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We investigate the tail behavior of the sojourn-time distribution for a request of a given length in
an M/G/1 Processor-Sharing (PS) queue. An exponential asymptote is proven for general
service times in two special cases: when the traffic load is sufficiently high and when the
request length is sufficiently small. Furthermore, using the branching process technique we
derive exact asymptotics of exponential type for the sojourn time in the M/M/1 queue. We obtain
an equation for the asymptotic decay rate and an exact expression for the asymptotic constant.
The decay rate is studied in detail and is compared to other service disciplines. Finally, using
numerical methods, we investigate the accuracy of the exponential asymptote.
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Abstract

We investigate the tail behavior of the sojourn-time distribution for a request of a
given length in an M/G/1 Processor-Sharing (PS) queue. An exponential asymptote
is proven for general service times in two special cases: when the traffic load is suffi-
ciently high and when the request length is sufficiently small. Furthermore, using the
branching process technique we derive exact asymptotics of exponential type for the
sojourn time in the M/M/1 queue. We obtain an equation for the asymptotic decay
rate and an exact expression for the asymptotic constant. The decay rate is studied in
detail and is compared to other service disciplines. Finally, using numerical methods,
we investigate the accuracy of the exponential asymptote.
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1 Introduction

The sojourn time of a customer, i.e. the time a customer spends in the system from its
arrival until its service completion, is an important performance measure for queueing
systems. In this paper, we investigate the tail behavior of the sojourn time distribution
for a request of a given length in the stable M/G/1 Processor-Sharing (PS) queue. In the
PS discipline all customers are served simultaneously: each customer in the system receives
service at rate 1/N, when the total number of customers present in the system is N. Queues
with PS discipline became popular by the work of Kleinrock and were originally proposed
as an idealization of time-sharing systems. The recent rise of interest in PS queues is
related to their application in the performance analysis of bandwidth-sharing protocols in
computer communication networks.
There exist a number of results on the complete distribution of the sojourn time in PS
queues. Yashkov [22] found an analytic expression for the distribution function in terms
of a double Laplace-Stieltjes transform (LST) based on the decomposition of the sojourn
time into a set of independent branching processes. Schassberger [20] developed another
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approach to derive the LST by considering PS as a limiting case of the round-robin disci-
pline. Using methods similar to Yashkov’s, the LST of the conditional sojourn time was
also studied by Grishechkin [12], Ott [19] and Nunez-Queija [17]. Zwart and Boxma [24]
derived a new, more explicit expression for the LST involving a series expansion.
The complexity of these results, and the renewed attention for the PS discipline as a flow-
level model for the Internet, have led to an interest in the tail behavior of the sojourn
time distribution. Although obtaining the tail behavior seems a more modest goal than
obtaining the complete distribution, this task has still proven to be quite challenging and
has recently been the subject of many papers. Several studies have focused on the analysis
of the tail of the unconditional sojourn time distribution in the case when the service time
distribution is heavy-tailed. A so-called reduced-load approximation was proven by Zwart
and Boxma in [24] for the M/G/1 queue, which was extended by Núñez-Queija in [17],
Jelenković and Momčilović [13]; see Borst et al. [5] for a survey.
For PS queues with light-tailed service time distributions only a few results are available.
The tail asymptotics for the unconditional sojourn time in the M/M/1 PS queue are
known, and are of quite remarkable form [4], [11]:

P(V > x) ∼ cx−5/6e−αx1/3
e−γ0x, x →∞, (1.1)

for positive constants c, α, γ0, and f(x) ∼ g(x) denoting f(x)/g(x) → 1. Flatto [11] ob-
tained this asymptotic tail behavior of the waiting time in the M/M/1 Random-Order-
of-Service (ROS) queue. Subsequently, Borst et al. [4] showed that the waiting-time dis-
tribution in the M/M/1 ROS queue, conditioned to be positive, equals the sojourn time
distribution in the M/M/1 PS queue.
Mandjes and Zwart [16] analyzed sojourn time asymptotics in the GI/GI/1 PS queue.
Using large-deviation techniques, they derived logarithmic asymptotics for a broad class
of light-tailed distributions. Recently, the exact asymptotics for the sojourn time in the
M/D/1 PS queue were derived in [10].
The complexity of the asymptotics in the M/M/1 queue and the difficulty of extending
Flatto’s method to more general queues ([11], [4], [10]) motivate us to study the light-tailed
case from a different perspective: in this paper we investigate the asymptotic behavior of
the sojourn time distribution for a request of given length. Suppose the customer under
consideration (the tagged customer) has a request of length τ (abbreviated as τ -request).
Let V (τ) be its sojourn time. In order to emphasize this conditioning we will use the
notation M/G(τ)/1 for the underlying queue, although we stress that all other customers
still have generally distributed service times.
The analysis in this paper is based on two key ideas. The first cornerstone is the branching
method introduced by Yashkov [22]. This approach enables us to represent the sojourn
time in terms of a geometric random sum of ”delay elements” and apply existing powerful
asymptotic results for such random sums, which is the second cornerstone. Checking the
assumptions under which these asymptotic results are valid, is still a challenging task, in
particular for generally distributed service times. Assuming that either the traffic load is
close to one, or that the request length is sufficiently small, we show in Section 2 that the
asymptote

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x →∞, (1.2)

is valid for general service time distributions.
Sections 3 and 4 are dedicated to the study of the system with exponential service time,
for which no further assumptions are necessary. We obtain an equation for the asymptotic
decay rate γ(τ) and an exact (though complicated) expression for the asymptotic constant
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α(τ). The decay rate equations are shown to be of quite an unusual form. The decay rate
γ(τ) is the solution (in s) of

tan
(τ

2

√
−(λ + µ− s)2 + 4λµ

)
=

√
−(λ + µ− s)2 + 4λµ

λ− µ + s1+ρ
1−ρ

, τ > τ0, (1.3)

tanh
(τ

2

√
(λ + µ− s)2 − 4λµ

)
=

√
(λ + µ− s)2 − 4λµ

λ− µ + s1+ρ
1−ρ

, τ < τ0, (1.4)

where τ0 = 1√
λµ

(
1−√ρ
1+
√

ρ

)
.

