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We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand

distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the

end of a selling season perishes. The goal of the seller is to determine a pricing strategy that maximizes the

expected revenue. Inference on the unknown parameters is made by maximum likelihood estimation.

We show that this problem satisfies an endogenous-learning property, which means that the unknown

parameters are learned on-the-fly if the chosen selling prices are sufficiently close to the optimal ones. We

show that a small modification to the certainty equivalent pricing strategy - which always chooses the optimal

price w.r.t. current parameter estimates - satisfies Regret(T ) =O(log2(T )), where Regret(T ) measures the

expected cumulative revenue loss w.r.t. a clairvoyant who knows the demand distribution. We complement

this upper bound by showing an instance for which the regret of any pricing policy satisfies Ω(logT ).

Key words : dynamic programming/optimal control: Markov; marketing: estimation/statistical techniques,

pricing;

1. Introduction

1.1. Introduction and Motivation

The emergence of the Internet as a sales channel has made it very easy for companies to experiment

with selling prices. Where in the past costs and efforts were needed to change prices, for example by

issuing a new catalogue or replacing price tags, and consequently prices were fixed for longer periods

of time, nowadays a webshop can adapt its prices with a proverbial flick of the switch, without

any additional costs or efforts. This flexibility in pricing is one of the main drivers for research on

dynamic pricing : the study of determining optimal selling prices under changing circumstances.
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A much-studied situation is a firm that sells limited amounts of products during finite selling

seasons, after which all unsold products perish. Examples of products with this property are flight

tickets, hotel rooms, car rental reservations, and concert tickets (Talluri and van Ryzin 2004). An

important insight from the literature on dynamic pricing is that the optimal selling price of such

products depends on the remaining inventory and the length of the remaining selling season, see

e.g. Gallego and van Ryzin (1994). The optimal decision is thus not to use a single price but a

collection of prices: one for each combination of remaining inventory and length of remaining selling

season. To determine these optimal prices it is essential to know the relation between the demand

and the selling price. In most literature from the nineties on dynamic pricing it is assumed that

this relation is known to the seller, but in practice exact information on consumer behavior is

generally not available. It is therefore not surprising that the review on dynamic pricing by Bitran

and Caldentey (2003) mentions dynamic pricing with demand learning as an important future

research direction. The presence of digital sales data enables a data-driven approach of dynamic

pricing, where the selling firm not only determines optimal prices, but also learns how changing

prices affects the demand. Ideally, this learning will eventually lead to optimal pricing decisions.

In this study we consider a pricing-and-learning problem motivated from the hotel industry

(Talluri and van Ryzin 2004, section 10.2, Weatherford and Kimes 2003). In that context, a “prod-

uct” corresponds to a combination of arrival-date and length-of-stay (possibly augmented by other

features or requirements). These products are perishable (unsold opportunities cannot be held in

stock), are sold during a finite time period, and the available capacity is finite. An important

feature of this context is that a firm typically sells many different products with similar demand

characteristics at the same time. This means that learning the demand characteristics of each

product separately may not be very efficient; instead, the firm would want to learn about consumer

behavior from all the sales data corresponding to products with similar demand characteristics.

This motivates the current study of dynamic pricing and learning for perishable products with

finite initial inventory, during multiple finite selling seasons.

1.2. Contributions

We consider a parametric demand model which includes linear, exponential, and logit demand;

these demand functions are frequently encountered in theory and practice (Talluri and van Ryzin

2004). The uncertainty in the demand is modeled by unknown parameters that can be estimated

from historical sales data using maximum likelihood estimation. We propose a pricing strategy

that is structurally very intuitive, and easy to understand by price managers: at each moment

where prices can be changed the price manager calculates a statistical estimate of the unknown

parameter; subsequently she determines the optimal price, assuming that the parameter estimate
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is correct, and she uses this price until the next decision moment. In other words, at each decision

moment the price manager acts as if she is certain about the parameter estimates. Only in the last

period of a selling season for which inventory is still positive, a small deviation on this price may

be prescribed by our pricing strategy.

This type of strategy for sequential decision problems under uncertainty is known under different

names in the literature: certainty equivalent control, myopic control, passive learning, and the

principle of estimation and control. There are problems for which certainty equivalent control is

not a good strategy, e.g. the multi-period control problem (Anderson and Taylor 1976, Lai and

Robbins 1982), and dynamic pricing with infinite inventory (Broder and Rusmevichientong 2012,

Keskin and Zeevi 2014, den Boer and Zwart 2014b). In these two examples, passive learning is

not sufficient to learn the parameters: the decision maker should actively account for the fact that

she is not only optimizing prices, but also tries to “optimize” the learning process. This implies

that sometimes decisions should be taken that seem suboptimal in the short term. In the dynamic

pricing problem with infinite inventory, this can be accomplished by the controlled variance policy

of den Boer and Zwart (2014b) or the MLE-cycle policy of Broder and Rusmevichientong (2012).

The infinite-inventory setting is also closely related to several problems from the online convex-

optimization, multi-armed bandit and stochastic approximation literature; see den Boer and Zwart

(2014b) for references and a brief discussion on similarities and differences with dynamic pricing.

In the situation that we study in this article, dynamic pricing with finite inventory and finite

selling seasons, certainty equivalent control does perform well: the parameter estimates converge

with probability one to the correct values, and the prices converge to the optimal prices. The

Regret(T ), which measures the expected amount of revenue loss in the first T selling seasons due

to not using the optimal prices, is O(log2(T )). This growth rate is considerably smaller than
√
T ,

which is the best achievable growth rate of the regret for the problem with infinite inventory (in

different settings, this is shown by Kleinberg and Leighton (2003), Besbes and Zeevi (2011), Broder

and Rusmevichientong (2012) and Keskin and Zeevi (2013)), and moreover, this bound can hardly

be improved. We show an instance for which any pricing strategy has Regret(T )≥K0 log(T ), for

some K0 > 0 independent of T . This means that the upper bound log2(T ) on the regret is close

to the best achievable growth rate. In Remark 4 we discuss the small gap between the lower and

upper bound.

Thus, the regret, which can be interpreted as the “cost for learning”, is structurally different in

these two models: in our finite-inventory setting Regret(T ) =O(log2(T )) is attainable, whereas in

the infinite-inventory setting Regret(T ) =Ω(
√
T ) for any policy.

This difference in qualitative behavior seems to be related to the presence of “uninformative

prices” (Broder and Rusmevichientong 2012) or “indeterminate equilibria” (Harrison et al. 2012):
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there are values of the parameter estimates such that the expected demand observed at the corre-

sponding optimal price (optimal w.r.t. these estimates) is precisely equal to what these parameter

estimates would predict; in other words, at these indeterminate equilibria, the observations seem to

confirm the correctness of the (possibly incorrect) parameter estimates. The impact of indetermi-

nate equilibra on achievable regret rates is, for general control problems, not yet fully understood.

That they play an important rôle is apparent, for example, from Broder and Rusmevichientong

(2012) who show that in the special case of “well-separable demand functions”, which rules out

indeterminate equilibria, the smallest achievable regret growth rate is log(T ) instead of
√
T ; more-

over, this is achieved by a certainty-equivalent control rule, whereas the policies shown to achieve

O(
√
T ) regret in the general case all require active price experimentation to ensure consistency.

In our setting with finite inventories and finite selling seasons, the optimal price - optimal w.r.t.

certain parameter estimates - is not a fixed number, but a collection of prices: one price for each pair

of remaining inventory and remaining length of the selling season. Because both these quantities

are constantly changing, a certainty equivalent policy induces dispersion in the selling prices. This

price dispersion causes the parameter estimates to converge to the true value, and as a result, a

(small modification of) certainty equivalent policy works well. The remarks following Theorem 1

further elaborate on the difference between the finite and infinite-inventory setting.

The main conceptual takeaway of our paper is that, in decision problems under uncertainty,

a certainty equivalent strategy works well if it induces sufficient dispersion in the controls. We

show this for a specific dynamic-pricing problem, but, as we argue in Section 5.3, the idea is also

applicable in other decision problems.

