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Abstract

The unpredictable nature of wind energy makes its in-
tegration to the electric grid highly challenging. How-
ever, these challenges can be addressed by incorporating
storage devices (batteries) in the system. We perform
an overall assessment of a single domestic power system
with a wind turbine supported by an energy storage de-
vice. The aim is to investigate the best operation mode of
the storage device such that the occurrence of large power
spills can be minimized. For estimating the small proba-
bility of large power spills, we use the splitting technique
for rare-event simulations. An appropriate Importance
Function for splitting is formulated such that it reduces
the work-load of the probability estimator as compared
to the conventional Crude Monte Carlo probability esti-
mator. Simulation results show that the ramp constraints
imposed on the charging/discharging rate of the storage
device plays a pivotal role in mitigating large power spills.
It is observed that by employing a new charging strat-
egy for the storage device large power spills can be mini-
mized further. There exists a trade-off between reducing
the large power spills versus reducing the average power
spills.

1 Introduction

Integration of intermittent renewable sources of energy
like solar and wind power into the electric grid has in-
creased in recent times. The depletion of the exhaustible
resources of energy and the strive for a carbon free future
will enhance the usage of these renewable sources more.
The unpredictable nature of the renewable energy sources
lead to intermittent power generation. This makes the in-
tegration of renewable energy sources into the power grid
a highly challenging task.

The adverse consequences of the intermittent power
generation like load-shedding and power spills can be
mitigated if the power system is supported by an en-
ergy storage device. The energy storage device acts as
buffer energy source. It stores energy when there is over-
generation of power, and delivers the stored energy to the
system when there is under-generation of power.

Stand-alone systems with renewable generations like
solar photovoltaic (PV) and wind supported with battery
storage has been investigated in great detail with respect

to the PV-wind generation sizing, performance, battery
storage sizing, efficiency, optimization, system cost and
reliability indices in [1]-[11].

Xu et al. in [12] investigated the feasibility of replacing
diesel generation entirely with solar PV and wind turbines
supplemented with energy storage by characterizing the
load-shedding probabilities. Semaoui et al. in [13] recom-
mended a model to optimize the sizes of battery capacity
and PV generator for stand-alone PV system using two
optimization criteria, the loss of power supply probabil-
ity (LPSP) reliability criterion and energetic cost for eco-
nomic evaluation. Cabral et al. analyzed loss of power
supply (LPS) and LPSP for sizing the PV generators of
stand-alone PV systems in [14]. Billinton et al. in [15]
presented a simulation model for the reliability evalua-
tion (loss of load expectation and loss of energy expecta-
tion) of small stand-alone wind energy conversion systems
with respect to battery size, charging (discharging char-
acteristics), wind speed, wind turbine characteristics etc.
Casares et al. in [16] devised a mathematical methodol-
ogy to predict Loss of Load Probability (LLP) for sizing
stand-alone photovoltaic systems.

To improve the practical efficiency of renewable energy
generation and to minimize the need of drastic actions
(like using expensive fast ramping generators) to have
uninterrupted power supply, it is important to store the
excess power generated in the system. In this paper, we
investigate a stand-alone single domestic power system
with a local micro-generator wind turbine supplemented
with an energy storage device. For this system we aim to
answer the following question : what is the best way to
operate the storage device (battery) such that the proba-
bility of large power spills is minimal? While most studies
focus on the event where there is not enough supply of
power to meet consumer demand, a large power spill is
detrimental for the producer.

We use a simple energy balance method for the switch-
ing (charging/discharging) of the battery, i.e., when there
is excess power generation the battery is charged and
when there is deficit of power it is discharged. Such a
simple switching strategy of the storage device has been
considered in many previous studies on energy systems
with renewable generations supplemented with storage
devices, e.g. [9], [11]-[18].

To this end, we devise models for simulating the wind
speeds and power demand such that the invariant prob-
ability densities of the data generated by the models are
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comparable to the data from measurements. With these
models for power generation and demand, we analyze
how the ramp constraints, the imposed maximal charg-
ing/discharging rates on the storage device affects the
probability of large power spills. And finally, we define
a strategy for charging the storage device to reduce the
probability of large power spills. It is expected that the
new scheme for charging the storage device will increase
the average power spill in a given time interval of inter-
est. We study the trade-off between reducing the proba-
bility of large power spills and reducing the average power
spilled by the system.