In Section 3, we derive expressions for the delay elements of the sojourn time and in
Section 4 we formulate the main asymptotic result for the M/M(τ)/1 queue. We show
that the exponential asymptote (1.2) is valid if τ 6= τ0 and is not valid if τ = τ0.
Finally, in Sections 5 and 6 we give some numerical results. First, we analyze the behavior
of the decay rate depending on the value of τ and compare it with decay rates for an
M/M(τ)/1 system with a different service discipline such as Shortest Remaining Processing
Time (SRPT), Foreground-Background (FB), First In First Out (FIFO) and Last In First
Out (LIFO). In Section 6, we compare the asymptotic result to exact values of P(V (τ) >
x), obtained by numerical Laplace transform inversion. We also compare the accuracy of
the asymptote and the heavy-traffic approximation. The results show that the exponential
asymptote provides a good approximation to the tail probability.

2 General results

In this section we present some results for the sojourn time in a system with a general
service time distribution. Under the condition that the traffic load is sufficiently high, we
prove that the sojourn time tail behaves asymptotically as an exponential function. We
also consider the situation when the service requirement of the given customer is close to
zero.
In the following sections we will follow the approach presented in Yashkov [22], in which
the general expression for the LST of the sojourn time of a τ -request in the M/G/1 queue
is derived. The key idea is the decomposition of the sojourn time into a sum of certain
functionals of independent branching processes. This approach enables one to reduce the
problem to the computation of certain functionals of branching processes.
Customers arrive into the system according to a Poisson process with rate λ. Denote by
B the generic service time. We assume that the queue is stable, i.e. that the traffic load
in the system is less than one, ρ = λEB < 1.
Suppose that a tagged customer with service request of length τ arrives at the epoch
t = 0. Every customer present in the system at the arrival of the tagged customer is called
a progenitor while the new arrivals occurring after t = 0 are assumed to be descendants
of these progenitors. We take into account only those customers which arrive before the
service of the tagged customer is completed. If n progenitors are present in the system
then each new arrival is declared with probability 1/n to be a descendant of any of these
progenitors. The tagged customer is also considered as a progenitor. Each branching
process is formed by one progenitor and its descendants (for more details see [22]). The
sojourn time of the tagged customer can be represented as

V (τ) = V0(τ) +
Q∑

i=1

Ci(τ), (2.1)
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where Ci(τ) is the amount of service received by a certain progenitor and its direct de-
scendants during the sojourn time of the tagged customer, V0(τ) is equal to the amount of
service received by the tagged customer and its direct descendants, and Q is the number of
customers in the system. Notice that the random variable V0(τ) is in fact the sojourn time
of a customer which arrives into an empty system. In general we will call the variables
V0(τ) and Ci(τ) the delay elements. The essential observation here is that the elements
V0(τ) and Ci(τ), i = 1, 2, ..., Q, are independent of each other. This is due to the fact that
the sizes of requests and arrivals are independent. The elements Ci(τ) are also identical
in distribution.
For convenience, denote the sum

∑Q
i=1 Ci(τ) by V1(τ). Using the well-known fact that

P(Q = n) = (1− ρ)ρn, the probability distribution of V1 can be written as

P(V1(τ) > x) = P(
Q∑

i=0

Ci(τ) > x) =
∞∑

n=0

(1− ρ)ρn(1− Fn(x)), (2.2)

where F denotes the distribution of Ci(τ), and Fn(x) is the n-fold convolution of F with
itself. The random variable V1(τ) is called a geometric random sum and such random
sums arise in many applied probability settings. From the results in [14], it is well-known
that if the Cramér condition holds, such a sum is asymptotically (as x → ∞) equivalent
to an exponential function. In particular, in relation to the sojourn time in the M/G(τ)/1
system, the following theorem holds.

Theorem 2.1 Let the Cramér condition hold, i.e. suppose that there exists a γ = γ(τ) > 0
such that

E[eγ(τ)Ci(τ)] =
1
ρ
. (2.3)

(i) If h(τ) = ρ
∫∞
0 xeγ(τ)xdF (x) = ρ d

dsE[esCi(τ)]|s=γ(τ) < ∞, and P(B > τ) > 0, then the
asymptotic relation

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x →∞, (2.4)

holds with

α(τ) =
1− ρ

h(τ)γ(τ)
E[eγ(τ)V0(τ)]. (2.5)

(ii) If h(τ) = ∞, then

lim
x→∞P(V (τ) > x)eγ(τ)x = 0.

Proof.
The statement of the theorem follows from two known results. Since the sojourn time
V (τ) can be represented as a sum of the r.v.V0(τ) and the geometric random sum V1(τ),
we can apply the result of Kalashnikov and Tsitsiashvili [14] to V1(τ). These authors have
shown that if the Cramér condition holds, h(τ) < ∞ and F is non-lattice, the sum V1(τ)
asymptotically behaves as

P(V1(τ) > x) ∼ kC(τ)e−γ(τ)x, (2.6)

where kC(τ) = (1− ρ)/(g(τ) γ(τ)), and if g(τ) = ∞,

lim
x→∞P(V1(τ) > x)eγ(τ)x = 0. (2.7)

4



The distribution function F of the delay element Ci(τ) is indeed non-lattice, since P(Ci(τ) =
Br

i ) > 0, and the residual service time Br
i has a density. The condition P(B > τ) > 0

implies that P(Br > τ) > 0. Since we consider all elements only on the interval [0, t], the
elements Ci(τ) and V0(τ) coincide (in distribution) if Br > τ, and

∞ >
E[eγ(τ)Ci(τ)]
P(Br > τ)

≥ E[eγ(τ)Ci(τ)1(Br > τ)]
P(Br > τ)

= E[eγ(τ)Ci(τ)|Br > τ ] = E[eγ(τ)V0(τ)].

Applying Breiman’s theorem [6] under the weaker condition E[eγ(τ)V0(τ)] < ∞ (see [9]),
we obtain that

P(V (τ) > x) = P(eV0(τ)eV1(τ) > ex) ∼ E[eγ(τ)V0(τ)]P(V1(τ) > x), x →∞. (2.8)

Substitution of (2.6) in (2.8) implies (2.4). Part (ii) of the theorem follows from (2.7) and
the finiteness of E[eγ(τ)V0(τ)]. 2

The above theorem provides an explicit expression for the tail behavior of the sojourn
time. However, to verify the conditions of the approximation for the system with general
service time appears to be a challenging task. In the following proposition, we prove the
Cramér condition for the case when the traffic intensity is sufficiently large.