1.3. Literature

Our work complements two streams of literature on dynamic-pricing-and-learning. First, in the

infinite-capacity setting (Kleinberg and Leighton 2003, Broder and Rusmevichientong 2012, Keskin

and Zeevi 2014, den Boer and Zwart 2014b, den Boer 2014) it is known that active price exper-

imentation is necessary to achieve optimal regret; myopic policies have suboptimal performance

(den Boer and Zwart 2014b, Section 3.1). In our finite-capacity setting, changes in the marginal-

value-of-inventory causes endogenous price dispersion, which makes sure that learning the unknown

parameters “takes care of itself”, and which leads to a qualitatively much better performance than

what is possible in the infinite-capacity setting.

Second, in the finite-capacity setting where demand and inventory level grow to infinity (Besbes

and Zeevi 2009, Wang et al. 2014), active price experimentation is a key ingredient in all known

asymptotically optimal policies; the amount of price dispersion induced by a certainty equivalent

policy appears to be insufficient to ensure consistency and asymptotic optimailty. This asymptotic
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regime may have practical value if demand, initial inventory, and the length of the selling season

are relatively large. In the application that inspired the current study, pricing in the hotel industry,

this is not the case: the average demand, initial capacity and length of a selling season are typically

quite small, which makes this particular asymptotic regime not a suitable setting to study the

performance of pricing strategies. We therefore consider a different asymptotic regime that allows

for small initial inventories and short selling seasons, and we show that in this regime certainty

equivalent control performs well. For a comprehensive overview of the literature on dynamic pricing

and learning, we refer to den Boer (2013b).

From a methodological point of view, our work is related to the literature on adaptive control

in Markov decision problems (Hernández-Lerma 1989, Kumar 1985, chapter 12 of Kumar and

Varaiya 1986, Hernández-Lerma and Cavazos-Cadena 1990, Altman and Shwartz 1991, Burnetas

and Katehakis 1997, Gordienko and Minjárez-Sosa 1998, Chang et al. 2005) and to the literature

on partially observable Markov decision problems (Monahan 1982, Lovejoy 1991) that typically

learns unknown parameters in a Bayesian fashion. The topic of combined statistical learning and

optimal control is currently an important topic in operations research, and is studied e.g. in in-

ventory control (Kunnumkal and Topaloglu 2008, Huh and Rusmevichientong 2014), assortment

optimization (Sauré and Zeevi 2013), network revenue management (Besbes and Zeevi 2012), and

many more application areas.

1.4. Organization

The rest of this paper is organized as follows. Section 2 introduces the model primitives and states

convergence rates for the maximum likelihood estimator of β. The endogenous-learning property of

the system is described in Section 3.1. Our pricing strategy is introduced in Section 3.2, the upper

bound Regret(T ) = O(log2(T )) is shown in Section 3.3, and the log(T ) lower bound in Section

3.4. Numerical illustrations of the pricing strategy and its performance are provided in Section 4.

To avoid heavy notation, we assume in these sections that different selling seasons have the same

initial inventory and duration. Section 5.1 relaxes these assumptions and shows that O(log2(T ))

regret still can be achieved. We also discuss extensions to non-stationary demand (Section 5.2) and

applications of endogenous learning in other decision problems (Section 5.3). The e-companion to

this paper contains the mathematical proofs of the theorems in this paper, as well as a number of

auxiliary lemmas used in the proofs.

Notation If v is a vector then ||v|| denotes the Euclidean norm, and vT the transpose. If A is a

square matrix then λmin(A) denotes the smallest eigenvalue of A. For x∈R, ⌊x⌋ denotes the largest

integer which is smaller than or equal to x. With 1E we denote the indicator of an event E.
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2. Model Primitives

In this section we subsequently introduce the model, describe the characteristics of the demand

distribution, discuss the optimal pricing policy under full information, introduce the regret as

measure of pricing policies, and discuss convergence rates for the maximum likelihood estimator.

2.1. Model Formulation

We consider a monopolist seller of perishable products which are sold during consecutive selling

seasons. Each selling season consists of S ∈N discrete time periods: the i-th selling season starts at

time period 1+ (i− 1)S, and lasts until period iS, for all i∈N. We write SSt = 1+ ⌊(t− 1)/S⌋ to

denote the selling season corresponding to period t, and st = t− (SSt− 1)S to denote the relative

time in the selling period. At the start of each selling season the seller has C ∈N discrete units of

inventory at his disposal, which can only be sold during that particular selling season. At the end

of a selling season, all unsold inventory perishes.

In each time period t∈N the seller has to determine a selling price pt ∈ [pl, ph]. Here 0< pl < ph

denote the lowest and highest price admissible to the firm. After setting the price the seller observes

a realization of demand, which takes values in {0,1}, and collects revenue ptdt. We let ct, (t∈N),

denote the capacity or inventory level at the beginning of period t∈N, and dt the demand in period

t. If ct = 0 then dt = 0: no demand is observed if the firm is out-of-stock. (The selling price pt in

these periods does not affect the revenue, and may be chosen arbitrarily). The distribution of dt

in case ct > 0 is described in Section 2.2. The dynamics of (ct)t∈N are given by

ct =C if st = 1,
ct = ct−1 − dt−1 if st ̸= 1.

Notice that ct can not become smaller than zero, since dt−1 = 0 if ct−1 = 0.

The pricing decisions of the seller are allowed to depend on previous prices and observed demand

realizations, but not on future ones. More precisely, for each t ∈N the set of possible histories Ht

as

Ht = {(p1, . . . , pt, d1, . . . , dt)∈ [pl, ph]
t×{0,1}t},

with H0 = {∅}. A pricing strategy ψ = (ψt)t∈N is a collection of functions ψt :Ht−1 → [pl, ph], such

that p1 =ψ1(∅), and for each t≥ 2 the seller chooses the price pt =ψt(p1, . . . , pt−1, d1, . . . , dt−1).

The purpose of the seller is to find a pricing strategy ψ that maximizes the cumulative expected

revenue earned after T selling seasons,
∑TS

i=1Eψ[pidi]. Here we write Eψ to emphasize that this

expectation depends on the pricing strategy ψ.
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2.2. Demand Distribution

The demand in a single time period with positive inventory, against selling price p, is a realization

of the random variable D(p). We assume that D(p) is Bernoulli distributed with mean E[D(p)] =

h(β0 + β1p), for all p ∈ [pl, ph], some (β0, β1) ∈ R2, and some function h. The true value of β is

denoted by β(0), and is unknown to the seller. Conditionally on selling prices, the demand in any

two different time periods are independent. We assume that β(0) lies in the interior of a set B :=

[βl,0, βu,0]× [βl,1, βu,1]⊂R2, for some known lower and upper bounds βl,0, βu,0, βl,1, βu,1 on β0 and

β1, respectively, and with βu,1 < 0. Furthermore we assume that h(z) is three times continuously

differentiable in z, log-concave, h(z) ∈ (0,1) and ḣ(z)> 0, for all z ∈ {β0 + β1p | p∈ [pl, ph], β ∈B};

here ḣ denotes the derivative of h.

Demand functions that fit into our framework (with appropriate conditions on B and [pl, ph])

include h(z) = exp(z), h(z) = z, and h(z) = logit(z) = exp(z)/(1+ exp(z)).

2.3. Full-information Optimal Solution

If the value of β is known, the optimal prices can be determined by solving a Markov decision

problem (MDP). Since each selling season corresponds to the same MDP, the optimal pricing

strategy for multiple selling seasons is to repeatedly use the optimal policy for a single selling season.

The state space of this MDP is X = {(c, s) | c= 0, . . . ,C, s= 1, . . . , S}, where (c, s) means that there

are c units of remaining inventory at the beginning of the s-th period of the selling season, and the

action space is the interval [pl, ph]. If action p is used in state (c, s), s < S, then with probability

h(β0 + β1p) a state transition (c, s) → ((c − 1)+, s + 1) occurs and reward ph(β0 + β1p)1c>0 is

obtained; with probability 1−h(β0+β1p) a state transition (c, s)→ (c, s+1) occurs and zero reward

is obtained. The states (c,S) are terminal states; the reward using action p equals ph(β0+β1p)1c>0

with probability h(β0 +β1p), and zero with probability 1−h(β0 +β1p).

