver.py longcells_chem_001-8 > log/
longcells_chem_001-8.out 2> log/longcells_chem_001
-8.err &

wait

Submit the job script with "gsub" to add the run to the queue on the cluster.
Each PBS script contains 8 jobs and requests an 8-core node (see Note 12
in section 5.A) . To change these parameters, change the variables cores
and ppn in "preprocess_cluster.py". You may also need to modify the func-
tion createPBS in "CC3DPipeline.py" in CC3DSimUtils to fit the hardware
and scheduling software of the cluster you are using.

. When all simulations are finished we have a collection of raw data files,
data analysis results and images. For each simulation all data files should
be located in the "data" directory, in a subdirectory with the simulation
name, for example: "PROJECTPATH/data/longcells_chem_001-1/". Sim-
ilarly, the images are expected to be in a subdirectory with the simulation
name in the directory "images": "PROJECTPATH/images/longcells_chem_
001-1/". If this is not the case, move your data files and/or images to these
locations.

5.3.5 Analyzing a CompuCell3D parameter sweep

After running the parameter sweep we have raw data, data analysis results

and images for each simulation. Here we show how to collect and present
this data.
1. Create a morphospace, a collage of simulated morphologies as a function

of one or two simulation parameters. Download "postprocess_morpho-
space.py" from the supplementary materials, save it to the "bin" directory,
and run it with:

>> python bin/postprocess_morphospace.py

Now, you should find an image named "longcells_1-10_morphospace_
100000.png" in the "results" folder, which should look similar to Figure
5.5. The morphospace is created with the function morphlmages, from
CC3DSimUtils. See the CC3DSimUtils documentation for more details.

. Calculate the compactness as function of the surface tension. Download
"postprocess_compactness.py" from the supplementary materials and save
it in the "bin" directory. Run it with:
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Figure 5.5: Morphospace showing the effects of varying surface tensions with and
without chemotaxis.

>> python bin/postprocess_compactness.py

The script collects the compactness at the last time step of each simu-
lation repeat for each tested parameter value and it calculates the mean
and standard deviation over the simulation repeats. The results can be
found in "longcells_chem_1-10_10x_compactness.data" (simulations with
chemotaxis) and "longcells_nochem_1-10_10x_compactness.data" (sim-
ulations without chemotaxis) in the "results" directory. Plotting this data
should result in a plot similar to Figure 5.6.
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Figure 5.6: Compactness for simulations with and without chemotaxis, plotted
against the surface tension. The compactness was calculated at 100 000
time steps, and for each parameter the simulation was repeated 10 times
(error bars represent standard deviation).
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3. Quantify the degree of cell alignment by calculating the mean and stan-
dard deviation of the order parameter. Download "postprocess_
orderparameter.py" from the supplementary materials, save it into the "bin"
directory and run the script with:

>> python bin/postprocess_orderparameter.py

This script calculates the mean and standard deviation the order param-
eter 5(r, t) as a function of time for radii r = 20 and r = 40, and the
global order parameter (r = 600) for all simulation repeats of one surface
tensions. The results can be found in "longcells_chem_003_10x_order
parameter.data" and "longcells_nochem_003_10x_orderparameter.data’,
in the "results" directory. With the data in these files we generated the plot
in Figure 5.7 for simulations of 1 000 000 time steps. Note that to reduce
simulation time the scripts presented in this chapter produce only 100 000
time steps.

1(_-...( N AT e
. 0.8} iy AR o I GRS
g
Q
0.6 20 ——
E 40 ——
C 0.4} r =600
o]
T 0.2}
o
O_
1 1 1 1

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06
time [MCS]

Figure 5.7: Time evolution of the order parameter for radii 20, 40 and 600 (global)
for simulations with (solid) and without (dashed) chemotaxis. Each line
represents the average order parameter of 10 simulations and the gray
areas represent the standard deviation.

4. To relate cell motility to the degree of cell alighment, we detect clusters
of aligned cells in the morphology. We loosely define a "cluster" as a set
of cells aligned with the local director, 6(X,r) < 6, with 6 a threshold
value. Clusters are separated from other clusters by regions with values
of 8(X, r) > 6 (dark gray regions in Figure 5.3). More formally, clusters are
detected as follows:

a) Define a binary matrix B of dimensions equal to the simulation domain.

b) Assign a value of B(X) = 1 to all cell pixels X for which 6(X, r) < 6, with
0 a threshold value and B(X) = 0 for all other pixels.

c) In B detect all connected components larger than 50 pixels. A set of
cells forms a cluster if each cell overlaps with the same connected
component in B for 50% of its area or more.
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5. To study how aggregation of aligned cells in clusters affects cell behav-
ior we measured the translation and rotation of the cells as a function of
cluster size. The translational diffusion coefficient D; quantifies the trans-
lational motility of cells. It is derived from the mean squared displacement
(MSD) of a cell: (|X(,t) — X(0,0)]2)s = 4D;t. The rotational diffusion
coefficient D, is derived from the mean squared rotation (MSR) of a cell:
(a0, t) — a(a,0))?), = 2D,t.

6. Calculate the translational and rotational diffusion coefficients. Down-
load "postprocess_diffusion.py” from the supplementary materials, save
it in the "bin" directory and run the script with:

>> python bin/postprocess_diffusion.py

This script creates time series of the MSD and the MSR of each cell as a
function of the cluster size and uses those time series to calculate the
translational and rotational diffusion coefficients. First, cells are binned
according to cluster size for each time step, with a bin size of 5 cells and
the first bin running from 2 to 5 cells. Then, the MSD and MSR of each
cell are split into chunks of 10 consecutive time steps, during which that
cell belonged to the same cluster size bin. Using these binned chunks
the translational and rotational diffusion coefficients are calculated with
a least square fit of respectively the MSD and MSR. The diffusion coef-
ficients, together with the standard error of the estimate of the fit, are
stored in "longcells_nochem_003_10x _diffusion.data" in the "results" di-
rectory. In Figure 5.8 we plot the translational and rotational diffusion co-
efficients calculated using data from time step 500 to 250 000 (similar
to our previous work [134]). As mentioned before, the scripts presented in
this chapter only produce 100 000 time steps in order to reduce simulation
time.