Proposition 2.1 For any value of τ there exists a ρ(τ) < 1 such that for all ρ > ρ(τ),
there exists a solution γ(τ) of Equation (2.3) with h(τ) < ∞.

Proof. Due to convexity of the moment generating function (MGF), it suffices to show
that for any fixed value of τ there exists a sufficiently large ρ < 1 such that there exists
an s̄ such that 1

ρ < E[es̄Ci(τ)] < ∞. Observe that Ci(τ) is not greater than the busy
period Pτ in a system with services defined as min(B, τ) given that the first customer in
the busy period has service request of length τ. Therefore, for the MGF’s, the inequality
holds: E[esCi(τ)] ≤ E[esPτ ]. Due to Theorem 7.1 in [1] it follows that Pτ has a decay
rate ŝ(τ), defined as a solution of the equation λ(d/ds)(E[es min(B,τ)]) = 1, and since
P(Pτ > x) ∼ const · x−3/2e−ŝ(τ)x, we deduce E[eŝ(τ)Pτ ] < ∞. Hence, E[eŝ(τ)Ci(τ)] < ∞.
Obviously, the decay rate is dependent on the value of ρ, or, having the service time fixed,
on the arrival rate λ, ŝ(τ, λ).
To bound the MGF of Ci(τ) from below, notice that for any τ, Ci(τ) ≥ min(Br, τ), where
Br is the residual service time. Hence, E[eŝ(τ,λ)Ci(τ)] ≥ E[eŝ(τ,λ)min(Br,τ)]. If P(B > τ) > 0,
then E[min(B, τ))] < EB and the modified queue is still stable. Hence ŝ(τ, 1

EB ) > 0, and

lim
λ→1/EB

E[eŝ(τ,λ)Ci(τ)] ≥ lim
λ→1/EB

E[eŝ(τ,λ) min(Br,τ)]

= E[eŝ(τ,1/EB)min(Br,τ)] > 1.

Thus, choosing ρ > 1

E[eŝ(τ, 1
EB

) min(Br,τ)]
, we can find the solution for Equation (2.3). 2

The straightforward consequence of this proposition is the following.

Theorem 2.2 For any value of τ there exists a ρ(τ) such that for all ρ > ρ(τ) we have

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x →∞, (2.9)

where γ(τ) is the solution of Equation (2.3) and the constant α(τ) is given by (2.5).

Using a similar approach, we can prove exponential asymptotics for the sojourn time of a
customer with a very small service request.
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Theorem 2.3 For sufficiently small values of τ,

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x →∞, (2.10)

where γ(τ) is a solution of Equation (2.3) and the constant α(τ) is given by (2.5).

Proof. The elements Ci(τ) can be bounded from above by the delay element CD(τ) in the
M/D/1 system with service requests of size τ. The results in [10] on the decay rate in the
M/D/1 queue imply that there exists an ŝ(τ) > 0 such that Eeŝ(τ)CD(τ) = 1/ρD = 1/(λτ).
Further, the same argument as in the proof of Proposition 2.1 is applicable. However in this
case λ, EB and ρ are fixed and parameter τ is varying: E[eŝ(τ)Ci(τ)] > E[eŝ(τ)min(Br,τ)] >
eŝ(τ)τP(Br > τ). The equation for the decay rate ŝ(τ) (see Formula (3.2) in [10]) is

λτ(λ− s) + s− se(λ−s)τ

(λ− s)(λ− se(λ−s)τ )
=

1
λ

.

Taking s = cτ and letting τ ↓ 0 we see that lim infτ↓0 ŝ(τ)τ ≥ c for any c, and consequently,
limτ↓0 ŝ(τ)τ = ∞. Hence, the decay rate ŝ(τ) is increasing faster than linear in 1/τ when
τ becomes small. Thus, we can conclude that for any ρ ∈ (0, 1) there exists a τ0 such that
E[eŝ(τ)Ci(τ)] > 1/ρ holds for all τ < τ0. 2

In the following sections, we focus on the behavior of the sojourn time in the M/M(τ)/1
queue.

3 The delay elements for exponential service times

The goal of this section is to derive the LST of the delay elements in the M/M(τ)/1 queue
using the approach presented in Yashkov [22], in which the general expression for the LST
of the sojourn time of a τ -request in the M/G/1 queue is derived. The LST of the sojourn
time itself is a question of less importance for our tail behavior investigation; it has been
derived in Coffman et al. [7].
Define ϕ(s, τ) = E[exp(−sCi(τ))] and δ(s, τ) = E[exp(−sV0(τ))] the LST’s of the random
variables Ci(τ) and V0(τ), respectively.

Theorem 3.1 The delay elements of the sojourn time in the M/M/1 PS queue have LST’s
given by the expressions:

δ(s, τ) =
2g(s)e−(λ+s−µ) τ

2

(µ− λ + s) (e1/2τg(s) − e−1/2τg(s)) + g(s)(e1/2τg(s) + e−1/2 τg(s))
(3.1)

and

ϕ(s, τ) =
(µ− λ− s)(e1/2τg(s) − e−1/2τg(s)) + g(s)(e1/2τg(s) + e−1/2 τg(s))
(µ− λ + s)(e1/2τg(s) − e−1/2τg(s)) + g(s)(e1/2τg(s) + e−1/2 τg(s))

, (3.2)

where g(s) =
√

(λ + µ + s)2 − 4λµ.

Proof. In order to derive the LST’s of the delay elements we follow Yashkov [22]. Under
the condition that the number of customers in the system upon arrival of the tagged
customer is n and the remaining service of the ith progenitor at the epoch t = 0 is xi, the
sojourn time V can be represented as
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V (τ) = V0(τ) +
n∑

i=1

Ci(xi, τ). (3.3)

Since the random variables V0(τ) and Ci(xi, τ) are independent, we can write

E[e−sV (τ)|n, x1, ..., xn] = δ(s, τ)
n∏

i=1

ϕ(s, xi, τ). (3.4)

Unconditioning, we obtain that the LST of the sojourn time is

v(s, τ) = (1− ρ)δ(s, τ)
[
1− ρ

∫ ∞

x=0
ϕ(s, x, τ)

(1−B(x))
EB

dx

]−1

= (1− ρ)
δ(s, τ)

1− ρϕ(s, τ)
, (3.5)

where ϕ(s, τ) is the LST of the delay element Ci(τ) being the amount of service received
by the ith progenitor and its direct descendants for the time interval during which the
tagged customer is served until completion.
We now proceed to derive the expressions for δ(s, τ) and ϕ(s, τ). Due to Formulas (3.9)
and (3.14) in [22] we have

ϕ(s, x, τ) =
{

δ(s, τ)/δ(s, τ − x), x < τ,
δ(s, τ), x ≥ τ.