The probability of occurrence of large power spill is
small. The Crude Monte Carlo (CMC) probability esti-
mator is robust but becomes computationally highly in-
tensive for small probabilities. To reduce the workload of
CMC we use the splitting technique for rare-event simula-
tions in our study [19]. We use a variant of the splitting
technique called the Fixed Number of Successes (FNS)
proposed by Amrein and Kunsch [20] for calculating the
probability of large power spills. Wander et al. used
FNS to estimate electrical grid reliability in [21]. It is of
great relevance to find an appropriate Importance Func-
tion (IF) for the splitting technique, as it plays the most
significant role in the efficiency of splitting [22]. We for-
mulate an appropriate IF for our hybrid stochastic power
system described above.

In section 2 we describe the set up of the system, the
storage model, problem description and the stochastic
models for power generation and demand. Section 3 pro-
vides details of the FNS splitting technique and the ap-
propriate importance function for the problem. Section 4
presents the simulation results showing how the probabil-
ity of large power spills vary with the battery parameters
and charging strategy. In this section we also compare the
CMC and FNS computation time. At the end Section 5
concludes the article.

2 System set up

In the single domestic power system with stochastic wind
power generation and demand, a battery is incorporated
as a storage device in order to reduce large power spills.
Let P (t) be the power mismatch between the wind power
generation and demand (load) defined as

P (t) := W (t)−D(t), (1)

where W (t) is the wind power generated and D(t) is the
power demand at time t. P (t) > 0 implies there is excess
of power in the system and can be used to charge the
energy storage device and P (t) < 0 denotes paucity of
power in the system and the storage device needs to be
discharged.

2.1 The storage model

Let us consider a battery as the energy storage device
in the power system. The state of the battery at time t
is given by B(t) and it has a maximum storage capacity
Bmax. For any storage device there will be bounds on
the rate at which it can be charged or discharged known
as ramp constraints [23]. The ramp constraints are de-
noted as γ and β such that γ < 0 and β > 0. Losses occur
during charging and discharging the battery which de-
pends on the efficiency parameter α of the battery, where
0 < α ≤ 1. The battery is modeled according to

dB

dt
= Ḃ(t) := αP (t), for t ∈ [0, T ] (2)

with the battery constraints, namely the ramp and capac-
ity constraints imposed on it

γ ≤ Ḃ(t) ≤ β where γ < 0 < β,

0 ≤ B(t) ≤ Bmax ∀ t ∈ [0, T ].

T is the time length of 24 hours. Thus, in principle,
the battery is charged when P (t) > 0 and discharged
if P (t) < 0 unless the battery constraints are met.

In our computational experiments, time is discretized
into N = T

∆t time steps, where ∆t is the time step of
integration. The battery state is updated according to
the Euler scheme

B(t+ 1) = min(Bmax, max(0, B(t) + ∆B(t))), (3)

where

∆B(t) := min(β, max(γ, αP (t)))∆t, (4)

for t = 0, . . . , N−1. B(0) is the initial state of the battery.
If the battery is fully charged, B(t) = Bmax, it will only
discharge if P (t) < 0. Otherwise if P (t) > 0 it remains at
Bmax and vice-versa for the empty state of the battery,
i.e., when B(t) = 0.

2.2 Power Spill

Let P̃ (t) be the amount of power getting absorbed or
delivered by the battery,

P̃ (t) =


P̂ (t) if 0 < B(t) < Bmax,

P̂ (t) if B(t) = Bmax and P (t) < 0,

P̂ (t) if B(t) = 0 and P (t) > 0,

0 otherwise,

(5)

where

P̂ (t) = min(β,max(γ, αP (t))). (6)

Let us define the residual power as
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F (t) := P (t)− P̃ (t). (7)

When F (t) > 0, power spill occurs: there is more power
production than demand and the battery cannot absorb
all the excess power because of the battery constraints,
i.e., either the battery is completely charged or it cannot
charge fast enough due to the ramp constraints. Note
that power spill can also occur when P (t) is large and
α < 1.

2.3 Problem description

We are interested in calculating the probability of large
power spills in the system over a time length T , i.e.,

P( sup
t∈[0,T ]

{F (t)} ≥ F ∗), (8)

where F ∗ > 0 is the large power spill threshold.
To make an overall assessment of the integrated system

we compare how this probability varies for various values
of Bmax, the ramp constraints and for different battery
charging schemes (see sections 4.1 and 4.2).