9e-03 6e-06
5 8e-03f g 5e-06
S 7e-03} = 4e-06
~ ~
o e
2 6e-03f £ 3e-06}
d' 5e-03} O 2e-06f
40— 3515 20 25 0% 515 15 20 25

Figure 5.8: Diffusion coefficients as a function of the cluster size. A. translation dif-
fusion coefficient and B. rotational diffusion coefficient. These diffusion
coefficients were calculated from 10 simulations of 250 000 time steps.
The error bars represent the standard error of the estimates of the least
square fit.
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5.3.6 Adapting the protocol to VirtuallLeaf

The scripts described in sections 5.3.4 and 5.3.5 can be adapted to any sim-
ulation package that is 1) invoked from the command line and 2) for which
model parameters are specified in a text file. As an example, we show how
to use the scripts used in section 5.3.4 and 5.3.5 to set up, run and analyze
for the cell-based, vertex-based modeling framework VirtuallLeaf [192, 201].
A model in the VirtuallLeaf is defined by a so-called plugin and the model pa-
rameters are defined in a so-called leaf file. With the leaf file and the plugin,
Virtualleaf can be invoked from the command line. Thus, VirtuallLeaf meets
both of the requirements of the parameter sweep protocol.

1. Create a project directory for your VirtuallLeaf project (as described in sec-

tion 5.3.1).

2. Adapt "driver.py" to run and analyze Virtualleaf simulations.

a) To run the simulation, "driver.py" uses the function os.system (on line
26), which attempts to execute its argument on the command line. For
example, for a VirtualLeaf model defined in "plugin.cpp" and the pa-
rameters defined in "leaf.xml", this argument must be (see note 13 in
section 5.A):

/path/to/VirtuallLeaf/bin/VirtuallLeaf -b -1 leaf.xml
-m libplugin

Assign the path to the VirtuallLeaf executable to execpath (line 7) and
assign the executable name, i.e., "VirtualLeaf" to executable (lines 10-
11) . Next, define a new variable named plugin, before line 26, that
points to the plugin in which your model is defined (e.g., 'libplugin’).
Now, change line 26 to:

’

os.system( execpath’+’/ +executable+’ -b -1 "+
projectpath+’/scripts/ +id+  .xml -m “+plugin)

b) Remove the commands on line 28 and further, and replace them with
calls to your own analysis functions.
3. Create a template leaf file for your model that contains the default param-
eter values for your model.
4. Create a new Python script to automatically generate leaf files, based on
"preprocess.py'.
a) Copy line 1 of "preprocess.py" to import the necessary Python libraries.
b) Create a function buildLeafFile to change specific parameter values
in a template leaf file. Because leaf files are based on XML, you can
use "Experiment.py" as an example on how to adapt an XML file using
Python. Besides changing specific parameter values, buildLeafFile
also assigns a random seed, sets the intervals at which the simulation
generates graphical and numerical output, and it sets the file names
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and location of the output. As with the CompuCell3D simulations, model
output files should be identified by the simulation description, simula-
tion number and repeat number: description_number-repeat, and be
stored in a directory with the same name in the "data" directory of PRO-
JECTPATH.

Define a variable projectpath (see line 47 of "preprocess.py"):

projectpath = [PROJECTPATH]

replacing [PROJECTPATH] for your PROJECTPATH.

Define the parameters of the parameter sweep. These are simname
for the simulation description, of fset for the first simulation number,
repeats for the number of repeats, and repO for the first repeat num-
ber (see lines 51-58 of "preprocess.py"). For example:

simname = ’leaf’
offset = 1
repeats = 10
rep0 = 1

Set the simulation time (simtime) and the frequency at which output is
generated (savefreq) (see lines 59-62 of "preprocess.py"). For example:

simtime = 1000
savefreq = 25

Create a list of parameter values, named par, that will be tested in the
parameter sweep (see line 64 of "preprocess.py").

Create output files for simulation settings and seeds, and write the file
headers (see lines 70-76 of "preprocess.py"):

runid = simname+’_"+str(offset)+ -"+str(offset+len(
par)-1)

# open log file for parameter values

out = open(’log/ +runid+’.sim’,’w”)

out.write( \#id\tPARAMETERNAME ")

# open log file for random seeds

sout = open(’'log/ +runid+’_"+str(repeats)+'x’
C )

sout.write( ' \#id\tseed’)

’

.seed

Iterate over the parameters and the simulation repeats (see lines 79-
101 of "preprocess.py"). The outer loop is used to write the tested pa-
rameter values to the log files. In the inner loop the random seed is
generated and the leaf file is created:
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seeds = |[]
for i,p in enumerate(par):
out.write(’\n’+name+’_"+string.zfill(i+offset,3)+
"\t’+str(p)+’'\n")
for n in range(repO,repeats+rep0):

simid = name+’_"+string.zfill(i+offset,3)+ -"+
str(n)
seed = random.randint(1,10%x9)

# check if seed is unique
while seed in seeds:

seed = random.randint(1,10%x9)
seeds.append(seed)
sout.write(’ \n'+simid+’\t +str(seed))
#--- Create leaf file ---\#
buildLeafFile(...)

5. Adapt "preprocess_cluster.py" to create a set of scripts for the PBS job

scheduler.

a) Change numlist (line 7) such that it represents the ranges from the
lowest simulation number to the highest simulation humber.

b) Change replist (line 9) such that it represents the range from the
lowest repeat number to the highest repeat number.

c) Replace basename (line 13) with your simulation description

d) Change cores (line 17), ppn (line 19) and runtime (line 21) to fit the
type of node, number of processors per node and simulation time you
will request on the cluster.

e) Replace line 25 with:

joblist = [name+’_ "+string.zfill(num,3)+'-"+str(n)
for name in simnames
for num in numlist for n in replist]

6. Depending on the analysis performed in the driver script, create your own
set of post-process scripts. For this, you can use post-process scripts from
section 5.3.5 as examples:

* "postprocess_morphospace.py" can be used as an example for creating
morphospaces;

e "postprocess_compactness.py" can be used as an example to collect
values for one time point per simulation, and mapping that data on pa-
rameter values;

* "postprocess_orderparameter.py" can be used as an example on how to
collect time course data for multiple simulations.
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5.4 Case study - Mammary epithelial spheroid
morphogenesis

We applied the protocol described in this chapter in a collaborative, compu-
tational study on the growth of epithelial spheroids in vitro. These spheroids
develop from mammary epithelial cells and are used as a model for breast
cancer development. Wild-type mammary epithelial cells (WT) form a small
spheroid by dividing randomly (Figure 5.9A-B) [202]. The cells on the inside
of the spheroid stop dividing, while the cells on the outside keep on dividing
(Figure 5.9C). The outside cells may become polarized cells that only divide
perpendicular to the spheroid surface, while the other cells on the spheroid
surface keep on dividing in random randomly (Figure 5.9D) [203]. Eventually,
the cells on the inside die, resulting in a lumen (Figure 5.9E-F) [203], and the
polarized cells stop dividing, stabilizing the spheroid [204]. When mammary
epithelial cells overexpress human epidermal growth factor receptor 2 (HER-
2), large spheroids with a minimal lumen develop [202-204]. The aim of the
study is to find how the probabilities of proliferation, polarization and apopto-
sis is changed in HER-2 cells in comparison to wild-type cells. To this end we
developed a cell-based model that reproduces epithelial spheroid formation
with WT epithelial cells. Then, try to identify the differences between WT and
HER-2 cells by varying the proliferation, polarization and apoptosis probabili-
ties in the model.