A (stationary deterministic) policy π is a matrix (π(c, s))0≤c≤C,1≤s≤S in the policy space Π =

[pl, ph]
(C+1)×S. Given a policy π ∈Π, let V π

β (c, s) be the expected revenue-to-go function starting

in state (c, s)∈X and using the actions of π. Then V π
β (c, s) satisfies the following recursion:

V π
β (c, s) = (1−h(β0 +β1π(c, s))) ·V π

β (c, s+1)

+h(β0 +β1π(c, s)) · (π(c, s)+V π
β (c− 1, s+1)), (1≤ c≤C), (1)

V π
β (0, s) = 0, (2)

for all 1≤ s≤ S, where we write V π
β (c,S+1)= 0 for all 0≤ c≤C.

By Proposition 4.4.3 of Puterman (1994), for each β ∈B there is a corresponding optimal policy

π∗
β ∈Π. This policy can be calculated using backward induction. Write Vβ(c, s) = V

π∗β
β (c, s) for the
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optimal revenue-to-go function. Then Vβ(c, s) and π∗
β(c, s), for 1 ≤ c ≤ C, 1 ≤ s ≤ S, satisfy the

following recursion:

Vβ(c, s) = max
p∈[pl,ph]

[
p−∆Vβ(c, s+1)

]
h(β0 +β1p)+Vβ(c, s+1),

π∗
β(c, s) = argmaxp∈[pl,ph]

[
p−∆Vβ(c, s+1)

]
h(β0 +β1p),

(3)

where we define ∆Vβ(c, s) = Vβ(c, s)− Vβ(c− 1, s), and ∆Vβ(0, s) = 0 for all 1≤ s≤ S. The price

π∗
β(0, s) can be chosen arbitrarily, since it has no effect on the reward. For c≥ 1, the prices π∗

β(c, s)

in (3) are uniquely defined; this follows from Lemma EC.1. The optimal reward of the MDP is

equal to Vβ(C,1), and the true optimal reward is equal to Vβ(0)(C,1).

We assume that pl and ph satisfy

pl <π
∗
βl
(C,S) and π∗

βu
(1,1)< ph, (4)

where we write βl = (βl,0, βl,1) and βu = (βu,0, βu,1). By Lemma 1, this condition ensures that the

optimal price decisions do not depend on the boundary prices pl and ph. Note that equation (4) is

not difficult to check in practice; it only involves solving the MDP for β = βl and β = βu.

Lemma 1. π∗
β(c, s)∈ (pl, ph), for all β ∈B, 1≤ c≤C, and 1≤ s≤ S.

Proof of Lemma 1. Let β ∈ B, 1 ≤ c ≤ C, 1 ≤ s ≤ S, and let p∗a,β be as in Lemma EC.1. By

application of Lemma EC.2(v), Lemma EC.2(iv), and Lemma EC.1(ii), it follows that

π∗
β(c, s)≤ π∗

β(1,1) = p∗∆Vβ(1,2),β = p∗Vβ(1,2),β ≤ p∗Vβu (1,2),βu
= π∗

βu
(1,1)< ph,

and

π∗
β(c, s)≥ π∗

β(C,S) = p∗0,β ≥ p∗0,βl = π∗
βl
(C,S)> pl.

�

2.4. Regret Measure

The quality of the pricing decisions of the seller are measured by the regret: the expected amount

of money lost due to not using optimal prices. The regret of pricing strategy ψ after the first T

selling seasons is defined as

Regret(ψ,T ) = T ·Vβ(0)(C,1)−
TS∑
i=1

E[pidi], (5)

where (pi)i∈N denote the prices generated by the pricing strategy ψ.

Maximizing the cumulative expected revenue is equivalent to minimizing the regret, but observe

that the regret cannot directly be used by the seller to find the optimal strategy, since it depends

on the unknown β(0).
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2.5. Parameter Estimation

We can estimate the unknown parameter β(0) with maximum-likelihood estimation. Define the

log-likelihood function

Lt(β) =
t∑
i=1

log
[
h(β0 +β1pi)

di(1−h(β0 +β1pi))
1−di

]
1ci>0, (6)

and the score function (the derivative of Lt(β) with respect to β)

lt(β) =
t∑
i=1

ḣ(β0 +β1pi)

h(β0 +β1pi)(1−h(β0 +β1pi))

(
1
pi

)
(di−h(β0 +β1pi))1ci>0. (7)

We define β̂t to be a solution β ∈B of lt(β) = 0; if multiple solutions exists, we choose the one that

maximizes Lt(β). If there is no solution of lt(β) = 0 in B, we define β̂t as the smallest maximizer

(in the lexicographic ordering) of Lt(β) on B; in this case β̂t necessarily lies on the boundary of

B. Note that β̂t only depends on sales data of periods with positive inventory.

Remark 1. Because we allow for a general class of functions h (so-called nonnatural or general

link functions, in the terminology of generalized linear models), the likelihood function Lt(β) is

not necessarily concave and the solution to lt(β) = 0 is not necessarily unique; cf. the discussion in

Section 4.1 of Fahrmeir and Kaufmann (1985). However, Proposition 1 in Section 2.6 guarantees

that, for all sufficiently large t, lt(β) = 0 has a solution in B, and provides a condition that ensures

convergence to β(0). This is the reason that we define β̂t as solution to lt(β) = 0, instead of directly

as maximizer of the log-likelihood function. If h is the logit function (the so-called canonical link

function in this context), then Lt(β) is concave and the solution to lt(β) = 0 is unique.

2.6. Convergence Rates of Parameter Estimates

Understanding the asymptotic behavior of the maximum likelihood estimate, in particular the

speed at which it converges to β(0), is important for studying the performance of pricing strategies.

We include a result about these convergence rates based on den Boer and Zwart (2014a); in Section

3.3, this result is used to prove bounds on the regret of a pricing strategy.

The speed at which the estimates converge to β(0) turns out to be closely related to a certain

measure of price dispersion: the more price dispersion, the faster the parameters converge. In

particular, if we define the matrix

Pt =
t∑
i=1

(
1 pi
pi p

2
i

)
1ci>0, (t∈N), (8)

then λmin(Pt), the smallest eigenvalue of Pt, turns out to be a suitable measure for the amount of

price dispersion in a sample.
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The following proposition shows how λmin(Pt) influences the convergence speed of the parameter

estimates. To state the result, we define for all ρ> 0 the last-time random variable

Tρ = sup
{
t∈N | there is no β ∈B with

∣∣∣∣β−β(0)
∣∣∣∣≤ ρ and lt(β) = 0

}
, (9)

Proposition 1. Suppose L is a non-random function on N such that λmin(Pt)≥L(t)> 0 a.s., for

all t≥ t0 and some non-random t0 ∈N, and such that inft≥t0 L(t)t
−α > 0, for some α> 1/2. Then

there exists a ρ1 > 0 such that for all 0 < ρ ≤ ρ1 we have Tρ <∞ a.s., E [Tρ] <∞, and for each

t > Tρ there is a β̂t ∈B with lt(β̂t) = 0, and

E
[
||β̂t−β(0)||21t>Tρ

]
=O (log(t)/L(t)) .

By application of Theorem 1, Theorem 2, and Remark 2 in den Boer and Zwart (2014a), with

xi = (1, pi)
T1ci>0 for all i∈N, the statement follows.

3. Main Result: a Case of Endogenous Learning

The model described in the previous section satisfies an endogenous-learning property: if the de-

cision maker does not deviate much from the optimal price policy, then the unknown parameters

of the system are learned very fast. This is caused by a natural amount of price dispersion that

appears when the optimal policy is used. This dispersion causes the estimates β̂t to converge very

quickly to the unknown parameters β(0), and as a result, the decision maker can use a simple

myopic pricing policy to achieve a very good performance. This is the main takeaway of this paper.

The endogenous-learning property is formally stated in Section 3.1. In Section 3.2 we formu-

late a pricing strategy, which (apart from a small correction) is equal to a myopic strategy. The

endogenous-learning property causes the regret of this pricing strategy to grow as Regret(T ) =

O(log2(T )); this is shown in Section 3.3. Remark 3 proposes an alternative myopic pricing strategy

with estimates based on completed selling seasons, and argues that the same O(log2(T )) regret

bound applies. These upper bounds are complemented by a lower bound in Section 3.4, where we

show an instance for which no pricing strategy can achieve sub-logarithmic regret.