2.4 Modeling power mismatch P (t)

As discussed earlier we model the stochastic power mis-
match P (t) from (1) by modeling W (t) and D(t).

2.4.1 Wind power generation W (t)

Earlier studies have shown that the Rayleigh distribu-
tion (a special case of Weibull distribution with shape
parameter equal to 2) arises from the wind speeds if the
wind vector components u and v are taken to be individu-
ally independently Gaussian distributed with zero means
and equal standard deviations. These assumptions may
be suitable globally but certainly are not true in general
locally [24]. We generalize the assumptions by taking u
and v as independent (no cross-correlation) and Gaussian
with non-zero means (µu and µv respectively) and dif-
ferent standard deviations (σu and σv respectively). µu
and µv are the average wind velocities in the east-west
and the north-south direction respectively. σu and σv are
the standard deviations along the wind component direc-
tions. In [24], µv = 0 and σu = σv. To get realistic values
for the means and standard deviations of the wind ve-
locity components, we use hourly wind data from KNMI
[25]. The KNMI data consists of hourly measurements
throughout 2013 of wind velocity at a height of 10 m at
the Schiphol airport in the Netherlands. The Gaussian
processes for the wind velocities are modeled as two 1-d
Ornstein-Uhlenbeck processes,

dU(t) = ΘU (MU − U(t))dt+ ΣUdW (t), (9)

and

dV (t) = ΘV (MV − V (t))dt+ ΣV dW (t), (10)
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Figure 1: Comparing the approximated densities of
KNMI and simulated wind speeds.

where MU = µu and MV = µv; ΣU =
√

2ΘUσu and
ΣV =

√
2ΘV σv. The values of Θu and Θv are to be

determined later (see section 2.4.3). The simulated wind
speed is given by

Ws(t) =
√
U2(t) + V 2(t). (11)

From Fig. 1 we observe that the model we use to gen-
erate the wind speeds are in good agreement with the
KNMI measurement data.

The power produced by a wind turbine is a function of
wind speed and can be modeled as [26]

W (t) =


WRP

[Ws(t)−WCI

WRS−WCI

]
if WCI ≤Ws(t) ≤WRS ,

WRP if WRS < Ws(t) < WCO

0 otherwise.

(12)
Here, WRP is the rated wind power, WCI is the cut-in
wind speed at which the turbine starts to generate, WRS

is the rated wind speed at which the turbine produces its
rated power and WCO is the cut-out wind speed at which
the turbine shuts down for safety reasons. In our study
we consider a micro-generator domestic wind turbine with
WRP = 1100 W, WCI = 2 m/s, WRS = 10 m/s and WCO

= 18 m/s. The turbine cannot generate output below
a certain threshold of wind speed WCI . Above the cut-
out wind speed WCO it needs to be shut down to avoid
damage to the turbine.

From the density of wind power produced Fig. 2 we
observe that there exist an upper and a lower bound on
the power produced because of the physical restrictions on
the wind turbine. The peak at zero is due to the turbine
output being zero and the higher wind power peak is due
to the turbine output being WRP .

2.4.2 Power demand D(t)

The bar plot of Fig. 3 shows the density plot of the mea-
sured power consumption of a typical household for one
year [27]. We observe that there exist two peaks in the
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Figure 2: Density of the wind power produced for WCI=2
m/s, WCO=18 m/s, WRS=10 m/s and WRP= 1100 W.

Table 1: Polynomial constants for V (D) ≈
∑7
i aiD

7−i.

i ai

1 0.1977
2 -1.1643
3 1.9195
4 0.6014
5 -3.2804
6 0.5133
7 -5.3003

density plot, one is the night-time peak at the lower power
value, the other is the high valued peak at day-time. We
model the power demand by the following SDE which
mimics the day-time and night-time peaks,

dD(t) = −V
′(D(t))

c
dt+

1√
c
dW (t), (13)

where V (D(t)) is the so-called potential function for D(t)
and c is a constant to be determined later (see section
2.4.3). The relation between the invariant probability
density ψ(D) and the potential function V (D(t)) for (13)
is given by