(3.6)

Using Formula (3.16) of [22] we obtain that

δ(s, τ) = e−(s+λ)τψ(s, τ)−1, (3.7)

where the LST ψ̃(q, s) of the function ψ(s, τ) given by

ψ̃(q, s) =
∫

e−qτψ(s, τ)dτ, (3.8)

is a solution of the following equation (see Formulas (3.18)-(3.19) in [22])

qψ̃(q, s)− 1 + λψ̃(q, s)β(q + s + λ) +
λ(1− β(q + s + λ))

q + s + λ
= 0. (3.9)

Substituting the LST of the service time β(s) = µ
µ+s we obtain

ψ̃(q, s) =
q + s + µ

q2 + (µ + λ + s)q + λµ
. (3.10)

To derive an expression for ψ(s, τ) we must invert the LST ψ̃(q, s) with respect to q. This
can be easily done using partial-fraction decomposition of the latter expression. That will
lead us to the LST of a sum of two exponential functions. As a result we get

ψ(s, τ) =
Ae−Bτ + Ce−Dτ

g(s)
, (3.11)

where A = (µ + s − λ + g(s))/2, B = (µ + s + λ − g(s))/2, C = (−µ − s + λ + g(s))/2,
D = (µ + s + λ + g(s))/2, and g(s) =

√
(µ + λ + s)2 − 4λµ.
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Knowing ψ(s, τ) we can determine the LSTs δ(s, τ) and ϕ(s, x, τ) :

δ(s, τ) = e−(s+λ)τ g(s)
Ae−Bτ + Ce−Dτ

, (3.12)

ϕ(s, x, τ) =

{
e−(s+λ)x Ae−B(τ−x)+Ce−D(τ−x)

Ae−Bτ+Ce−Dτ , x < τ,

e−(s+λ)τ g(s)
Ae−Bτ+Ce−Dτ , x ≥ τ.

(3.13)

Expression (3.1) for the LST δ(s, τ) follows in a straightforward manner. In order to de-
rive the LST ϕ(s, τ) of the delay element Ci(τ), we integrate with respect to the residual
service time x. After some simplifications we obtain Formula (3.2). 2

In order to investigate the sojourn time tail behavior we will need the MGF’s of the delay
elements rather than the LST’s. The results of the previous section yield that the MGF
of the delay element E[esCi(τ)] is

E[esCi(τ)] =
(µ− λ + s)(e

1
2
τf(s) − e−

1
2
τf(s)) + f(s)(e

1
2
τf(s) + e−

1
2

τ f (s))

(µ− λ− s)(e
1
2
τf(s) − e−

1
2
τf(s)) + f(s)(e

1
2
τf(s) + e−

1
2

τf(s))
, (3.14)

where f(s) = g(−s) (Theorem 3.1),

f(s) =
√

(µ + λ− s)2 − 4λµ.

Let us study the function f(s) in more detail.
The expression under the square root is a quadratic function with zeros at sl = λ + µ −
2
√

λµ ≡ µ(1 − √ρ)2 and sr = λ + µ + 2
√

λµ ≡ µ(1 +
√

ρ)2. The function is negative on
the interval

s ∈ (λ + µ− 2
√

λµ, λ + µ + 2
√

λµ)

and positive otherwise.
Taking into account the fact that the function f(s) is purely imaginary inside the interval
[sl, sr], we can rewrite the MGF in two forms depending on the sign of the radicand.

Corollary 3.1

E[esCi(τ)] =
(µ− λ + s) sin[12τ f2(s)] + f2(s) cos[12τ f2(s)]
(µ− λ− s) sin[12τ f2(s)] + f2(s) cos[12τ f2(s)]

if s ∈ [sl, sr], (3.15)

E[esCi(τ)] =
(µ− λ + s) sinh[12τ f1(s)] + f1(s) cosh[12τ f1(s)]
(µ− λ− s) sinh[12τ f1(s)] + f1(s) cosh[12τ f1(s)]

otherwise, (3.16)

where f1(s) =
√

(µ + λ− s)2 − 4λµ and f2(s) =
√
−(µ + λ− s)2 + 4 λµ.

4 Tail behavior in the M/M(τ)/1 queue

In this section we present our main result.
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Theorem 4.1 Define τ0 = 1√
λµ

(
1−√ρ
1+
√

ρ

)
.

(i) For all τ 6= τ0,

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x →∞, (4.1)

where γ(τ) > 0 is the solution of Equation (2.3) and

α(τ) =
2(1− ρ)

γ(τ)
[(λ + µ− γ(τ))2 − 4λµ]e−(−γ(τ)+λ−µ) τ

2

K
, (4.2)

with

K = (1+ρ)
[
f(γ(τ))(ef(γ(τ)) τ

2 − e−f(γ(τ)) τ
2 ) + γ(τ)

τ

2
(λ + µ− γ(τ))(ef(γ(τ)) τ

2 + e−f(γ(τ)) τ
2 )

]

−(1−ρ)(λ+µ−γ(τ))
[
(ef(γ(τ)) τ

2 + e−f(γ(τ)) τ
2 )(1 +

(µ− λ)τ
2

) + (ef(γ(τ)) τ
2 − e−f(γ(τ)) τ

2 )f(γ(τ))
τ

2

]

and f(s) =
√

(µ + λ− s)2 − 4 λµ.

(ii) If τ = τ0, then γ(τ) = (
√

µ +
√

λ)2 solves Equation (2.3) and

lim
x→∞P(V (τ) > x)eγ(τ)x = 0.

If the conditions stated in Theorem 2.1 hold in the case of exponential service times, the
statement of the above theorem follows almost immediately. We will now show that the
Cramér condition indeed holds, i.e. that there exists a positive solution of the equation
E[esCi(τ)] = 1

ρ .
Let us first determine some useful thresholds that will play an essential role in our proof.