3.1. Endogenous Learning

The main result of this section is that λmin(Pt) strictly increases if, during a selling season, prices

are used that are close to those prescribed by π∗
β, for any β ∈ B. This means that a continuous

use of prices close to π∗
β(0)

leads to a linear growth rate of λmin(Pt), which by Proposition 1 im-

plies that the parameter estimates converges very fast to the true value, in particular with rate

E
[
||β̂t−β(0)||21t>Tρ

]
=O (log(t)/t).
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Theorem 1. Let 1<C <S and k ∈N. For each β ∈B there exist an open neighborhood Uβ ⊂R2

containing β and a constant v0 > 0 independent of β, such that, if

ps+(k−1)S = π∗
β(s)(cs+(k−1)S, s)

for all s= 1, . . . , S and some sequence β(1), . . . , β(S)∈ Uβ ∩B, then there are 1≤ s, s′ ≤ S with

|ps+(k−1)S − ps′+(k−1)S| ≥ v0/2, c(s+(k− 1)S)c(s′ +(k− 1)S)> 0 (10)

and

λmin(PkS)−λmin(P(k−1)S)≥
1

8
v20(1+ p2h)

−1. (11)

The condition C < S in Theorem 1 is essential. The setting with C ≥ S can be interpreted as

that C − S items cannot be sold at all, and that each of the remaining S items can only be sold

in a single, dedicated time period. Thus, there is no interaction between individual items, and

the pricing problem is equivalent to S repetitions of the pricing problem with C = 1, S = 1, for

which no price dispersion occurs. Phrased differently: if C ≥ S then the marginal-value-of-inventory

remains constant throughout the selling season, and thus the optimal price is constant as well.

Broder and Rusmevichientong (2012), den Boer and Zwart (2014b) and Keskin and Zeevi (2014)

consider pricing strategies for this case, and show that the lack of endogenous learning means that

active price experimentation is necessary to learn the unknown parameters. Section 4.4 numerically

explores the effect of C and S on the amount of price dispersion.

If C = 1 then the firm may go out-of-stock in the first period of a selling season, resulting in a

selling season with zero price dispersion. Consequently, it is not possible to find a strictly positive

lower bound on the price dispersion per season that holds with probability one (but price dispersion

may occur with probability between zero and one). Because our results rely on an a.s. strictly

positive lower bound of the price dispersion, our results do not cover the case C = 1, and different

proof techniques are required to analyze this case.

The proof of Theorem 1 is contained in the Appendix, Section EC.1.

3.2. Pricing Strategy

We propose a pricing strategy based on the following principle: in each period, estimate the un-

known parameters, and subsequently use the action from the policy that is optimal with respect

to this estimate.
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Pricing strategy Φ(ϵ)

Initialization: Choose 0< ϵ< (ph− pl)/4, and initial prices p1, p2 ∈ [pl, ph], with p1 ̸= p2.

For all t≥ 2: if ct+1 = 0, set pt+1 ∈ [pl, ph] arbitrarily. If ct+1 > 0:

Estimation: Determine β̂t, and let pceqp = π∗
β̂t
(ct+1, st+1).

Pricing:

I) If

(a) |pi− pj|< ϵ for all 1≤ i, j ≤ t with SSi = SSj = SSt+1, and

(b) |pi− pceqp|< ϵ for all 1≤ i≤ t with SSi = SSt+1, and

(c) ct+1 = 1 or st+1 = S,

then choose pt+1 ∈
(
{pceqp +2ϵ, pceqp − 2ϵ}∩ [pl, ph]

)
.

II) Else, set pt+1 = pceqp.

Given a positive inventory level, the pricing strategy Φ(ϵ) sets the price pt+1 equal to the price

that is optimal according to β̂t, except possibly when the state (ct+1, st+1) is in the set {(c, s) |

c= 1 or s= S}. This set contains all states that, with positive probability, are the last states in

the selling season in which products are sold (either because the selling season almost finishes, or

because the inventory consists of only a single product). In these states, the price pt+1 deviates from

the certainty equivalent price pceqp if otherwise max{|pi − pj| | SSi = SSt+1} < ϵ. This deviation

ensures that also for small t, when β̂t may be far away from the true value β(0), a minimum amount

of price dispersion is guaranteed.

3.3. Upper Bound on the Regret

The endogenous-learning property described in Section 3.1 implies that if β̂t is sufficiently close to

β(0) and ϵ is sufficiently small, then I) in the formulation of Φ(ϵ) does not occur. As β̂t converges

to β(0), the pricing strategy Φ(ϵ) eventually acts as a certainty equivalent pricing strategy. The

pricing decisions in II) are driven by optimizing current season revenue, and do not reckon with

the objective of optimizing the quality of the parameter estimates β̂t. The endogenous-learning

property ensures that the unknown parameter values are learned on the fly, and that the pricing

decisions converge quickly to the optimal pricing decisions. The following theorem shows that the

regret of the strategy Φ(ϵ) is O(log2(T )).

Theorem 2. Let 1<C <S, v0 as in Theorem 1, and ϵ < v0/2. Then

Regret(Φ(ϵ), T ) =O(log2(T )).
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To prove Theorem 2, we construct a Markov decision problem with a state-space that consists

of all sequences of possible demand realizations in a selling season. This ensures that, conditional

on all prices and demand realizations before a selling season, Φ(ϵ) corresponds to a stationary

deterministic policy, where each state of the state-space is associated with a unique price prescribed

by Φ(ϵ). We subsequently prove several sensitivity results that enable us to quantify the effect of

estimation errors ||β̂t − β(0)|| on the regret. Application of the convergence rates in Proposition

1 then imply the O(log2(T )) bound on the regret. The proof of the theorem is contained in the

Appendix, Section EC.1.

An expression for v0 is given in the proof of Theorem 1. This makes it possible to explicitly

determine values of ϵ for which Theorem 2 is valid.

Remark 2. The pricing strategy Φ(ϵ) would be more elegant if ϵ= 0 would be allowed; this would

remove all the special cases in I) of the specification of Φ(ϵ), and would result in a “purely” myopic

strategy. Unfortunately, removing the requirement ϵ > 0 creates technical difficulties in proving the

upper bound on the regret. Concretely, an essential ingredient of the proof is a deterministic lower

bound on λmin(Pt); this enables us to apply Proposition 1 which ensures consistency and provides

convergence rates for β̂t. Without the requirement ϵ > 0 the existence of such deterministic lower

bound is not ensured, and different proof techniques are necessary to prove the regret upper bound.

A possible route could be to try to prove the conjecture limt→∞ ||β̂t− β̂t−1||= 0 a.s., regardless how

prices pt ∈ [pl, ph], t ∈N, are chosen. If this conjecture is true then, for all sufficiently large k ∈N,

β̂1+(k−1)S, . . . , β̂kS all lie sufficiently close to each other to ensure by Theorem 1 that the myopic

prices based on these estimates have a positive amount of price dispersion in selling season k. This

would be a large step towards proving that Theorem 2 also holds for ϵ= 0, i.e. for the “purely”

myopic pricing strategy. Proving this conjecture seems far from trivial, however.

Remark 3. An alternative approach to make a “purely” myopic strategy work, i.e. Φ(ϵ) with

ϵ= 0, is the following: instead of updating the estimates β̂t each time period, one could estimate

the parameters solely at the beginning of each selling season. Concretely that means that β̂t in the

estimation step of Φ(ϵ) is replaced by β̂(SSt−1)S, with β̂0 chosen arbitrarily in B. By Theorem 1

the deterministic lower bound λmin(PkS)≥ (k−1) · 1
8
v20(1+p

2
h)

−1 is valid for all k ∈N, and it is not

difficult to show along the same lines of Theorem 2 that this policy Φ(0) satisfies

Regret(Φ(0), T ) =O(log2(T )).