ψ(D) = ψ0 exp(−V (D)), (14)

where ψ0 is a constant. The potential function V (D) was
obtained from the density distribution of the measured
load data by inverting (14)

V (D) = − logψ(D) + logψ0. (15)

In order to obtain an expression for the potential, a 6th

order polynomial was fitted on the values of V (D) calcu-
lated from (15). In order to avoid ill-conditioned values
for the polynomial constants, the demand data was re-
scaled by a factor of 100 and re-centered by 300 W, i.e.,
Dre-scaled = D−300

100 .
Fig. 3 shows the comparison of the density function

of the simulated data and the measured data. We can
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Figure 3: Comparison of the measured and the simulated
data for the yearly electricity consumption of a typical
household.
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Figure 4: Comparing the ACF of the simulated wind and
demand data with KNMI wind speed data.

see that our power demand model captures the daytime
and night-time peaks reasonably well. However, the de-
mand model does not capture values greater than 600 W.
This is because of the order of the polynomial chosen for
V (D(t)). In this study we neglect the periodic switching
between the day-time and night-time peaks in this model
and consider random switching between the peaks.

2.4.3 Auto-correlation function (ACF)

The choice of ΘU ,ΘV and c for (9), (10) and (13) is cru-
cially important so that all the simulated data decorre-
late at a comparable time with the KNMI wind data (see
Fig. 4). To achieve this, we take ΘU = ΘV = 0.025 and
c = 2.

2.4.4 Power mismatch

The power mismatch between the generation and demand
is given by

P (t) = W (t)−D(t). (16)

We observe four maxima in the density of power mismatch
in Fig. 5. These maxima occur when the power generated
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Figure 5: Density plot of power mismatch between power
generation and power demand.

G(t) is minimum or maximum and the day-time or night-
time peaks occur.

From the wind and demand models discussed in this
section we calculate the probability of large power spills
(8) when a battery is incorporated into the system.

3 Rare event simulation : Fixed
number of successes splitting
technique

In our model we are interested in estimating probabilities
of large power spills when a battery is incorporated in a
power system with stochastic power generation and de-
mand. It is expected that the probability of large power
spills will be small when a battery is incorporated in
the system. The Crude Monte Carlo (CMC) estimations
of these small probabilities will become computationally
very expensive.

3.1 A review of the splitting technique

We now give a review of the rare event simulation tech-
nique we follow [19]. Let (Ω,F ,P) be a probability space
and A ∈ F be the rare event of interest. If A is a rare
event, it implies γ = P(A) is small. The CMC estimator
of P(A) is given by

γ̃ :=
1

M

M∑
j=1

1{A occurs in sample j}, (17)

where M is the number of samples generated.
The squared relative error of the CMC estimator (17)

is given by

SRE(γ̃) :=
Var(γ̃)

γ2
=
γ(1− γ)/M

γ2
=

1− γ
γM

. (18)

For fixed M, the SRE diverges as γ → 0. Hence, CMC
becomes unreliable when γ is small. Otherwise to achieve

an acceptable SRE we need very large values of M . For
example, to estimate probabilities smaller than 10−4 one
needs M & 106 CMC samples for achieving SRE ≈ 0.01.

To reduce the computational workload for estimating γ̃
we use a rare event simulation technique called splitting
[28]. More precisely, we use the Fixed Number of Suc-
cesses (FNS) version of splitting proposed by Amrein and
Kunsch [20]. In splitting, the sample paths of the stochas-
tic processes involved are split into multiple copies at var-
ious levels of the Importance Function (IF) till the rare
event set is reached. The IF measures the distance of the
rare-event set. The probability γ is decomposed into the
product of several conditional probabilities which occur
more easily and are hence less computationally intensive
to calculate.

Let X be a vector-valued Markov process with state
space ξ

X(t) := (X1(t), · · · , Xn(t)), for all t ≥ 0.

The major hurdle for splitting is to find an appropriate
IF φ

φ(X(t)) : ξ −→ R, (19)

which assigns importance values to X(t). Let Aφ,L,t be
the rare event set defined in terms of φ as

Aφ,L,t = {X(t) ∈ ξ : φ(X(t)) ≥ L}.