Proposition 4.1 If τ < τ0 = 1√
λµ

(1−√ρ
1+
√

ρ), then the solution γ(τ) of Equation (2.3), if it

exists, is larger than sr = (
√

µ+
√

λ)2, and if τ > τ0, a solution must be inside the interval
[sl, sr] = [(

√
µ−

√
λ)2, (

√
µ +

√
λ)2].

Proof. We claim that the solution γ(τ) of Equation (2.3), if it exists, is always larger than
the threshold sl = λ+µ− 2

√
λµ. Let γ0 be the leftmost pole of the MGF E[esCi(τ)]. Since

the MGF is increasing in s on [0, γ0] we only need to show that

E[esCi(τ)]|s=sl
<

1
ρ
. (4.3)

The value of the MGF at sl is

E[esCi(τ)]|s=sl
=

1 + τµ− τ
√

λµ

1− τλ + τ
√

λµ
. (4.4)

Thus, the inequality (4.3) simplifies to λ + τλ(µ−√λµ) < µ + τµ(
√

λµ− λ). Due to the
stability assumption it is sufficient to show that λ(µ−√λµ) < µ(

√
λ µ− λ). Notice that

this is equivalent to λ + µ− 2
√

λµ > 0 and, hence, the claim is true.
Let us now check the behavior of the MGF at the right boundary sr = λ + µ + 2

√
λµ. We

compare the value of the MGF with 1/ρ :

E[esCi(τ)]|s=sr =
1 + τµ + τ

√
λµ

1− τλ− τ
√

λµ
=

1
ρ
.
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Figure 1: Functions FL and FR under different conditions on τ , λ = 1.2, µ = 2.

This yields that the MGF at s = sr is equal to 1/ρ if

τ0 =
µ− λ√

λµ(λ + µ + 2
√

λµ)
=

1√
λµ

(
√

µ−
√

λ)(
√

µ +
√

λ)

(
√

µ +
√

λ)2
=

1√
λµ

(
1−√ρ

1 +
√

ρ

)
. (4.5)

The statement of the proposition follows from the monotonicity of the MGF with respect
to both s and τ. 2

In the next proposition we prove the existence of the decay rate γ(τ).

Proposition 4.2 For any τ there exists a solution of Equation (2.3).

Proof. Let us first assume that τ > τ0. Hence, a solution of Equation (2.3) can only be
inside the interval [sl, sr]. On this interval Equation (2.3) takes the following form

(µ− λ + s) sin[12f(s)τ ] + f(s) cos[12f(s)τ ]
(µ− λ− s) sin[12f(s)τ ] + f(s) cos[12f(s)τ ]

=
1
ρ
, (4.6)

where f(s) = f2(s) =
√
−(µ + λ− s)2 + 4 λµ.

After a simple computation we obtain that this equation is equivalent to

tan
(τ

2
f(s)

)
=

f(s)
λ− µ + s1+ρ

1−ρ

. (4.7)

Let us consider the left-hand side (denoted by FL) and the right-hand side (denoted by
FR) of the latter equation in more detail. Depending on the value of τ, the behavior
of FL changes qualitatively. We will determine the intervals for τ on which FL behaves
differently and prove the Cramér condition on each interval.
The function FR is independent of τ. As a function of s, FR has a pole at s∗ = (µ−λ)1−ρ

1+ρ .
On the interval [sl, s

∗], FR is decreasing from 0 to −∞, and on [s∗, sr] it is decreasing from
+∞ to 0.
Let us now study the behavior of FL as a function of s and τ. The tangent has infinite
jumps when its argument is equal to π

2 + πk, k ∈ N. We are only interested in the first
jump, k = 0. Note that, due to symmetry of f(s) around s0 = λ+µ, FL is also symmetric
as a function of s on the interval [sl, sr] with respect to the center of the interval, s0 = λ+µ.
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The first jump of the FL occurs when
τ

2
f(s′) =

π

2
,

that is when

s′ = λ + µ−
√

4λµ− π2

τ2
.

We will consider two cases separately: (1) - when FL has an infinite jump inside the
interval [sl, sr], (2) - when it does not have such a jump. We derive the conditions and
values of τ these situations can occur.
(1-a) First suppose that FL has an infinite jump before the infinite jump of FR, that is
s′ < s∗. That is equivalent to

s′ = λ + µ−
√

4λµ− π2

τ2
< (µ− λ)

1− ρ

1 + ρ
= s∗,

and hence,

τ >
π

2
√

λµ

µ + λ

µ− λ
:= τ1.

Thus, for any τ > τ1 the function FL jumps before FR. Notice that FR is negative up
to s∗ and FL is positive up to s′ and negative after s′ increasing from −∞. Hence we
can conclude that under this condition on τ there is always a solution of the equation
FL = FR. That means that there is a solution γ(τ) of the Equation (2.3) and it is located
inside the interval [sl, s

′].
Consider now a different situation. Suppose that FL has no infinite jumps inside the
interval [sl, sr]. This is equivalent to the statement

τ

2
f(s) <

π

2
,

for all s ∈ [sl, sr], i.e.

τ < min
s∈[sl,sr]

π

f(s)
=

π

2
√

λµ
:= τ2.

(1-b) Consequently, for any τ ∈ [τ2, τ1] (see Figure 1 (b)) there is a jump of FL in the
interval [s∗, λ + µ) (before λ + µ since FL is symmetric). Due to the properties of both
functions for these τ there is always a point γ(τ) at which FL and FR intersect, γ(τ) ∈
[s∗, λ + µ).
(2) Thus, for any τ ∈ [τ0, τ2] the function FL has no jumps in [sl, sr]. Comparing the values
of FL and FR at the center of the interval there are two cases possible in this situation
(see Figure 2 (a,b)): (a) FR|s=λ+µ < FL|s=λ+µ and (b) FR|s=λ+µ > FL|s=λ+µ.
The values of the functions at this point are:

FL|s=λ+µ = tan(τ
√

λµ),

FR|s=λ+µ =
µ− λ

2
√

λµ
.