In this section we describe the model and quantification methods. Then, we
show how we adapted our protocol to set up a parameter sweep that is used
to setup the spheroid formation model for WT cells. An extensive discussion
of the results and description of the further steps in this study are outside the
scope of this section.

outer cell polarized cell inner cell apoptotic cell lumen

Figure 5.9: Development of an epithelial spheroid. A-B a single outer cell (pink) di-
vides to form a cluster of outer cells. C outer cells that lose contact with
the ECM become inner cells (red) and outer cells may become polarized
cells (purple-gray). D outer cells divide in random directions, while the
polarized cells divide perpendicular to the spheroid surface. E-F inner
cells may enter apoptosis (burgundy cells) resulting in the formation of
a lumen, and polarized cells become stabilized cells that do not divide.
(This image is adapted from an image that was kindly provided by Flori-
ane Lignet.)
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5.4.1 Model of epithelial spheroid formation

The development of epithelial cell spheroids is modeled using the cellular
Potts method [84, 85]. In this method the different cellular phenotypes that
manifest during spheroid development are modeled explicitly, as well as tran-
sitions between the types and proliferation. The cell types involved in the
spheroid development are: outer, inner, polarized, stabilized and apoptotic.
Besides these biological cell types, two extra tissue types are added to rep-
resent ECM and lumen. All cells, except stabilized cells, can transition into
another cell type, or proliferate (Figure 5.10). Outer cells can become inner
cells or proliferate. Polarized cells can also become inner cells and prolifer-
ate, and they can become stabilized cells. Inner cells can become apoptotic
cells and apoptotic cells die and become lumen. Both the type transitions
and proliferation occur with a probability p, but only if the cells” environment
fits a set of conditions. For this the environment of a cell, identified by o, is
characterized by the fraction of cell membrane M the cell shares with certain
cell types:

PUUT
M(c, types) = Z
TEtypes P(U)

with P, is the length of the perimeter that cell o shares with cells of type
7 and P(o) is the total perimeter of cell 0. In the model there are three
of these fractions defined: the fraction of the membrane shared with ECM
(M(0,{ECM})), the fraction of the membrane shared with lumen
(M(o, {lumen})), and the fraction of membrane shared with cells (M(o, cells)
with cells:{outer, inner, polarized, stabilized, apoptotic}). Figure 5.10 shows
the criteria for M(c, {ECM}), M(o, {lumen}), and M(o, cells) for each transi-
tion and proliferation.

5.4.2 Quantification of spheroid morphology

To quantitatively compare the morphologies formed by the model with in vitro
spheroids we compute several shape indexes: solidity, cell to hull ratio, and
core factor. The solidity s measures how similar the shape of the spheroid is
to a circle. For this we divide the radius (ra) of a circle with the area of the
spheroid (A) by the radius (rp) of a circle with the perimeter of the spheroid
(P):

ra . A

s=— with rp=— and rp=—.

rp s 21
The cell to hull ratio (CTH) measures the convexity of the spheroids; the
higher the CTH the more convex the spheroid. For this we compute the ratio
of the spheroid area (A) and the area of the convex hull around the spheroid
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M(c,{ECM}) >V,
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Figure 5.10: Flowchart of the cell type transitions.
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The core factor is used to quantify the relative size of the lumen by computing
the ratio of the lumen area (Aumen) and the spheroid area (A).

Alumen
f =
A
All of these metrics were computed with Matlab and the Image Processing
Toolbox.

5.4.3 Parameter identification

To identify the transition conditions for which the model reproduces experi-
mental observations we performed a parameter sweep. There are 4 transition
rules with eight transition parameters: V = {V1,V5,V3,V4,V5,V6,V7,Vg]. Because
each V represents a fraction of the cell membrane, the sum of V's in one tran-
sition condition (Figure 5.10) can never be larger than one. From these we
derive the following limitations for V:

Vi <1
Vo+Vs+V, <1
Vs <1

Ve+Vs+Vg <1
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For the parameter sweep we generate 10 000 sets V. Each value was randomly
drawn from a uniform distribution on the interval [0, 1], and sets that did not
obey Equation 5.4.3 were disregarded and replaced by a newly generated set.
For each set of V ten simulations are preformed with different random seeds.

Because the model is implemented in CompuCell3D, with Python steppables
for the type transitions, proliferation and apoptosis, we can easily adapt the
scripts used in section 5.3.4. In our previous work the number of simulations
was limited to a couple of hundreds and therefore creating simulation files for
each simulations was not an issue. In contrast, here we have 100 000 simu-
lations and therefore we chose to adapt the protocol to generate simulation
scripts on the fly. For this we automatically generate a list of 10 000 sets V
and use each line as an input for the driver script. The driver script then finds
and replaces the parameter values in the simulations scripts. Besides gen-
erating simulation scripts on the fly, the protocol for setting up and running
the simulations was similar to those previously described in section 5.3.4.
For the morphological analysis we did not use CC3DSimUltils, but instead we
used a Matlab script. Because it is quite complicated to run Matlab code on
the cluster we used, the analysis was done for all simulations at once when
all data was retrieved from the cluster.

Next, we visualize the results of the parameter sweep using scatter plots,
which is typical first step in parameter identification [205]. Figure 5.11 shows
these scatter plots in which each point represents the mean of the ten simu-
lation repeats. Based on these graphs the effects of each parameter on the
shape of the spheroid and the size of the lumen can be assessed. For exam-
ple, Vs seems to have the strongest influence on the lumen area: the higher
Vs, the less lumen forms. More complex sensitivity analysis techniques [205]
may be used to further analyze the results and find the best values for V.
Then, this process can be repeated for the transition probabilities p;, p», and
p3, to find how these parameters should be changed such that the model re-
produces the HER2 spheroids.

Altogether, with this case study we showed that the protocol described in
this chapter can easily be adapted for setting up a parameter identification
study of a cell model. Finding the best values for V may require the use of
more complex sensitivity analysis techniques [205]. When the values for V
are identified, a similar parameter sweep can be performed for probabilities
p1, P2, and ps to identify the differences between WT and HER-2 cells.
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Figure 5.11: Effects of varying Vi-Vg on the spheroid solidity, cell to hull ratio and
compactness. Each point represents the mean of 10 simulations with
identical values for V1-Vg.
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5.A Notes

note 1

note 2

note 3

note 4

note 5

note 6

note 7

There are two Python branches: Python 2.x and Python 3.x, which are
not fully compatible. All code supplied with this chapter and Compu-
Cell3D is compatible with Python 2.6 and new versions of the Python
2.x branch.