We are interested in the rare event

A = {∃t ≤ T : Aφ,L,t holds}. (20)

For the splitting technique we split the interval [0, L] into
m sub-intervals with boundaries 0 = l0 < l1 < · · · <
lm = L. We define Tk = inf{t > 0 : φ(X(t)) ≥ lk} as the
time of hitting the k-th level and Hk = {Tk < T} as the
event that the k-th level is hit during [0, T ]. Therefore,
γ = P(Hm) and P(H0) = 1. As Hm ⊂ Hm−1 ⊂ · · · ⊂
H1 ⊂ H0, we have

γ = P(A) =

m∏
k=1

P(Hk|Hk−1) =

m∏
k=1

pk,

where pk := P(Hk|Hk−1) = P(Hk)/P(Hk−1). Each pk
is estimated separately by generating independent sample
paths from the distribution of the entrance state Gk−1 :=
(Tk−1,X(Tk−1)) conditioned on Hk−1 at the threshold
level lk−1. The empirical distribution Ĝk is an estimate
of the entrance distribution Gk which is obtained from
Hk. Thus we can proceed recursively, replacing Ĝk−1 for
Gk−1 and estimate pk at each level k by the proportion
of level hits

p̂k = Rk/Nk−1 for all Rk > 0, (21)

with Rk are the number of sample paths where Hk occurs
and Nk is the total number of sample paths at level k. γ
is estimated by the product of p̂k’s :
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Figure 6: The phase space of B(t) and P (t), where
Bmax = 1500 Wh, F ∗ = 850 W and β = 200 W

m∏
k=1

p̂k =

m∏
k=1

Rk
Nk−1

. (22)

For the FNS splitting technique [20] we keep the num-
ber of hits per level Rk fixed. The process is indepen-
dently repeated by selecting an entrance state at random
and simulating the process from the selected state upto
min{Tk, T} until Rk hits are observed. In this method
path extinction or explosion is avoided but the compu-
tation effort is compromised. The unbiased estimator of
the rare-event probability is given by

γ̂ :=

m∏
k=1

p̃k =
Rk − 1

Nk−1 − 1
. (23)

The unbiased estimator for the variance Var(γ̂) is not
known for the FNS method. However, under the assump-
tion that the conditional hitting probability does not de-
pend on the entrance states of the previous stage,

P(Hk|Hk−1, (Tk−1,X(Tk−1))) = P(Hk|Hk−1)

(∀(Tk−1,X(Tk−1)),∀k),

the squared relative error of γ̂ can be bounded :

SRE(γ̂) ≤
m∏
k=1

( 1

Rk − 2
+ 1
)
− 1. (24)

3.2 Importance function for the stochas-
tic domestic power system

The IF plays a pivotal role in the efficiency of splitting
[22]. In this section we present an appropriate IF func-
tion for the stochastic power system with a battery in-
corporated. We define the importance function φ as the
distance of the system from the rare event sets in the
phase space of the state of battery B(t) and the power
mismatch P (t).

For formulating the IF, we define three `1 (or Manhat-
tan) distances from the rare event sets (see Fig. 6) as

R1(P (t), B(t)) = a1(F ∗ − P (t)) + a2(Bmax −B(t)),

R2(P (t), B(t)) = a2(Bmax −B(t)),

R3(P (t), B(t)) = a3(F ∗ + β − P (t)),

where, a1 = 1/F ∗, a2 = 1/Bmax and a3 = 1/(F ∗ + β).
We define the importance function as

φ(B(t), P (t)) =


−min(R1(P (t), B(t)), R3(P (t), B(t)))

if P (t) < F ∗,

−min(R2(P (t), B(t)), R3(P (t), B(t)))

if P (t) ≥ F ∗.
(25)

The negative sign makes φ an increasing function in its
arguments.

Fig. 6 depicts the level sets of the IF φ and the rare-
event sets in the phase space of the battery state B(t)
and the power mismatch P (t). Power spill occurs when
P (t) > 0 and the battery cannot absorb all the excess
power because of the battery constraints, i.e., either the
battery is completely charged or it cannot charge fast
enough due to the ramp constraints. Our problem as dis-
cussed in section 2.3 is to find the probability of large
power spills , i.e., when F (t) ≥ F ∗, where F ∗ > 0. Rare
event region 1 occurs when the battery is charged to its
maximum capacity Bmax and P (t) ≥ F ∗. Rare event
region 2 occurs when the battery cannot absorb all the
power available to it because of the ramp constraints im-
posed on it and the residual power left is spilled. This
happens when P (t) ≥ F ∗ + β.