(2-a) Consider the first case. Let us derive conditions under which this event may occur.
Due to the monotonicity of the tangent, the inequality

FL|s=λ+µ = tan(τ
√

λµ) >
µ− λ

2
√

λµ
= FR|s=λ+µ
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Figure 2: Functions FL and FR under different conditions on τ , λ = 1.2, µ = 2.

reduces to

τ >
1√
λµ

arctan
(

µ− λ

2
√

λµ

)
:= τ3.

Hence, for all τ ∈ [τ3, τ2] the value of the FR at the center point is lower than the value
of FL. Observe that FR is decreasing on [s∗, sr] and the FL is increasing on [sl, λ + µ].
Therefore, these two functions must intersect at the point γ(τ) on the interval [s∗, λ + µ].
(2-b) Consider now the second case (Figure 2(b)): FL|s=λ+µ < FR|s=λ+µ. It is easy to
check that the derivatives F ′

L and FR
′ are equal to infinity when s = sr. For τ ∈ [τ0, τ3]

it is impossible for FL and FR to intersect before the point λ + µ. So we now consider
s ∈ [λ + µ, sr]. For such s and τ both FR and FL are decreasing as functions of s and

FR|s=sr = FL|s=sr = 0,

FR|s=λ+µ > FL|s=λ+µ.

These functions can only intersect if and only if in some neighborhood of the point sr the
decrease of FL is faster than the decrease of FR, that is if and only if FL

′ < FR
′.

The derivatives are given by

FL
′ =

τ(λ + µ− s)
2f(s) cos2( τ

2 f(s))
,

FR
′ =

4 (λ− µ) λ sµ

f (2 λµ− µ2 + sµ− λ2 + λ s)2
.

Thus, we have

FL
′ =

τ(λ + µ− s)
2f(s) cos2( τ

2 f(s))
<

4 (λ− µ) λ sµ

f(s) (2 λµ− µ2 + sµ− λ2 + λ s)2
= FR

′,

τ

cos2( τ
2 f(s))

>
8 (µ− λ)λ sµ

f(s)(s− λ− µ) (2 λµ− µ2 + sµ− λ2 + λ s)2
.

When s → sr, cos( τ
2 f(s)) converges to one from below. Hence, the right-hand side of

the latter inequality is larger or equal to τ , while in this case τ > τ0 = µ−λ√
λµ(λ+µ+2

√
λµ)

.

Notice that when s → sr the left-hand side of the inequality converges to τ0. Hence, the
inequality holds for all s close enough to sr.

12



6 8 10 12 14 16 18 20 22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 
F

L

F
R

τ=0.06,
τ<τ0

Figure 3: Functions FL and FR under conditions τ < τ0, λ = 1.2, µ = 2.

Thus, we have considered Equation (2.3) in four possible cases under the condition that
τ > τ0 and have shown that in all these cases there is a solution of Equation (2.3) and it
lies inside the interval [sl, sr].
(3) The only case left to consider is when τ < τ0. For such values of τ, Equation (2.3)
takes the form:

E[esCi(τ)] =
(µ− λ + s) sinh[12τf(s)] + f(s) cosh[12τf(s)]
(µ− λ− s) sinh[12τf(s)] + f(s) cosh[12τf(s)]

, (4.8)

or equivalently,

tanh
(τ

2
f (s)

)
=

f (s)
λ− µ + s1+ρ

1−ρ

, s ∈ [sr,∞), (4.9)

where now f(s) = f1(s) =
√

(λ + µ− s)2 − 4λµ.
A useful observation is that when s → ∞, the left-hand side GL converges to 1 and the
right-hand side GR converges to 1−ρ

1+ρ , which is less than one for all ρ > 0. The derivatives
of both functions are infinite at the point s = sr and both functions are strictly increasing
for s > sr (see Figure 3). To prove the inequality we will use the same technique as in the
previous case. We will show that there is a neighborhood of sr in which the derivatives
satisfy G′

L < G′
R, that is

τ

cosh2( τ
2 f(s))

<
8 (µ− λ) λ sµ

f(s)(s− λ− µ) (2 λ µ− µ2 + sµ− λ2 + λ s)2
.

Notice that for s → sr the function cosh( τ
2 f(s)) converges to one from above, and so the

left-hand side of the inequality is less or equal to τ , which is in this case less than τ0.
The inequality follows from the observation that the right-hand side converges to τ0 when
s → sr.
Thus, we have shown that for all τ > 0 there exists a solution of Equation (2.3). 2

Now we are ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. (i) Due to Propositions 4.1, 4.2 we know that the Cramér condition
is satisfied. The decay rate γ(τ) is a solution of the following equation:

(µ− λ + s)(e
1
2
τf(s) − e−

1
2
τf(s)) + f(s)(e

1
2
τf(s) + e−

1
2

τ f (s))

(µ− λ− s)(e
1
2
τf(s) − e−

1
2
τf(s)) + f(s)(e

1
2
τf(s) + e−

1
2

τf(s))
=

1
ρ
, (4.10)
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where f(s) =
√

(µ + λ− s)2 − 4λµ.
Since the MGF E[esCi(τ)] is differentiable in the point s = γ(τ), it follows that h(τ) < ∞.
The fact that the MGF E[esV0(τ)] has the same abscissa of convergence as E[esCi(τ)] (since
B has unbounded support), implies that E[eγ(τ)V0(τ)] is finite for any τ. Thus, all conditions
of Theorem 2.1 are satisfied and we can conclude that the asymptotic relationship (4.1)
holds. The asymptotic constant α(τ) is determined by Equation (2.5). We need to compute
the derivative of the MGF of Ci(τ) at γ(τ). For compactness let us denote the denominator
in Formula (3.14) by D and the numerator by N. The exponents e+ and e− denote ef(s)τ/2

and e−f(s)τ/2 respectively. Then

d

ds
E[esCi(τ)]

∣∣∣∣
s=γ(τ)

=
[
N ′

D
− N ·D′

D2

]∣∣∣∣
s=γ(τ)

=
[
N ′

D
− D′

ρ ·D
]∣∣∣∣

s=γ(τ)

=
ρN ′ −D′

ρD
|s=γ(τ),

where

N ′ = (µ− λ + s)(e+ + e−)
τ

2
f ′(s) + (e+ − e−) + f ′(s)

(
(e+ + e−) + f(s)(e+ − e−)

τ

2

)
,

D′ = (µ− λ− s)(e+ + e−)
τ

2
f ′(s)− (e+ − e−) + f ′(s)

(
(e+ + e−) + f(s)(e+ − e−)

τ

2

)

and f ′(s) = (λ + µ− s)/f(s). Hence,

d

ds
E[esCi(τ)]

∣∣∣∣
s=γ(τ)

=

=
1

ρDf(γ(τ))

[
(1 + ρ)

[
(f(γ(τ))(e+ − e−) + γ(τ)

τ

2
(λ + µ− γ(τ)))(e+ + e−)

]

−(1− ρ)(λ + µ− γ(τ))
[
(e+ + e−)(1 + (µ− λ)

τ

2
) + (e+ − e−)f(γ(τ))

τ

2

]]
.