Python uses indentation to delimit blocks of codes. In code that is
copied from different sources, indentation may be broken due to dif-
ferent indentation lengths or mixing of tabs and spaces. See http:
[ /www.Python.org/dev/peps/pep-0008/#indentation and http://
www.Python.org/dev/peps/pep-0008/#tabs-or-spaces for more in-
formation on how to correctly indent your code.

Windows users should install the Numpy or Scipy version that fits with
your Python version. First check your Python version:

>> python -V

Note the first two digits of the Python version, e.g. 2.7. Now go to the
download page of Numpy or Scipy and select the latest version. Here
you should find an installer that ends with your python version, e.g.
"numpy-x.y.z-win32-superpack-python27.exe".

When you compile CompuCell3D, always check the CompuCell3D web-

site for the most recent instructions and dependencies. Here we list

some extra instructions for the compilation of CompuCell3D.

¢ The CompuCell3D developers recommend to use "cmake-gui', for
systems without a graphical user interface the "cmake curses gui',
also known as "ccmake', can be used as an alternative.

¢ Ensure that you compile CompuCell3D with the "release" flag be-
cause omitting this flag significantly increases simulation time. The
"release" flag can be set with the "cmake-gui" or "ccmake”.

CC3DSimUtils needs freetype fonts for the labels on images. You may
need to install freetype (http://www.freetype.org/download.html) or
change the variable fontpath in the function definitions of makelmage,
stacklmages and morphlmages (all in "ImageUtils.py" in CC3DSimUltils).

For windows users we strongly recommend to download the installer
for Mahotas at: http://www.1fd.uci.edu/~gohlke/pythonlibs/.
Building the source of Mahotas, for example using pip, is not recom-
mended.

CompuCell3D interprets all paths relative to its own path. Therefore,
when running a simulation using runScript.sh you should specify the
full path to the simulation file, for example
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note 8

note 9

note 10

note 11

note 12
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* Windows:
C:\Users\username\project_name\scripts\script.cc3d

e Linux: /home/username/project_name/scripts/script.cc3d

e OS X: /Users/username/project_name/scripts/script.cc3d

On windows, running runScript.bat changes the working directory to
the CC3DPATH. Make sure to change it back to the PROJECTPATH af-
terwards.

In this model we use a connectivity constraint to ensure that each
cell consists of single connected component. Calculating the con-
nected components is computationally expensive, therefore Compu-
Cell3D only checks for local connectivity by checking if a cell is a
single connected component within a small neighborhood. This can
cause pixels to become frozen, because any change in their neighbor-
hood breaks local connectivity. We fixed this by adding an extra test
to the connectivity constraint for pixels that fit the pattern of a frozen
pixel. We used this fixed connectivity constraint for all our simula-
tion. This plugin ("ConnectivityFroNo.zip") can be downloaded from the
supplementary materials and compiled as a part of the CompuCell3D
developer zone, see the CompuCell3D developers’ manual [206] for
instructions.

On Windows the Python installation directory may not be in the $PATH,
this results in an error like:

"Python’ is not recognized as an internal or
external command, operable program or batch file

Adding the installation directory of Python to your $PATH system vari-
able should solve this problem.

Random seeds are used to initialize a random generator. Every time
a random generator is initialized with the same results, it returns the
same sequence of pseudo-random numbers. Thus, if we run a Compu-
Cell3D simulation twice with identical seeds, we get identical results.
If no random seed is provided, CompuCell3D uses the current time
to generate a random seed. When multiple simulations are started at
the same moment, for example on a computer cluster, they will get the
same seed. Thus, predefining random seeds has two advantages: 1)
the results are reproducible; 2) the random seeds in parameter sweep
are unique.

It is often more efficient to leave one core of a node idle. This core
is then reserved for system processes while the remaining nodes are
reserved for user processes, i.e. the simulations. To do so, set ppn
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(processes per node) in "preprocess_cluster.py" to one less than there
are cores (number of cores of the requested node).

note 13 Due to a bug in the current version of Virtualleaf (1.0.1), if VirtualLeaf
is invoked with both a leaf file and a plugin in which another leaf file is
defined, the leaf file defined in the plugin will be used. To correct this
problem, add the following code to "virtualleaf.cpp” after the line with
"model_catalogue.InstallFirstModel();", and recompile:

if (leaffile){
main_window->Init(leaffile);

5.B Supplementary materials

All the supplementary materials can be found at
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-22500.
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Discussion

6.1 Summarizing discussion

In this thesis we aimed to better understand why several types of cells with
different behavior are involved in blood vessel formation. In particular, we
studied how endothelial cells and pericytes interact during blood vessels for-
mation (chapter 3), and we studied the role of tip and stalk cell differentiation
of endothelial cells in angiogenesis (chapter 4). For this we used simple, cell-
based, computational models. Such models can show how a multicellular tis-
sue develops due to the collective behavior of single cells with cell-type spe-
cific behaviors and are therefore a good tool to study the role of specific cell
types in angiogenesis. Whereas most previous modeling studies derived the
modeled cell behaviors from experimental observations, we used our model
to predict cell behavior that is sufficient for reproducing experimental obser-
vations. We chose this approach because it is often hard to infer the behavior
of single cells from multicellular experiments in which the behavior of a cell
is affected by the other cells and the cell’s environment. This modeling ap-
proach requires model simulations for large ranges of parameter values. For
this, we created a protocol for large scale parameter sweeps with cell-based
models (chapter 5). While this protocol was developed with the cellular Potts
method and the modeling framework CompuCell3D in mind, the method can
easily be adapted for other modeling methods and corresponding software
that can run without user interaction.

Instead of building a new model for each of the topics we studied, we built
upon two previous, computational angiogenesis models. In the first model,
networks are formed by elongated cells that chemotact towards a chemoat-
tractant secreted by all cells [25]. In the second model, round cells form net-
works due to contact-inhibited chemotaxis towards a chemoattractant that
all cells secrete [28]. Before we can build upon these models, we must fully
understand the mechanism that drives angiogenesis in each of the models.
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In the contact inhibition model, angiogenesis is driven by two mechanisms.
Initial sprouts form by the random movements of highly motile cells, or due
to buckling caused by the inward force of chemotaxis on a volume conserved
blob of cells. The chemoattractant gradient at the tips of these small sprouts
is shallower than in between the sprouts and therefore new extensions are
most likely at the sprout tips [28]. In contrast, for the model with elongated
cells, it was not yet understood why these elongated cells form networks.
Therefore, we studied how cell elongation can drive angiogenesis (chapter 2).
For this we thoroughly analyzed the evolution of the networks and the behav-
ior of individual cells using methods commonly used in liquid crystal theory.
By analyzing the ordering of cells during pattern formation we showed that
elongated cells tend to align along their long axis and this alignment is inde-
pendent of chemotaxis. The clusters of cells that form due to alighment are
limited in their rotation and this inhibits network collapse. These results sug-
gest that cell elongation promotes the formation of branches and prevents
merging of those branches.