The potential downside of using Φ(0) instead of Φ(ϵ), ϵ > 0, is that some of the available sales data

is neglected when forming estimates. Neglecting data generally leads to lower revenues (compare,

for example, the numerical performance of the strategies MLE-CYCLE and MLE-CYCLE-S in
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Broder and Rusmevichientong (2012)), although counterexamples to this intuition are also known

(den Boer 2013a). In this paper we do not further elaborate on the drawbacks or benefits of using

all available sales data.

3.4. Lower Bound on the Regret

In this section we complement the O(log2(T )) upper bound of Theorem 2 by a lower bound on the

regret. In particular, we show an instance for which any pricing strategy has regret that grows at

least logarithmically in T . This shows that the asymptotic growth rate of regret of Φ(ϵ) is close to

the best achievable asymptotic growth rate.

Theorem 3. Let 1<C <S, h the identity function, [pl, ph] = [3/10,8/10], and let B = [5/8,6/8]×
[−3/4,−9/16]. There is a constant K0 such that, for all pricing strategies ψ and all T ∈N,

sup
β(0)∈B

Regret(ψ,T )≥K0 log(T ).

The proof of Theorem 3 consists of two main steps. In the first step we show that the regret in

a single selling season is bounded from below by a term proportional to the expected estimation

error in a single time period. In the second step we further bound this term, using an adaptation

of the van Trees inequality (Gill and Levit 1995) to our setting where β is estimated with a sample

of random size (caused by the 1ci>0 terms in (7)). The proof of Theorem 3 is contained in the

Appendix, Section EC.1.

Remark 4 (Gap Between Lower and Upper Bound on the Regret). Theorem 2 shows

that the regret of our pricing strategy Φ(ϵ) is O(log2(T )), and Theorem 3 shows that the regret

of any pricing strategy grows at least as log(T ). This “gap” between log2(T ) and log(T ) points

to the question whether Theorem 2 can be strengthened to O(log(T )). This question turns out

to be rather difficult to answer. The “additional” log(T ) term is caused by the log(t) term in the

convergence rates E
[
||β̂t−β(0)||21t>Tρ

]
=O(log(t)/L(t)) of Proposition 1. This log(t) term can be

traced back to Proposition 2 of den Boer and Zwart (2014a), who extend the a.s. convergence rates

of least-squares linear-regression estimators obtained by Lai and Wei (1982) to convergence rates

in expectation. Nassiri-Toussi and Ren (1994) show that in some cases the log(t) term is really

present in the behavior of least-squares estimates, and thus cannot simply be removed. On the

other hand, if the design is non-random and the disturbance terms are normally distributed, it can

be shown that this log(t)-term in Proposition 2 of den Boer and Zwart (2014a) can be removed. It

is not at all clear how to determine, for a particular adaptive design, whether the log-term plays

a role in the asymptotic behavior of linear regression estimates. Consequently, it is very hard to

determine whether the log-term in Theorem 2 is present in practice, or is merely a result of the

used proof techniques. For practical applications this issue is fortunately not very important, as it

is quite hard to determine from data if a functions grows like log(T ) or like log2(T ).
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4. Numerical Illustrations

To illustrate the analytical results that we have derived, we provide a number of numerical illustra-

tions. We first offer a simple instance that illustrates strong consistency of the parameter estimates

and convergence of the relative regret to zero. We also briefly consider the “gap” between the upper

bound of Theorem 2 and the lower bound of Theorem 3. We subsequently look at an instance

where we vary the level of initial inventory C and the duration of the selling season S, and look at

the effect on the regret. In the last illustration we look at the effect of different values of (C,S) on

the amount of price dispersion, and connect this with the asymptotic regime considered in Besbes

and Zeevi (2009) and Wang et al. (2014). To speed up the simulations, parameter estimates were

not updated during selling seasons (cf. Remark 3).

4.1. Basic Example

As a first example, we consider an instance with C = 10, S = 20, pl = 1, ph = 20, β
(0)
0 = 2, β

(0)
1 =

−0.4, and h(z) = logit(z). The optimal expected revenue per selling season, Vβ(0)(C,1), is equal to

47.8. We consider a time span of 100 selling periods, and run 100 simulations.

Figure 1 shows the simulation average of the regret after each selling season, and of the relative

regret defined by

Relative regret(T ) =
Regret(T )

T ·Vβ(0)(C,1))
× 100%.

To show some light on the growth rate of the regret, we scale in Figure 2 the regret by a log(T )

and a log2(T ) factor. Theorem 2 entails that Regret(T )/ log2(T ) is bounded, which accords with the

righthand plot in Figure 2. However, Theorem 3 suggests that the O(log2(T )) bound may be too

conservative, and that in fact the regret may grow logarithmically (cf. the discussion in Remark 4).

The lefthand plot of Figure 2 shows the regret scaled by a log-factor. This picture does not strongly

support the assertion that Regret(T )/ log(T ) is bounded, but this may be caused by finite-horizon

effects. Our numerical simulation thus does not give a conclusive answer on the question whether

this “gap” really exists in practice, or merely is a consequence of used proof techniques. Different

choices for β(0) show a similar picture.

4.2. Different Levels of Initial Inventory

In our second numerical example we illustrate the effect of initial inventory on the regret. We

consider the same instance as in the previous example, but take S = 10 and C ∈ {1,2,3, . . . ,9}, and

run 100 simulations for each value of C. Table 1 shows for each C the optimal revenue per selling

season, and the simulation average of the regret, the relative regret, and the estimation error at

the end of the time horizon.



den Boer and Zwart: Dynamic Pricing and Learning with Finite Inventories
16 Article submitted to Operations Research; manuscript no. OPRE-2011-11-587.R3

0 20 40 60 80 100
0

50

100

150

200

250

300

350

selling season T

R
e

g
re

t(
T

),
 s

im
u

la
ti

o
n

 a
v

e
ra

g
e

Regret(T)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

selling season T

R
e

la
ti

v
e

 R
e

g
re

t(
T

),
 s

im
u

la
ti

o
n

 a
v

e
ra

g
e

Relative Regret(T)

Figure 1 Simulation average of regret and relative regret
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Figure 2 Simulation average of regret, scaled by log(t) and log2(t).

Table 1 Simulation output for various choices of C

C Vβ(0)(C,1) Regret(100) Relative regret(100) ||β̂1000 −β(0)||
1 8.00 37.01 4.63 % 0.517
2 13.79 49.38 3.58 % 0.478
3 18.06 73.59 4.07 % 0.522
4 21.10 109.0 5.16 % 0.566
5 23.10 199.5 8.64 % 0.753
6 24.24 308.7 12.7 % 1.08
7 24.78 352.5 14.2 % 1.20
8 24.96 395.5 15.9 % 1.33
9 25.00 392.2 15.7 % 1.32

The fourth column of Table 1 suggests that the relative regret is not monotone in C, but is

minimal for some C strictly between 1 and S. This can intuitively be explained as follows. For

larger values of C, the fraction of time that the firm is out-of-stock is small; this means that

estimates are based on more data, which generally increases the quality of the parameter estimates.

However, if C gets close to S then the amount of price dispersion induced by the myopic policy
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decreases: for a substantial portion of a selling season there is hardly any variation in the marginal-

value-of-inventory, and as result the optimal price for different states (c, s) in the state-space of the

underlying MDP does not vary much. This behavior is reflected in the average estimation error at

the end of the time horizon, shown in the fifth column of Table 1.

4.3. Different Length of Selling Season

In our third numerical illustration we consider the same instance as in the previous two illus-

trations, but fix the inventory level at C = 5, and vary the length of the selling season. We let

S ∈ {6,7, . . . ,14}, and for each choice of S run 100 simulations. Table 2 shows for each S the op-

timal revenue per selling season, and the simulation average of the regret, the relative regret, and

the estimation error at the end of the time horizon.

Table 2 Simulation output for various choices of S

S Vβ(0)(C,1) Regret(100) Relative regret(100) ||β̂100S −β(0)||
6 14.94 243.7 16.3 % 1.246
7 17.25 256.8 14.9 % 1.216
8 19.38 247.6 12.8 % 1.091
9 21.33 231.9 10.9 % 0.946
10 23.10 207.5 8.98 % 0.780
11 24.70 156.0 6.31 % 0.635
12 26.17 120.6 4.61 % 0.529
13 27.51 119.0 4.33 % 0.500
14 28.74 106.2 3.70 % 0.442

The results from Table 2 show that the relative regret is decreasing in S. This is not surprising:

larger values of S means that there are not only more opportunities to sell products, but also more

opportunities to learn about customer behavior. This is reflected in the fifth column of the table,

which shows that the simulation average of the estimation error at the end of the time horizon is

decreasing in S.