For splitting, we construct the levels sets of the IF φ
such that it depicts the distance of the system state from
the rare event sets. From (8) and (25) we have

γ̂ := P( sup
t∈[0,T ]

{F (t)} ≥ F ∗) =

P( sup
t∈[0,T ]

{φ(B(t), P (t))} ≥ 0). (26)

4 Results and Discussion

In this section, we discuss how the probability of power
spills (beyond a threshold) varies with the battery size,
ramp constraint imposed on the battery and for different
charging scheme of the battery. We integrate (2), (9),
(10), and (13) using forward Euler integration scheme
with time step ∆t = 0.01 hours and T = 24 hours. For
all the calculations we take the initial state of the battery
B(0) = Bmax/2. For simplicity we use γ = −β and the
efficiency parameter α = 1, as it does not add any new
character to the structure of the model [23]. We calculate
the probability of power spills greater than 850 W, i.e.,
F ∗=850.

For performing FNS we first calculate the number of
levels m by the pilot run such that p̃k is nearly equal to
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Figure 7: Probability of large power spill versus ramp
constraint with F ∗=850 W and T= 24 hours for various
storage capacities.

the optimal value of popt ≈ 0.2032 [20]. For the pilot run
we use Rk = 50 for all k. For the final run we calculate
Rk from (24) such that the SRE(γ̂) ≤ 0.01. In order to
obtain an accurate estimate of the probabilities, FNS is
repeated n ≥ 30 times (suggested by [29]) to calculate the
mean of the estimator

ˆ̄γn :=
1

n

n∑
i=1

γ̂i. (27)

We are interested in the squared relative error of the mean
given by

SRE(ˆ̄γn) :=
1

n
SRE(γ̂i). (28)

To obtain the value of n we first repeat FNS 30 times,
and it is repeated further until the SRE(ˆ̄γn) ≤ 0.005.

4.1 Probability of large power spills for
different values of Bmax and β

We study the effect of the ramp constraint β on the prob-
ability of large power spills ˆ̄γn for various battery capaci-
ties Bmax. Fig. 7 shows how ˆ̄γn varies with β for various
values of Bmax. We observe that ˆ̄γn reduces with β till
an optimal value β∗ where it is minimal, then again in-
creases and becomes constant. This means that, either
a very fast or a very slow charging/discharging battery
accounts for more large power spills. A very fast charg-
ing/discharging battery will get to its maximum capacity
very soon; hence won’t be able to store any excess power
generated which will account for the large power spills.
On the other hand, a very tightly constrained battery
(small β) cannot absorb all the excess power in the sys-
tem and power is spilled.

In terms of the phase space (see Fig. 6), for small values
of β the system hits the rare event region 2 and for β > β∗

the system hits rare event region 1.
We observe that for very small values of β there is no

effect of the battery size Bmax on the ˆ̄γn. This is because
when the battery is very restricted it never gets charged
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Figure 8: Probability of large power spill versus ramp
constraint β with Bmax=1500 Wh, F ∗=850 W and T=
24 hours for various values of ε.

to its maximum capacity, hence Bmax does not affect the
probabilities. As β approaches β∗ we see the effects of
Bmax: it reduces ˆ̄γn, which is expected. The larger the
value of Bmax, the longer it will take the battery to reach
region 1. When β is very large the effect of Bmax becomes
negligible because the battery reaches it maximum capac-
ity very fast and any excess power in the system greater
than F ∗ lead to large power spills.

4.2 Probability of large power spills for
different battery charging strategies

In order to reduce the large power spills further, we em-
ploy a different charging strategy for the battery. A frac-
tion of the battery 1 − ε is reserved for absorbing only
those values of excess power which are greater than a
threshold, where 0 ≤ ε ≤ 1. In our case we take the
threshold same as the power spill threshold F ∗. The bat-
tery is charged till :

1. εBmax if P (t) < F ∗

2. Bmax if P (t) ≥ F ∗.

The amount of power absorbed/ delivered by the battery
is

P̃ (t) =


0 if B(t) = εBmax and 0 < P (t) < F ∗,

0 if B(t) = Bmax and P (t) > 0,

0 if B(t) = 0 and P (t) < 0,

P̂ (t) otherwise,

where P̂ (t) = min(β,max(γ, αP (t))). We compare the
probability of large power spills ˆ̄γn for different ε.