After we analyzed how elongated cells contribute to angiogenesis we used
elongated cells in a model of that includes two cell types: endothelial cells
and pericytes (chapter 3). Pericytes are perivascular cells that wrap around
small blood vessels [97]. They are thought to stabilize blood vessels [97], but
various studies indicated that pericytes also play a role during angiogenesis
[69-71]. When endothelial cells and pericytes are combined in a vasculogen-
esis assay, a network is formed that quickly collapses and from the resulting
blob of cells sprouts reappear. To identify the endothelial-pericyte interac-
tions may cause this pattern formation we built an angiogenesis model that
includes the two cell types and tested for what endothelial-pericyte interac-
tions the model reproduces the in vitro pattern formation. The behavior of
endothelial cells and pericytes were based on vasculogenesis assays with
only one cell types. In these assays endothelial cells formed networks that
resembled those formed with elongated cells and therefore they are mod-
eled as elongated cells that secrete their own chemoattractant. Pericytes
formed networks that quickly collapsed into blobs and these patterns can
be reproduced by modeling pericytes as round cells that secrete their own
chemoattractant. Based on the endothelial-pericyte interactions described
in the literature, we proposed two signaling scenarios: paracrine signaling
and contact-dependent signaling. In the paracrine signaling scenario en-
dothelial cells secrete a chemoattractant for pericytes and vice versa. In the
contact-dependent signaling scenario endothelial cells secrete a chemoat-
tractant for pericytes, and endothelial cells that contact pericytes secrete
a chemoattractant for endothelial cells. Then, we systematically varied the
chemoattractant properties for both scenarios, using the protocol from chap-
ter 5. With both signaling scenarios the model reproduced network formation
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and network collapse, but only for the contact-dependent sighaling scenario
sprouting occurred after network collapse. These results suggest that en-
dothelial cells and pericyte interact during angiogenesis via secreted chemo-
attractants.

Next, we studied the role of tip-stalk cell differentiation in angiogenesis to
better understand why these two endothelial cell phenotypes are involved
in angiogenesis. For this, we searched for cell behaviors that cause cells to
lead and affect the resulting network morphology. We adapted the contact-
inhibition model of angiogenesis to include both tip and stalk cells. Then, one
by one, we varied the values of each parameter that controls tip cell behavior
to find parameter values for which tip cells lead sprouts and affect angiogen-
esis. In this manner we found that when tip cells are less attracted to the
chemoattractant secreted by all endothelial cells than stalk cells, these tip
cells lead sprouts and affect angiogenesis. A study of published gene expres-
sion studies pointed towards Apelin as a candidate for this chemoattractant.
Apelin is a chemoattractant for endothelial cells that is secreted by endothe-
lial cells and the Apelin receptor, APJ, is only detected in stalk cells. Thus,
Apelin is a chemoattractant for stalk cells and not for tip cells. We tested this
hypothesis by inhibiting Apelin signaling in spheroid sprouting assays with ei-
ther a wild-type population of endothelial cells, or a population of only stalk
cells. In absence of tip cells, few sprouts develop in such sprouting assays.
As we expected, Apelin inhibition reduced sprouting in spheroids with a wild-
type endothelial cell population, while having little effect on spheroids with
only stalk cells. These results suggest that Apelin could be a cause of the
differential behavior of tip and stalk cells.

Altogether, we used cell-based models to study the role of cell mixing in an-
giogenesis. Specifically, we studied the interactions between endothelial cells
and pericytes during angiogenesis, and the role of tip and stalk cell differenti-
ation in angiogenesis. In both cases we used high-throughput simulations to
explore the effects of cell behaviors or the properties of signaling molecules.
In this manner we proposed that, during angiogenesis, endothelial cells and
pericytes interact via diffusing molecules. Furthermore, we suggested that tip
cell selection can stabilize network formation with tip cells, and we hypothe-
sized that Apelin may be a cause of the differences in behavior of tip and stalk
cells.

6.2 Future work

6.2.1 From abstract to realistic models

In this thesis we used relatively simple models to study the collective behav-
ior of mixed cell types in angiogenesis. Such models provide a good tool to
study the mechanisms by which several cell types affect angiogenesis. While
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these model results can be compared with in vitro experiments on a quali-
tative level, as we did in chapters 3 and 4, comparing simulation results to
experimental results at a quantitative level is often complicated. For exam-
ple, when the proteins used for in vitro perturbations are not represented in
the model, the in vitro perturbation must somehow be translated to a model
parameter. This can only be done if the quantitative link between the protein
and the model parameter is known, otherwise the model cannot be compared
to experiments at a quantitative level. As a result, model validation is limited,
as well as the predictive power of the models. Here we will discuss several
improvements that would make the models presented in this thesis more re-
alistic, and therefore more similar to in vitro and in vivo experiments.

In our models, cells behave according to a set of rules that remained un-
changed during the simulation. However, in reality, the behavior of cells is
the result of subcellular signaling in response to external signals. By includ-
ing the subcellular regulation of cell behavior, the models can be directly re-
lated to in vitro experiments in which pathway components are upregulated,
knocked out, or added ectopically. In the model with tip and stalk cells (chap-
ter 4), cell fate depends on a simplified subcellular pathway but this pathway
is not directly linked to cell behavior. Furthermore, in the model with elon-
gated cells (chapter 2) and in the model with pericytes and endothelial cells
(chapter 3) none of the cell behavior is connected to subcellular signaling.
However, regulation of cell shape in time and space could affect the model
outcome, but we did not consider this for cell elongation. In the literature two
hypotheses are proposed for the cause of endothelial cell elongation. Sev-
eral studies proposed that endothelial cells elongate in response to vascular
endothelial growth factor (VEGF) [78, 79, 207]. If the VEGF concentration is
homogeneous and constant over time, all cells will elongate and this would
not affect the model outcome. However, when the VEGF concentration is het-
erogeneous, or changes over time, the model outcome could be affected.
Other studies report that endothelial cells elongated in response to stress
in the extracellular matrix (ECM) [208]. A recent computational model of an-
giogenesis in which the forces cells exert on the ECM induce strain-stiffening
supports this hypothesis [126]. Elongation induced by stress in ECM impli-
cates that cells elongate during angiogenesis. Overall, for both hypotheses
cell elongation may occur during morphogenesis. Therefore, we should test
if elongation during pattern formation affects the formed patterns.