4.4. Effect of C and S on Price Dispersion

The results from Section 4.2 indicate that the ratio between C and S influences the convergence

speed of parameter estimates. Intuitively, the following happens: if C/S is close to zero, then the

seller is relatively often out-of-stock; as a result less historical data is available to form estimates,

which in general leads to larger estimation errors. If C/S is close to (but strictly smaller than) one,

then the myopic policy induces less price dispersion; as long as the state (c, s) of the underlying

MDP has c/(S−s) “close to” one (we do not further quantify this statement here), the prices stay

close to the price that is optimal for C = S, and do not generate much price dispersion.
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To gain some insight on the influence of C and S on the growth rate of λmin(Pt), we provide two

numerical illustrations.

In the first, we take pl = 1, ph = 100, β
(0)
0 = 2, β

(0)
1 = −0.4, h(z) = logit(z). We fix C = 10 and

choose S ∈ {10,20,50,100,200,500}. For a fair comparison, we let the number of selling seasons T

be equal to 1000/S; the total time horizon then consists of 1000 time periods, for each experiment.

For each choice of S, we perform 100 simulations and record the price dispersion measured by

λmin(Pt), for t= 1, . . . ,1000.
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Figure 3 Price dispersion, for different values of S and T

Figure 3 shows the simulation average of λmin(Pt) for t= 1, . . . ,1000, for the different values of

(S,T ). For all experiments, λmin(Pt) grows linearly in t. The magnitude of the growth rate (i.e. the

slope of each graph in the figure) depends on the particular choice of S and T .

This magnitude affects the speed at which parameter estimates converge to the true value. Figure

4 shows for S ∈ {10,20,50,1000} the simulation average of the estimation error ||β̂t−β(0)||, where

β̂t is based on the available prices and demand realizations induced by the optimal policy. The

figure shows that the estimation error ||β̂t−β(0)|| converges quicker to zero if the price dispersion

λmin(Pt) grows at a faster rate. For the case S = 10 the parameter estimates do not converge to

the true value, and λmin(Pt) does not grow to infinity. This is the case with C = S, where active

price experimentation is necessary to ensure consistency (see our comments following Theorem 1).
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Figure 4 Estimation error ||β̂t −β(0)||, for different values of S and T

Figure 3 shows that the amount of price dispersion at the end of the time horizon, λmin(Pt) at

t= 1000, is not monotone in S: the largest growth rate is achieved at the experiment with S = 50,

T = 20; for S larger than 50 it is decreasing in S, and for S smaller than 50 it is increasing in S.

This is in accordance with the intuition outlined above, which says that the price dispersion grows

slowly if C/S is close to zero or close to one.

In our second numerical illustration, we look at a scaling of C and S. We take the same instance

as above (i.e. pl = 1, ph = 100, β
(0)
0 = 2, β

(0)
1 =−0.4, h(z) = logit(z)), and consider 100 experiments:

the n-th experiment has S = 10n and C = 3n, for n= 1,2, . . . ,100. For n→∞, this is the asymptotic

regime considered in Besbes and Zeevi (2009) and Wang et al. (2014). Note that C/S = 0.3 for

all n; we thus exclude the case where C/S gets close to zero or to one. For each experiment we

run 1000 simulations, and record the price dispersion induced by the optimal policy after a single

selling season, i.e. λmin(PS), when the prices of the optimal policy are used.

Figure 5 shows the simulation average of λmin(PS) as function of n (on the left), and as function

of log(n) (on the right). It suggests that the amount of price dispersion, induced by the optimal

pricing policy in a single selling season, grows as log(n). This slow growth rate explains why, in

the asymptotic regime considered by Besbes and Zeevi (2009) and Wang et al. (2014), active price

experimentation is necessary, whereas in our setting a myopic policy works well.
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Figure 5 λmin(PS), for S = 10n, C = 3n

5. Extensions

5.1. Overlapping Selling Seasons with Varying C and S

To avoid heavy notation that obscures the message of this paper, we assume in the preceding

sections that selling seasons are non-overlapping and have the same initial inventory and duration.

In the application that motivates our study, dynamic pricing in the hotel industry, this might be

too restrictive. In this section we consider the situation where different selling seasons may overlap,

and may have different initial inventory and duration. We show that an adaptation of Φ(ϵ), the

pricing strategy defined in Section 3.2, has Regret(T ) =O(log2(T )).

5.1.1. Setting. Let Cj ∈ N denote the initial inventory, Sj ∈ N the duration, and tj ∈ N the

first time period of the j-th selling season, for j ∈N. W.l.o.g. we assume that t1 = 1 and tj ≤ tj+1

for all j ∈ N. Each selling season j corresponds to a product j that is sold, with corresponding

prices and demand realizations. Let cj,s denote the inventory level, pj,s the selling price, and dj,s the

demand of product j in stage s of its selling season, for j ∈N and s∈ {1, . . . , Sj}. The dynamics of

cj,s and dj,s are similar as in the “base case” discussed in Section 2: dj,s is Bernoulli distributed with

mean h(β0+β1pj,s) if cj,s > 0, and dj,s = 0 if cj,s = 0. In addition, cj,1 =Cj and cj,s+1 = cj,s−dj,s, for

all j ∈N and s= 1, . . . , Sj. Prices pj,s lie in [pl, ph] and are non-anticipating, i.e. they may depend on

the history of prices and demand realizations Hj,s = {(dj′,s′ , pj′,s′) | j′ ∈N,1≤ s′ ≤ Sj′ , tj′ − 1+ s′ <

tj−1+s}, but not on future ones. A pricing strategy is a collection of functions ψ= (ψj,s)j∈N,1≤s≤Sj ,

such that each ψj,s generates for each possible history Hj,s a price pj,s ∈ [pl, ph].
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Figure 6 Fixed or varying initial capacity and duration

Let Vβ(0),Sj (Cj,1) be the optimal reward in a selling season and let π∗
β(0),Cj ,Sj

be the optimal

policy with C = Cj and S = Sj, as defined in Section 2.3. Let pj,s be prices generated by pricing

strategy ψ. The regret of ψ after T time periods is defined as

Regret(ψ,T ) =
∑

j:tj−1+Sj<T

{
Vβ(0),Sj (Cj,1)−

Sj∑
s=1

E[pj,sdj,s]
}
,

i.e. as the cumulative regret over all selling seasons completed before period T .

5.1.2. Pricing strategy and regret bound. Theorem 2 shows in the case of non-overlapping

selling seasons with Cj = C, Sj = S, and tj = 1 + (j − 1)S, for all j, that Regret(Φ(ϵ), T ) =

O(log2(T )). We now show that a modification Φ′(ϵ) of this strategy has Regret(T ) =O(log2(T )) in

the more general setting described above.

Similarly as in the setting considered in Theorem 2, estimation of β(0) for selling season j is

based on all sales data preceding tj, and of all sales data generated by the product corresponding to

selling season j. (Thus, for estimation we neglect sales data generated in selling seasons overlapping

with season j; this is for technical reasons, and enables us to derive Theorem 4 analogously to the

proof of Theorem 2). In particular, we define the set

Jj,s = {(j′, s′)∈N2 | 1≤ s′ ≤ Sj, tj′ − 1+ s′ ≤ tj − 1}∪ {(j, s′)∈N2 | 1≤ s′ < s},

the likelihood function

Lj,s(β) =
∑

(j′,s′)∈Jj,s

log
[
h(β0 +β1pj′,s′)

dj′,s′ (1−h(β0 +β1pj′,s′))
1−dj′,s′

]
1cj′,s′>0,

and the score function

lj,s(β) =
∑

(j′,s′)∈Jj,s

ḣ(β0 +β1pj′,s′)

h(β0 +β1pj′,s′)(1−h(β0 +β1pj′,s′))

(
1
pj′,s′

)
(dj′,s′ −h(β0 +β1pj′,s′))1cj′,s′>0,
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and define β̂j,s as in Section 2.5.