Let us denote the last multiplier as K

d

ds
E[esCi(τ)]

∣∣∣∣
s=γ(τ)

=
1

ρDf(γ(τ))
K.

Since E[esV0(τ)] ≡ δ(−s, τ) = 2f(s)e−(−s+λ−µ)τ/2

D (Formula (3.1)) we obtain from Formula
(2.5):

α(τ) =
(1− ρ)
γ(τ)K

2f2(γ(τ))e−(−s+λ−µ)τ/2,

which gives formula (4.2).
(ii) When τ = τ0 the decay rate follows immediately, γ(τ0) = sr. However, in this case the
function h(τ0) = ρ d

dsE[esCi(τ0)] is infinite. Hence, due to [14],

lim
x→∞P(V1(τ0) > x)eγ(τ0)x = 0,

and consequently,

lim
x→∞P(V (τ0) > x)eγ(τ0)x = 0.

This completes the proof.
2
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5 The impact of the service discipline on the decay rate

In this section we investigate the behavior of the decay rate γ(τ) by solving Equation (2.3)
numerically. Furthermore we perform a comparison of the PS decay rate with the decay
rates in the M/M(τ) queue under different service disciplines: we consider the Shortest
Remaining Processing Time (SRPT) and the Foreground-Background (FB) disciplines.
The decay rate under the SRPT and FB disciplines has been studied in [18] and [15]
respectively. For the SRPT discipline, Nuyens and Zwart [18] have shown that the decay
rate of the conditional sojourn time VSRPT (τ) = [VSRPT |B = τ ] coincides with the decay
rate of the residual busy period γp

SRPT (τ) in the queue with service time Bτ
SRPT = B1(B <

τ). Mandjes and Nuyens [15] have derived similar result for the FB discipline. They proved
that if the generic service time has an exponential moment then the sojourn time VFB(τ)
has the same decay rate γp

FB(τ) as the residual busy period in the queue with service time
Bτ

FB = min(B, τ). It is known that the decay rate of the busy period can be determined
as

γp(τ) = −κ(θ0),

where κ(s) = λ(E[esBτ
] − 1) − s, and θ0 > 0 is a solution of the equation κ′(θ0) = 0 (or

equivalently λ(E[esBτ
])′s = 1).

0 1 2 3 4 5 6
0

5

10

15

(a)

PS
SRPT
FB
FIFO
BP

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(b)

PS
SRPT
FB
FIFO
BP

Figure 4: Decay rate as a function of τ in the M/M(τ)/1 queue with PS, SRPT and FB
service disciplines, µ = 2 : (a) λ = 0.2, (b) λ = 1.

Figure 4 presents the decay rate γ(τ) as a function of τ for the above mentioned disciplines.
The generic service time is exponential, µ = 2. Figure 4(a) shows the decay rates under
very low traffic load, ρ = 0.1, and Figure 4(b) is for ρ = 0.5. In the figures, the horizontal
lines shows the decay rate in the M/M/1 FIFO queue (dash-dotted line) and the decay
rate of the busy period (solid line). The decay of FIFO queue is equal to γFIFO = µ− λ
and the decay rate of the busy period is γp = (

√
µ−

√
λ)2.

Figure 5 shows the decay rates when the traffic intensity is reasonably high, (a) ρ = 0.9,
(b) ρ = 0.95. From the figure we clearly see that when the service request τ becomes
larger, the decay rates for all disciplines decrease and converge to the decay rate of the
busy period γp.
All graphs show that for moderate values of τ the decay rate of SRPT is the largest. For
larger requests the FIFO discipline provides the largest decay rate. Our simulations and
analytic results in [18] show that the majority of the customers (at least 85%) would prefer
SRPT over FIFO. Interestingly, PS does not appear to be the best discipline (from the
viewpoint of decay rates) for jobs of any size. If a customer has a large request, FIFO
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Figure 5: Decay rate as a function of τ in the M/M(τ)/1 queue with PS, SRPT and FB
service disciplines, µ = 2 : (a) λ = 1.8, (b) λ = 1.9.

should be preferred, and if the request is small SRPT (and FB) provide shorter sojourn
times, see Figures 4(b) and 5(a,b). Moreover, we conclude that the higher the traffic
intensity, the less attractive is PS compared to the other disciplines.
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Figure 6: Decay rate τ∗ as a function of ρ in the M/M(τ)/1 queue: (a) - intersection with
FIFO, (b) - intersection with PS decay rate

However, in Figure 4(a) we see a somewhat different picture. In this case the traffic
intensity is very low. Then for a certain range of requests, not too long and not too short,
the decay rate for PS is the largest. Since there are not many customers in the system,
the sojourn time is not affected by sharing capacity and there is no need to wait for other
customers as in SRPT.
Let us introduce the variable τ∗PS as the value of τ at which the PS decay rate γ(τ) is equal
to the FIFO decay rate, i.e. the value at which γ(τ) crosses level µ − λ. Define similarly
variable τ∗SRPT and τ∗SRPT . Figure 6(a) shows the behavior of τ∗PS and τ∗SRPT as a function
of the traffic load ρ. As we can see, for traffic load ρ < 0.3 the PS decay rate reaches the
value µ − λ later than the SRPT decay rate. This means that for such ρ, there exists a
positive ερ, such that in the interval [τ∗PS− ερ, τ