As mentioned above the ECM may affect the shape of cells. Furthermore,
the ECM can also affect the distribution of diffusive growth factors and sig-
naling molecules by fixating them. A well-known example of a growth factor
that binds to the ECM is VEGF-A [209]. VEGF-A has a heparin binding domain
via which it can bind to heparin sulphate proteoglycans, which are part of the
ECM [210]. Experiments with embryos that produce VEGF lacking the heparin
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binding domain of VEGF showed defects in the developing vasculature [169],
indicating that VEGF-ECM binding plays an important role in blood vessel for-
mation. Furthermore, in vitro, the binding and unbinding of VEGF to the ECM
determines the spatial VEGF pattern [52]. K&hn-Lugue and coworkers [29,
52] built a model based on this hypothesis and showed that spatial pattern
of VEGF via ECM binding can cause endothelial cells to form networks. In our
study of pericyte-endothelial interactions we considered VEGF as one of the
possible chemoattractants for endothelial cells, but we did not consider ECM
binding. Therefore, a next step in this study would be to consider ECM binding
of the chemoattractants. In this way we can further characterize what prop-
erties the chemoattractants should have to cause the patterns we observed
in the in vitro experiments.

When considering mechanical feedback between cells and the ECM and the
effect of the ECM on local gradients, we assumed that cells are moving on
top of the ECM. In contrast, in 3D cells migrate through the ECM and this
requires cells to degrade the ECM. In our study of endothelial tip and stalk
cells we validated our 2D modeling results using a 3D sprouting assay. Be-
cause of this difference, we could only compare the results at a qualitative
level. Furthermore, there were some discrepancies between the model and
the experiments, which could be result of this difference. Therefore, to further
validate the role of Apelin in tip and stalk cell behavior we should adapt the
model presented in chapter 4 to include ECM tunneling and again compare
the simulation results with the 3D sprouting assays. Creating a 3D model of
angiogenesis with tip and stalk cells is possible, but such a model would be
computationally expensive. Because of this, we propose a 2D approach in
which cells have to degrade ECM before they can migrate. This approach has
been presented previously in a 2D cellular Potts model that studied the role
of haptotaxis and haptokinesis [197].

Up to here we discussed the role of the ECM and the regulation of cell behav-
jors that are included in our models. However, in all the models we omitted
proliferation of endothelial cells based on the assumption that cells do not
divide in in vitro assays. This assumption only holds for in vitro vasculoge-
nesis where there is a supply of endothelial cells. In contrast, during in vivo
sprouting angiogenesis, proliferation is necessary for sprout extension [56].
The cells that proliferate are the stalk cells just behind the tip cells, while the
stalk cells farther away from the tip become quiescent cells that do not pro-
liferate [15]. Exactly how this is regulated is not yet clear. Interestingly, both
pericytes and Apelin have been implicated to play a role in the regulation of
stalk cell proliferation [168]. Pericytes are known to stabilize blood vessels by
inhibition proliferation [101]. Apelin, which is secreted in large amounts by tip
cells [123, 142, 143], inhibits pericyte recruitment [168]. Thus, close to the
sprout tip, there are no pericytes and the stalk cells proliferate. Farther away
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from the tip, pericytes are associated to the sprout and proliferation is in-
hibited. This new hypothesis has been proposed based on experimental data
[168], but has not yet been tested mechanistically. Our previous work on both
pericytes and tip and stalk cells gives us the ability to test this hypothesis with
a computational model.

6.2.2 Validation of angiogenesis models

As discussed in section 1.2.1 several models can explain the formation of vas-
cular network formation. In these models network formation is driven by pro-
cesses such as: contact-inhibited chemotaxis [28], mechanical interactions
between cells and the ECM [21-24, 83, 126], attraction to elongated struc-
tures [30, 31], and chemotaxis to ECM bound VEGF [29, 52]. Several of these
models can partially reproduce in vitro vasculogenesis. The cell-elongation
model reproduces the temporal dynamics of pattern coarsening that is ob-
served in vasculogenesis assays with HUVEC on Matrigel [25]. Furthermore,
the models based on mechanical interactions between cells and the ECM re-
produce the dependence of network formation on the stiffness of the ECM
[22, 126]. Finally, in the angiogenesis model that considered VEGF-ECM as-
sociation, the morphometrics of the networks fitted very well to the metrics
of networks of quail embryos [29]. However, this fit only holds for a narrow
range of parameters, as was shown by a parameter sensitivity analysis of the
model [29]. Altogether, vascular network formation can be reproduced with
models based on various hypotheses. Therefore, it remains unclear which
hypothesis is true. It is likely that multiple mechanisms can play a role at the
same time and that their importance depends on the stage of network devel-
opment and the environment. For example, mechanical feedback only works
when the substrate is sufficient stiff, while the several other mechanisms can
produce networks independent of the substrate’s mechanical properties.

To determine which model is correct in which specific context of angiogen-
esis, we focus on the model parameters. A model is only valid when the pa-
rameters for which the model fits to experimental data are realistic for that
experiment. Using our approach of high-throughput simulations, we can ex-
plore the parameters of each of the models and find parameter sets for which
a certain model fits experimental data. Note that ideally, this fit not only con-
cerns the final network, but also the network development over time. Then,
for each model and parameter set we should determine whether the param-
eter values are realistic for the experimental data that fits with the model
outcome. If a model reproduces experimental patterns with realistic param-
eters, the modeled mechanism may be the cause of those patterns. In this
manner we could link the various proposed mechanisms for angiogenesis to
specific experimental setups and use the correct model for further studies
related to that experimental setup.
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Summary

Angiogenesis is the process by which new blood vessels develop by splitting
of or by sprouting from existing vessels. The sprouts formed in the latter
mechanism, known as sprouting angiogenesis, branch out and connect with
other sprouts to form a new network of blood vessels. This process involves
both the endothelial cells, which make up the inner lining of a vessel, and
the perivascular cells, which surround the vessel. The collective behavior of
these cells results in the formation of sprouts and eventually vascular net-
works. The cells involved in angiogenesis differ in shape and behavior, which
affects their collective behavior. Furthermore, the cells also affect one an-
other via diffusive and membrane bound signaling molecules. In this thesis
we aim to understand how the interaction between multiple cell-types exhibit-
ing subtle differences in behavior change the resulting collective angiogenic
sprouting.

To this end, we developed cell-based, computational models of angiogene-
sis, based on the cellular Potts model. The inputs of these models are the
observed or hypothesized behavior of individual cells and the output is the
resulting collective cell behavior: e.g., the formation of angiogenic sprouts or
vascular networks. By assigning different behavior to a subset of the cells,
these models can be used to study the interplay between cell types exhibit-
ing different behavior. Because the exact parameter values are not always
known, we need to perform simulations for a wide range of parameter val-
ues. For this, we developed a high-throughput simulation pipeline, which is
presented in chapter 5, that automates setting up the simulation scripts, run-
ning the simulations on a computer cluster and analyzing the results. This
pipeline allowed us to screen a wide range of new hypotheses concerning the
differences between cell types, and thereby enabled us to develop new hy-
potheses that could be tested in the wet-lab.