We now formally define the pricing strategy Φ′(ϵ). For notational convenience, write I(t) =
{(j, s)∈N2 | 1≤ s≤ Sj, tj − 1+ s= t} for t∈N.

Pricing strategy Φ′(ϵ)

Initialization: Choose 0< ϵ< (ph− pl)/4, and initial prices p1, p2 ∈ [pl, ph], with p1 ̸= p2.

Set pj,s = p1 for all (j, s)∈ I(1), and pj,s = p2 for all (j, s)∈ I2.

For all t≥ 2, and for all (j, s)∈ I(t+1):

Estimation: Determine β̂j,s.

Pricing:

If cj,s = 0, set pj,s ∈ [pl, ph] arbitrarily.

If cj,s > 0, let pceqp = π∗
β̂j,s,Cj ,Sj

(cj,s, s), and consider the following two cases:

I) If

(a) |pj,s1 − pj,s2 |< ϵ for all 1≤ s1, s2 < s, and

(b) |pj,s1 − pceqp|< ϵ for all 1≤ s1 < s, and

(c) cj,s = 1 or s= Sj,

then choose pj,s ∈
(
{pceqp +2ϵ, pceqp − 2ϵ}∩ [pl, ph]

)
.

II) Else, set pj,s = pceqp.

The following theorem shows, under some conditions on tj, Cj and Sj, that Φ
′(ϵ) has the same

O(log2(T )) bound on the regret as Φ(ϵ).

Theorem 4. Suppose supj∈NCj <∞, supj∈NSj <∞, and 1<Cj < Sj for all j ∈ N. In addition,

suppose supt∈N |{j ∈N : tj = t}|<∞. Let v0 as in Theorem 1, and 0< ϵ< v0/2. Then

Regret(Φ′(ϵ), T ) =O(log2(T )).

The proof is sketched in the Appendix, Section EC.1. The conditions on Cj, Sj and tj ensure

that the initial inventories, the durations of the selling seasons, and the number of selling seasons

starting in any time period, are all bounded.

5.2. Non-stationary Demand

Throughout the paper we assume that the market is stationary: the parameters β(0) do not change

over time. In this section we explore what happens if this assumption is violated. We distinguish

between two types of non-stationarity: (i) a “booking curve”, meaning that demand depends on

the stage s in the selling season, and (ii) a more general setting where β(0) = (β(0)(t))t∈N is varying

over time.
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5.2.1. Booking curve. A booking curve can be handled by explicitly modeling the depen-

dence of demand on the stage s. For example, one could assume that the demand in a period with

positive inventory is Bernoulli distributed with mean h(β
(0)
0 + β

(0)
1 p+ β

(0)
2 s), where p denotes the

price, s the stage in the selling season, and (β
(0)
0 , β

(0)
1 , β

(0)
2 ) are unknown parameters. Similarly as

in Section 2.3 one can then define the optimal full-information solution π∗
β(c, s), with h(β0 + β1p)

in all relevant equations replaced by h(β0 +β1p+β2s). The design matrix (8) is then equal to

Pt =
t∑
i=1

 1
pi
si

 (1, pi, si)1ci>0.

To prove an endogenous-learning property similar to Theorem 1, one should show that for all β

close to β(0), using the policy π∗
β in selling season k implies λmin(PkS)− λmin(P(k−1)S)> ϵ, for all

k ∈ N and some ϵ > 0 independent of k and β. This means that the amount of price dispersion,

measured by the smallest eigenvalue of the design matrix, strictly increases in each selling season,

and that the maximum likelihood estimate of β converges a.s. to the true value. This guarantees

that the prices generated by a (near-)myopic pricing strategy similar to Φ(ϵ) converge to the true

optimal prices.

In this particular model, with mean demand equal to h(β
(0)
0 +β

(0)
1 p+β

(0)
2 s), a sufficient condition

for the endogenous-learning property to hold is that there are prices p1, p2, p3 used in stage s1, s2,

s3, respectively, such that the vectors {(1, pi, si)T | i = 1,2,3} are linearly independent, and such

that cs1cs2cs3 > 0. This implies

λmin(PSk)−λmin(PS(k−1))≥ λmin

( 3∑
i=1

(1, pi, si)
T (1, pi, si)1ci>0

)
≥
det
(∑3

i=1(1, pi, si)
T (1, pi, si)1ci>0

)
tr
(∑3

i=1(1, pi, si)
T (1, pi, si)1ci>0

)2 ≥ (p3(s2 − s1)+ p2(s3 − s1)+ p1(s3 − s2))
2

(3+3S2 +3supp∈[pl,ph]
p2)2

> 0,

which implies the endogenous-learning property. In a similar way as Theorem 2 an upper bound

on the regret of a (near-)myopic policy can then be obtained.

5.2.2. Time-varying parameters. A natural approach to estimate β(0)(t), for a particular

t ∈ N, is to use maximum-likelihood estimation based on sales data from the time periods {t−

N, . . . , t}, for some N ∈N. This approach is taken in a recent paper by Keskin and Zeevi (2013) in

a dynamic pricing problem, and by Besbes et al. (2014) in a more general stochastic optimization

setting. Both these papers show that the growth rate of the regret of pricing policies and the

“optimal” choice of N depend on some measure of the volatility of the process (β(0)(t))t∈N.

This approach can in principle also be taken in our setting of dynamic pricing with finite inven-

tories, but there are several technical difficulties to overcome. For example, if estimation is based
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on a sample of size N , the finiteness of Tρ in Proposition 1 is not guaranteed, and it is not clear

how one could obtain bounds on the mean square estimation error (obtaining such bounds are

necessary to analyze the performance of pricing strategies). Overcoming these technical difficulties

is an important and technically challenging direction for future research.

5.3. Endogenous Learning in other Decision Problems

The endogenous-learning property shown in Theorem 1 is the key result that leads to consistency

of the myopic policy and to a regret that grows only O(log2(T )). This property seems not unique

for the pricing problem under consideration, but may be satisfied by many other decision problems

as well. We here briefly outline some types of problems for which this may be the case.

Consider a collection of discrete-time Markov decision problems (MDPs)

{(X,A, p(·, ·, ·, θ), r(·, ·, θ)) | θ ∈Θ},

parameterized by a finite-dimensional parameter θ contained in some set Θ⊂Rd. For each θ ∈Θ,

(X ,A, p(·, ·, ·, θ), r(·, ·, θ)) corresponds to an MDP with statespace X , action space A, transition

probabilities of going from state x to x′ when action a is used denoted by p(x,x′, a, θ), and the

expected reward of using action a in state x denoted by r(x,a, θ), for x,x′ ∈ X and a ∈ A. (see

Puterman (1994) for an introduction to MDPs). The goal of the decision maker may be to optimize

the average reward or discounted reward, over a finite or infinite time horizon, without knowing

the value of θ.

Suppose that each time that an action a is selected in state x, a realization yi of a random

variable Y is observed, the distribution of which depends on x, a, and θ. With an appropriate

statistical model of Y , the value of the unknown θ may at each decision moment be inferred

from the previously observed realizations, chosen actions, and visited stated, using an appropriate

statistical technique (maximum likelihood estimation, (non)-linear regression, Bayesian methods).

If θ̂ denotes the estimated value of θ, then a myopic policy is to always select the action that is

optimal if θ̂ equals the true but unknown θ.

Strong consistency of an estimator (a.s. convergence of θ̂ to θ as the number of observations

increases) typically presumes a minimum amount of variation/dispersion in the controls; see e.g. Sk-

ouras (2000) and Pronzato (2009) for nonlinear regression models, Chen et al. (1999) for generalized

linear models, the classic Lai and Wei (1982) for linear regression models, and Hu (1996, 1998) for

Bayesian regression models. The decision problems described above satisfy an endogenous-learning

property if the myopic policy induces an amount of dispersion in the controls that guarantees

strong consistency of the estimator. As a result, no active experimentation is then necessary to
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eventually learn the unknown θ; learning “takes care of itself” by just simply using myopic ac-

tions. This contrasts with many other decision problems under uncertainty where deviating from

the myopic policy is necessary to eventually learn the unknown parameters of the system (e.g. in

various multi-armed bandit problems).
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e-companion to den Boer and Zwart: Dynamic Pricing and Learning with Finite Inventories ec1

Proofs

This e-companion contains the mathematical proofs of the results in the paper. Section EC.1

contains the proof of Theorems 1, 2, 3 and 4. The proofs frequently refer to a number of auxiliary

lemmas, which are formulated and proven in Section EC.2.