∗
PS ] the PS discipline has the largest decay

rate (compared to FIFO and SRPT). In other words, for such ρ, a fraction [e−τ∗PS (eερ−1)]
of customers would prefer the PS queue.
Comparing the PS decay rate to the FB one (see Figure 6(a)), the decay rate shows similar
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behavior. In this case the threshold load is ρ < 0.86.
Figure 6(b) shows τ∗PS , the value of τ, at which the decay rate of the SRPT and FB
disciplines is equal to the decay rate of PS. As we see, the higher the value of ρ, the
smaller the group of customers preferring PS service over the other two disciplines.
Let us now summarize the results. In the PS queue, as well as in SRPT and FB, the decay
rate decreases and converges to the decay rate of the busy period as τ →∞. Interestingly,
in most cases, except when the traffic load is quite low, the PS discipline is not a preferable
discipline for any request length τ in the sense of reducing long sojourn times. For larger
customers, FIFO has a higher decay rate than PS, and for smaller customers, SRPT
performs the best. However, when ρ is not high, there is a certain interval for the length
of requests for which PS has the largest decay rate. It would be an ultimate goal to design
a more advanced scheduling discipline which give good performance for both small and
large service times (here we consider it only from the decay rate point of view). We hope
that these results can be potentially useful.

6 Accuracy of the asymptotics

Finally, we will study the accuracy of the exponential approximation (4.1) of the sojourn
time in the M/M(τ)/1 queue:

P(V (τ) > x) ≈ α(τ)e−γ(τ)x.

The exponential asymptote is compared to exact values of P(V (τ) > x) computed by
numerical Laplace-Stieltjes transform inversion.
The inversion of the Laplace transform was considered to be numerically challenging for a
long time. However, nowadays there is a number of reliable and effective inversion methods
available. We will use the inversion algorithm of Abate and Whitt [2]. In this method the
probability distribution function is presented as an infinite sum of complex-valued terms.
For the summation of this infinite series the classical Euler summation method is applied.
This method is known to provide high accuracy.

τ = 0.8 τ = 2
x LST inversion appr.(4.1) x LST inversion appr.(4.1)
5 5.49E-01 5.77E-01 10 6.34E-01 7.25E-01
10 2.82E-01 2.96E-01 100 4.72E-03 5.41E-03
20 7.41E-02 7.79E-02 150 3.10E-04 3.56E-04
40 5.14E-03 5.39E-03 200 2.04E-05 2.34E-05
80 2.47E-05 2.59E-05 250 1.33E-06 1.54E-06
100 1.70E-06 1.79E-06 300 9.43E-08 1.01E-07
120 1.24E-07 1.24E-07 310 5.78E-08 5.89E-08

Table 1: Comparison of the exponential asymptote to results of numerical inversion.

Table 1 shows the numerical results for various request lengths τ . For simplicity we
normalize the generic service time, µ = 1, and take arrival rate λ = 0.9. For τ = 0.8
and τ = 2 the first column shows the probability P(V (τ) > x) obtained by numerical
inversion. The second column shows the exponential asymptotics derived in Theorem 4.1.
The numbers show reasonably good accuracy of the asymptotic tail approximation. The
relative error is on average about 5-10%. Due to the asymptotic constant α(τ) in (4.2)
which can take any positive value, the approximation (4.1) of P(V (τ) > x) is not appro-
priate for smaller values of x.
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τ = 0.8 τ = 2
x LST inv appr.(4.1) HT x LST inv appr.(4.1) HT
10 5.42E-01 5.56E-01 5.35E-01 10 8.04E-01 8.59E-01 7.79E-01
20 2.84E-01 2.92E-01 2.87E-01 100 7.70E-02 8.20E-02 8.21E-02
50 4.10E-02 4.22E-02 4.39E-02 200 5.67E-03 6.03E-03 6.74E-03
100 1.63E-03 1.68E-03 1.93E-03 300 4.18E-04 4.44E-04 5.53E-04
150 6.45E-05 6.66E-05 8.48E-05 400 3.08E-05 3.26E-05 4.54E-05
200 2.54E-06 2.65E-06 3.73E-06 500 2.26E-06 2.40E-06 3.73E-06
240 1.96E-07 2.01E-07 3.06E-07 600 1.73E-07 1.76E-07 3.06E-07
250 1.05E-07 1.05E-07 1.64E-07 640 6.24E-08 6.21E-08 1.13E-07

Table 2: Comparison of the exponential asymptote to results of numerical inversion and
heavy-traffic asymptotics.

Table 2 shows results for heavy traffic, in particular ρ = 0.95. In addition to the results
from numerical inversion and asymptotics, the table presents results of the heavy-traffic
approximation. From the results in [23], [21], it is known that under heavy traffic the
sojourn time distribution in the M/G/1 PS queue behaves as

P(V (τ) > x) ≈ e−
(1−ρ)x

τ , x →∞.

These values are presented in the columns with headline HT.
The accuracy of the asymptotic approximation (4.1) is better for higher traffic load. It is
also much more accurate than the heavy-traffic approximation for larger x, although for
small x the heavy-traffic approximation performs better.

7 Conclusions

For the sojourn time in the M/G(τ)/1 queue, we established exponential asymptotics if
either the load is sufficiently high or the service request is sufficiently small. In these cases
the general formulas for the decay rate and the asymptotic constant are available, which
allows to determine the asymptote numerically.
For the sojourn time in the M/M(τ)/1 queue we obtained the exponential asymptote for
any traffic load and any request lengths. We derived an equation for the decay rate γ(τ),
which turns out to be of quite remarkable form, and a complicated but exact expression
for the constant α(τ). Furthermore, we studied the behavior of the decay rate as a function
of the request size. Comparison with other service disciplines shows an interesting result.
It suggests that in order to have a shorter sojourn times in most of the cases it is not
advisable to use the PS discipline. Most of the customers would prefer the SRPT service
discipline, while the rest would benefit from FIFO. Finally, we investigated the accuracy
of the asymptote by comparison with the tail probability obtained by LST inversion. The
result showed that the asymptote provides a reasonably good approximation, especially
under heavy traffic.
We finally suggest several possible extensions. A similar approach as in Sections 3 and 4
may be applied to a queue with phase-type distributed service times. In the phase-type
case, we expect to have a finite number of special values of τ, at which the exponential
asymptotic does not hold (recall that one such point τ0 exists for exponential service
times). It is quite probable that in a queue with general service time distribution, there
could be found a whole spectrum of such points. This may necessitate an alternative
approach to deal with the general queue.
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