In chapter 2, we studied the role of cell elongation in angiogenesis. Based
on in vitro observations, previous simulation studies have proposed that cells
form vascular networks because they are attracted to one another via an
autocrine chemoattractant. With such a mechanism cells form aggregates,
unless additional mechanisms make the cells organize into sprouts. One of
these additional mechanisms is cell elongation. To understand how the elon-
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gated cell shape contributes to the formation of network-like structures, we
studied the aggregation of elongated cells in absence of the chemoattrac-
tant. We found that also without chemotaxis cells organize into networks,
provided that the cells slightly adhere to one another. The elongated cells
align side-to-side and thereby formed cell clusters. Individual, elongated cells
rotate easily, but rotation becomes increasingly difficult as the cluster size
increases. As the clusters grow in size, due to cell-cell adhesion, the dy-
namics slows down, until it essentially stalls. Even though the configuration
still slowly evolves towards the equilibrium, consisting of a single cluster with
groups of aligned cells, this equilibrium is not reached in practice; this phe-
nomenon is known as “arrested dynamics”. In the model with chemoattrac-
tion between the cells, the pattern continues to evolve, which suggest that in
that model the network represents a true equilibrium.

With the insights into the role of cell elongation obtained in this way, in chap-
ter 3 we studied the role of pericytes in angiogenesis. Pericytes are a type
of perivascular cells that are observed in growing sprouts during ocular and
tumor angiogenesis. To better understand how pericytes are involved in an-
giogenesis we attempted to reproduce in vitro observations of co-cultures
of endothelial cells and pericytes with computational modeling. In vitro, en-
dothelial cells and pericytes rapidly form networks. Unlike the stable net-
works formed in endothelial monocultures, the networks formed in the mixed
cultures collapse into a cluster. Interestingly, new sprouts extend from these
clusters after a couple of days. To test if and how reported chemotactic in-
teractions between endothelial cells and pericytes could cause the in vitro
patterns we simulated several model variants that differ in which cells se-
crete which chemoattractants. For this, we built a model with elongated en-
dothelial cells and round pericytes that are each attracted to their own au-
tocrine chemoattractant. Then, we generated model variants by adding ad-
ditional chemoattractants for endothelial cells and varying which cell types
secrete which chemoattractant. We found that networks develop in simu-
lations where pericytes secrete a chemoattractant for endothelial cells and
vice versa. Similar to the in vitro experiments, these network are unstable and
quickly collapse into a cluster. To also reproduce sprouting, one model adjust-
ment was needed: Not pericytes secrete a chemoattractant for endothelial
cells, but endothelial cells that are in direct contact with pericytes secrete
that chemoattractant. Together, the results presented in chapter 3 hypothe-
size crosstalk between endothelial cells and pericytes via chemoattractants.
Whether these interactions indeed play a role in the collective behavior of
endothelial cells and pericytes during angiogenesis is the topic of ongoing
investigations.

The study presented in chapter 4 concerns differences between two sub-
types of endothelial cells: the tip cells that lead the sprouts, and the stalk
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cells that follow the tip cells and proliferate to facilitate sprout extension.
Whereas tip and stalk cell differentiation is necessary for in vivo angiogene-
sis, computational models and cell culture models can recapitulate aspects
of blood vessel formation in monocultures, without tip and stalk cell differ-
entiation. To develop new ideas on the mechanisms by which tip cells could
contribute to blood vessel formation we extended an existing computational
model with tip and stalk cell differentiation, avoiding any a priori assump-
tions about the differences between tip and stalk cells. We then systemati-
cally changed the behavior of the tip cells, to identify model variants in which
the computational tip cells’ behavior matched that of real tip cells: They lead
sprouts and impact the resulting blood vessel networks. Our model predicted
that tip cells may be less attracted to the chemoattractant. Interestingly,
this prediction matched the expression pattern of a known molecular signal,
called Apelin. We tested our computational predictions in an actual cell cul-
ture model of angiogenic sprouting, which indeed turned out to be sensitive
to interference with Apelin signaling.

In this thesis we aimed to understand how the interactions between cell-
types exhibiting different behaviors affect angiogenic sprouting. In high-
throughput simulation experiments we varied the chemotactic interacts be-
tween endothelial cells and pericytes and found that such interactions could
reproduce the patterns these cells formed in in vitro cocultures. With a sim-
ilar approach we searched for cell behavior for which computational tip cells
resemble real tip cells. In this manner we found that the reduced sensitiv-
ity of the tip cells to Apelin may cause them to lead sprouts and affect the
morphology of vascular networks. Altogether, in this thesis we reverse engi-
neered possible roles for pericytes and tip cells in angiogenesis by performing
high-throughput simulation experiments.
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Samenvatting

Angiogenese is het proces waarbij nieuwe bloedvaten ontstaan uit bestaande
bloedvaten doordat een bloedvat in tweeén splitst of doordat er nieuwe zij-
takken, zogenaamde spruiten, ontstaan. De spruiten die ontstaan in het laat-
ste geval, genaamd spruitvormende angiogenese, vertakken en vormen ver-
bindingen met andere spruiten en zo ontstaat een netwerk van bloedvaten.
Bij dit proces zijn zowel de endotheelcellen uit de binnenste laag van het
bloedvat als de daarom heen liggende perivasculaire cellen betrokken. Het
collectieve gedrag van deze cellen leidt tot de vorming van spruiten en de
daaropvolgende ontwikkeling van netwerken. De cellen betrokken bij angio-
genese verschillen in gedrag en vorm en dit heeft invloed op het collectieve
gedrag. Daarnaast kunnen de cellen elkaars gedrag beinvloeden via diffun-
derende en membraangebonden signaalmoleculen. Dit proefschrift analy-
seert het samenspel tussen cellen van verschillende types, die verschillen in
gedrag en vorm, tijdens angiogenese.

Om het samenspel tussen cellen tijdens angiogenese te onderzoeken maken
we gebruik van cel-gebaseerde computermodellen die gebaseerd zijn op het
cellular Potts model. In deze modellen wordt het gedrag en de vorm van
de cellen voorgeschreven en simulaties laten zien hoe de cellen zich orga-
niseren tot een weefsel, zoals spruiten of netwerken van bloedvaten. Door
verschillend gedrag voor te schrijven voor een subset van de cellen kunnen
deze modellen gebruikt worden om het samenspel tussen verschillende cel-
types te bestuderen. Omdat de correcte parameterwaardes niet altijd bekend
zijn is het noodzakelijk om simulaties uit te voeren met uiteenlopende para-
meterwaardes. Hiervoor hebben we een high-throughput simulatie protocol
opgesteld, beschreven in hoofdstuk 5, dat het opzetten van simulatiescripts,
het uitvoeren van de simulaties op een computercluster, en het analyseren
van de resultaten automatiseerd. Gebruikmakende van dit protocol kunnen
we uiteenlopende hypotheses met betrekking tot de rol van verschillen in
celgedrag in angiogenese testen en zo nieuwe hypotheses ontwikkelen die
daarna in het laboratorium getest kunnen worden.