Fig. 8 shows ˆ̄γn versus β with Bmax = 1500 Wh, F ∗

= 850 W and T = 24 hours for various values of ε. We
observe that as the value of ε reduces, that is, as we re-
serve the battery more for larger fluctuations in P (t), ˆ̄γn
decreases. This happens because of the reserved space
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Figure 9: Average power spill power spill versus ramp
constraint β with Bmax = 1500 Wh, F ∗ = 850 W and T
= 24 hours for various values of ε.

accessible to the battery only for absorbing the large val-
ues of P (t). We observe similar response of the system to
β as Fig. 7. From Fig. 8 we observe that the minimum
value of ˆ̄γn drops by a factor of 1000 from ε = 1 to ε =
0.9. So, the more we reserve the battery for large power
mismatch, the lower will the probability of large power
spills ˆ̄γn become.

4.3 Average power spill

In the previous section 4.2 we observe that, if we reserve
the battery for larger fluctuations in the net power mis-
match, i.e., as ε decreases, the probability of large power
spills ˆ̄γn goes down drastically. But this increases the
probability of small power spills. In this section we ex-
amine the time average of power spilled by the system
over 24 hours versus β for different values of ε

〈[F (t)]+〉T =
1

T

∫ T

0

[F (t)]+dt, (29)

where [x]+ := max(0, x).
Fig. 9 shows the average power spill over a 24 hours of

time interval versus β with Bmax = 1500 Wh and F ∗

= 850 W for different ε. We observe that, the more
we reserve the battery for the large values of P (t), the
higher the average power spill becomes. This happens
because, when the battery state reaches εBmax it can fur-
ther charge to its maximum capacity only if P (t) ≥ F ∗

and net power generated P (t) < F ∗ is spilled. Hence, we
observe increased average power spill.

4.4 CMC versus FNS

We compare the computation time for CMC and FNS
probability estimator such that the squared relative er-
ror for both the methods are comparable, i.e, SRE(γ̃) ≈
SRE(γ̂i). Table 2 compares the computation time of
CMC and FNS for few values of the probability of large
power spill. As the value of the probability of large power

Table 2: Comparing the computation time for CMC and
FNS for Bmax= 1500 W, ε= 0.8, F ∗= 850 W and n=30.
γ̄n is the mean of the probability estimator for the esti-
mation methods used.

β CMC FNS

γ̄n 1.81×10−2 1.81×10−2

40
CPU time(s) 1×103 1.24 ×102

γ̄n 3.61×10−4 3.60×10−4

75
CPU time(s) 2.55×104 4.33 ×102

γ̄n 7.11×10−5 7.12×10−5

85
CPU time(s) 1.51 ×105 5.52 ×102

spills goes down the time gain of FNS over CMC be-
comes more profound. The simulations are performed
using MATLAB 2012b on an Intel Core 2.50 GHz.

5 Conclusion

In our assessment for finding the best design to oper-
ate the storage device in a single domestic power system
with wind generation for the simple switching strategy
of the battery, we observe that the ramp constraints im-
posed on the battery play a major role in mitigating the
large power spills. It is counter-intuitive to find that a
fast charging/discharging battery is not beneficial for the
system and results in large power spills more frequently.
Increasing the storage capacity Bmax reduces the proba-
bility of large power spill only when the battery operates
around the optimal values of the ramp constraint β.

We employed a different charging scheme to the battery
where a certain part of it is reserved only for absorbing
large values of excess power in the system. We found
that the probability of large power spills goes down sig-
nificantly with the reserve level (see Fig. 8). But this
charging scheme comes with a trade-off. The more we
reserve the battery for larger fluctuations in the excess
power generated, the higher the average power spill be-
comes, as depicted in Fig. 9. It should be noted that there
is a nominal increase in the average power spill with ε,
whereas the probability of the large power spills decreases
drastically with ε.

We formulated the importance function for the FNS
splitting technique used to calculate the probability of
large power spills for our system. Table 2 shows the time
efficiency of FNS over CMC. The time gain of FNS over
CMC becomes more evident as the probability of interest
becomes smaller.
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