In hoofdstuk 2 hebben we de rol van langwerpige cellen in angiogenese on-
derzocht. In eerdere simulatiestudies werd, naar aanleiding van in vitro ob-
servaties, aangenomen dat cellen netwerken vormen omdat ze elkaar aantrek-
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ken via een autocriene chemoattractant. Dit mechanisme resulteert echter
in de vorming van celclusters, tenzij er een extra mechanisme is dat ervoor
zorgt dat de cellen zich organiseren in spruiten. Eén van deze mechanismes
is het langwerpig worden van de cellen. Om te begrijpen waarom juist lang-
werpige cellen netwerken vormen hebben we het collectieve gedrag van de
langwerpige cellen onderzocht in afwezigheid van een chemoattractant. Uit
onze simulaties bleek dat langwerpige cellen een netwerk vormen, mits deze
cellen enigszins aan elkaar plakken. Tijdens dit proces lijnen de cellen uit
langs hun lange cellen en vormen celclusters. Terwijl een losse cel gemakke-
lijk kan roteren, is de rotatie van cellen in een groot cluster beperkt. Doordat
de clusters blijven groeien neemt de dynamiek van de patroonontwikkeling
af totdat er een quasi-statisch patroon ontstaat. Alhoewel dit patroon zich
heel langzaam blijft ontwikkelen naar de evenwichtsconfiguratie, één cluster
bestaande uit groepjes uitgelijnde cellen, wordt dit evenwicht nooit bereikt;
dit fenomeen wordt arrested dynamics genoemd. Wanneer de cellen wel een
chemoattractant afgeven ontstaat er een netwerk dat blijft evolueren, wat
suggereert dat een netwerk het ware evenwicht is van dat model.

Met een beter begrip van de rol van cellengte hebben we, in hoofdstuk 3, ons
computermodel uitgebreid met pericyten. Dit zijn perivasculaire cellen die,
onder andere, aanwezig in de spruiten tijdens angiogenese in het netvlies
en in tumoren. Om uit te vinden hoe pericyten bijdragen aan angiogenese
hebben we getracht om observaties uit in vitro experimenten met endotheel-
cellen en pericyten te reproduceren met een computermodel. In vitro vormen
endotheelcellen en pericyten netwerken die, in tegenstelling tot netwerken
gevormd door enkel endotheelcellen, ineenstorten in een celcluster. Uit dat
cluster vormen zich later weer nieuwe spruiten. Om te testen of en hoe in-
teractie tussen endotheelcellen en pericyten via chemoattractanten de in
vitro patroonvorming kan veroorzaken hebben we een aantal modelvarianten
getest die verschillen in welke cellen welke chemoattractanten afgeven. Hier-
voor hebben we een model gemaakt met lange endotheelcellen en ronde
pericyten die beide een eigen chemoattractant afgeven. Aan dit basismodel
hebben we extra chemoattractanten voor beide celtypes toegevoegd. Welke
cellen deze extra chemoattractanten afgeven verschilt per model variant.
Wanneer pericyten een chemoattractant afgeven voor endotheelcellen en
vice versa ontstaan er netwerken die ineenstorten, zoals ook gebeurd in de
in vitro experimenten. Met één aanpassing kan ook spruitvorming vanuit het
celcluster gereproduceerd worden: Niet pericyten maar de endotheelcellen
direct naast pericyten geven de chemoattractant voor endotheelcellen af.
Deze resultaten suggereren dat interactie tussen pericyten en endotheel-
cellen, via chemoattractanten, het collectieve gedrag van deze cellen bein-
vloedt en daardoor een rol kan spelen in angiogenese. Lopend onderzoek
moet uitwijzen of deze interacties inderdaad een rol spelen in het collectieve
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gedrag van endotheelcellen en pericyten tijdens angiogenese.

Het onderzoek gepresenteerd in hoofdstuk 4 heeft betrekking op de ver-
schillen in twee suptypes van endotheelcellen: tipcellen die de spruiten lei-
den, en de stalkcellen die de tipcellen volgen en verlenging van de spruit
mogelijk maken door celgroei. Alhoewel differentiatie van tipcellen en stalk-
cellen noodzakelijk is in in vivo angiogenese hebben computermodellen en
in vitro studies laten zien dat netwerken ook kunnen vormen met één type
endotheelcel. Om nieuwe inzichten te verkrijgen over hoe tipcellen kunnen
bijdragen aan de vorming van bloedvaten hebben we een bestaand angioge-
nese model uitgebreid met tip- en stalkceldifferentiatie, zonder daarbij ge-
bruik te maken van a priori aannames met betrekking tot het gedrag van
beide celtypes. Door systematisch het gedrag van tipcellen te variéren hebben
we gezocht naar eigenschappen waarvoor het gedrag van de gemodelleerde
tipcellen overeenkomt met dat van echte tipcellen: tipcellen leiden spruiten
en beinvloeden de morfologie van de gevormde netwerken. Hieruit volgde de
modelvoorspelling dat tipcellen minder aangetrokken zijn tot een autocriene
chemoattractant dan stalkcellen. Deze voorspelling komt overeen met het
expressiepatroon van de endotheelcel chemoattractant Apelin. We hebben
de modelvoorspelling getest in een in vitro model van spruitvorming en dit
model was inderdaad gevoelig voor Apelin.

In dit proefschrift hebben we interactie tussen cellen met verschillend gedrag
tijdens angiogenese onderzocht. Met high-throughput simulatie-experimenten
waarin we de interacties tussen endotheelcellen en pericyten via chemoat-
tractanten variéren hebben we gevonden dat zulke interactie verantwoordelijk
kunnen zijn voor de patronen die endotheelcellen en pericyten vormen in in
vitro experimenten. Met een soortgelijke aanpak hebben we gezocht naar
gedrag waarvoor de tipcellen in het computermodel zich gedragen zoals echte
tipcellen. Op deze wijze hebben we gevonden dat de lage sensitiviteit van tip-
cellen voor Apelin ervoor kan zorgen dat zij spruiten leiden en de morfolo-
gie van het vasculaire netwerk beinvloeden. Alles bij elkaar hebben we in dit
proefschrift mogelijke rollen voor pericyten en tipcellen in angiogenese her-
leid door middel van high-througput simulatie-experimenten.
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