EC.1. Proofs of Main Theorems

Proof of Theorem 1

Let β ∈B. Consider the k-th selling season, and write c(1) = c1+(k−1)S, c(2) = c2+(k−1)S, . . ., c(S) =

ckS. The proof consists of two steps. In Step 1, we show that there is a v1(β) > 0 such that if

prices π∗
β(0)

(c(s), s) are used in state (c(s), s), for all s= 1, . . . , S, then there are 1≤ s, s′ ≤ S with

|π∗
β(c(s), s)−π∗

β(c(s
′), s′)|> v1(β) and c(s)c(s′)> 0. Since π∗

β is continuous in β (Lemma EC.2(vi)),

there is an open neighborhood Uβ ⊂ B around β such that, if price π∗
β(s)(c(s), s) is used in state

(c(s), s), for all s= 1, . . . , S and some sequence (β(1), . . . , β(S))∈ Uβ∩B, then there are 1≤ s, s′ ≤ S

such that |π∗
β(s)(c(s), s)− π∗

β(s′)(c(s
′), s′)|> v1(β)/2, c(s)> 0 and c(s′)> 0. In Step 2 we show that

v1(β) can be bounded from below by a constant v0 > 0 independent of β. This proves (10). Equation

(11) follows by application of Lemma EC.3.

Step 1: Occurence of price change. Define

▹= {(c, s) | S+1−C ≤ s≤ S,S+1− s≤ c≤C}. (EC.1)

See Figure EC.1 for an illustration of ▹ in the state space X . Notice that since (C,1) /∈ ▹ (by the

assumption C <S), the path (c(s), s)1≤s≤S may or may not hit ▹. We show that, in both cases, at

least two different selling prices occur on the path (c(s), s)1≤s≤S. Let p
∗
a,β be as in Lemma EC.1

and shorthand write f∗
a,β = fa,β(p

∗
a,β).

Case 1. The path (c(s), s)1≤s≤S hits ▹. Then there is an s such that (c(s), s)∈ ▹ and (c(s), s−1)∈

(L▹), where we define

(L▹) = {(1, S− 1), (2, S− 2), . . . , (C − 1, S−C +1), (C,S−C)}

as the set of points immediately left to ▹ in Figure EC.1. The following two properties imply that

a price change occurs when the path (c(s), s)1≤s≤S hits ▹.

(P.1) If (c, s)∈ ▹ then π∗
β(c, s) = p∗0,β, ∆Vβ(c, s+1) = 0, and Vβ(c, s) = (S− s+1) · f∗

0,β.

(P.2) If (c, s)∈ (L▹), then ∆Vβ(c, s+1)≥ h(β0 +β1ph)
c−1f∗

0,β and

π∗
β(c, s)≥ p∗

h(β0+β1ph)
c−1f∗

0,β
,β
> p∗0,β.
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Figure EC.1 Schematic picture of ▹

Proof of (P.1): Backward induction on s. If s = S and (c, s) ∈ ▹, then the assertions follow

immediately. Let s < S. Then ∆Vβ(c, s+1) = Vβ(c, s+1)− Vβ(c− 1, s+1) = 0, π∗
β(c, s) = p∗0,β and

Vβ(c, s) = maxp∈[pl,ph] ph(β0 + β1p) + Vβ(c, s+ 1) = (S − s+ 1) · Vβ(1, S), by (3) and the induction

hypothesis. This proves (P.1).

Proof of (P.2). Induction on c. If c= 1 and (c, s)∈ (L▹), then (c, s) = (1, S− 1), ∆Vβ(1, S) = f∗
0,β

and π∗
β(1, S − 1) = p∗∆Vβ(1,S) = p∗f∗

0,β
> p∗0,β, since by Lemma EC.1(ii) p∗a,β is strictly increasing in a.

If c > 1 and (c, s) ∈ (L▹) then (c, s) = (c,S − c), and the induction hypothesis, together with the

optimality of π∗
β(c,S− c+1), implies

∆Vβ(c,S− c+1)= Vβ(c,S− c+1)−Vβ(c− 1, S− c+1)

=(π∗
β(c,S− c+1)−∆Vβ(c,S− c+2))h(β0 +β1π

∗
β(c,S− c+1))+Vβ(c,S− c+2)

−(π∗
β(c− 1, S− c+1)−∆Vβ(c− 1, S− c+2))h(β0 +β1π

∗
β(c− 1, S− c+1))

−Vβ(c− 1, S− c+2)

≥∆Vβ(c− 1, S− c+2)h(β0 +β1π
∗
β(c− 1, S− c+1))

≥h(β0 +β1ph)
c−1f∗

0,β,

and π∗
β(c,S− c) = p∗∆Vβ(c,S−c+1),β ≥ p∗∆Vβ(c,S−c+1),β > p

∗
0,β, using again Lemma EC.1(ii). This proves

(P.2), and concludes Case 1.

Case 2. The path (c(s), s)1≤s≤S does not hit ▹. Then there is an 1≤ s≤ S− 2 such that c(s) = 2

and c(s+1) = 1. We show by backward induction that

∆Vβ(2, s)−∆Vβ(1, s+1)≤ (Vβ(1,1)− ph) ·h(β0 +β1ph), (EC.2)
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for all 2≤ s≤ S− 1, and that Vβ(1,1)< ph. This implies ∆Vβ(2, s+1)<∆Vβ(1, s+2). By Lemma

EC.1(ii) this implies

π∗
β(2, s) = p∗∆Vβ(2,s+1),β < p

∗
∆Vβ(1,s+2),β = π∗

β(1, s+1), (EC.3)

and thus a price change occurs.

Let 2≤ s≤ S− 1. The optimality of π∗
β(1, s) and π

∗
β(1, s+1) implies

∆Vβ(2, s)−∆Vβ(1, s+1)

≤(π∗
β(2, s)−∆Vβ(2, s+1))h(β0 +β1π

∗
β(2, s))+Vβ(2, s+1)

−(π∗
β(1, s)−∆Vβ(1, s+1))h(β0 +β1π

∗
β(1, s))−Vβ(1, s+1)

−(π∗
β(2, s)−∆Vβ(1, s+2))h(β0 +β1π

∗
β(2, s))−Vβ(1, s+2)

=
[
∆Vβ(2, s+1)−∆Vβ(1, s+2)

][
1−h(β0 +β1(π

∗
β(2, s))

]
−(π∗

β(1, s)−∆Vβ(1, s+1))h(β0 +β1π
∗
β(1, s))

≤− (ph−Vβ(1, s+1))h(β0 +β1ph)

≤− (ph−Vβ(1,1))h(β0 +β1ph).

Here
[
∆Vβ(2, s+ 1)−∆Vβ(1, s+ 2)

]
≤ 0 follows from the induction hypothesis if s < S − 1, and

follows from Vβ(2, S)−Vβ(1, S) = 0 if s= S− 1. The last inequality follows from Lemma EC.1(ii).

This proves (EC.2), and concludes Case 2.

We have shown that, on any path (c(s), s)1≤s≤S in X starting at (C,1), the policy π∗
β induces a

price-change. It follows that there exists a v1(β)> 0 such that for all paths (c(s), s)1≤s≤S,

|π∗
β(c(s), s)−π∗

β(c(s
′), s′)| ≥ v1(β).

Step 2: Lower bound on magnitude of price change. Property (P.2) in the proof of

Theorem 1 shows that a price change of magnitude

|π∗
β(c(s), s)−π∗

β(c(s+1), s+1)| ≥ |p∗h(β0+β1ph)C−1f∗
0,β

,β − p∗0,β|

occurs in Case 1, and equation (EC.2) shows that a price change of magnitude

|π∗
β(c(s), s)−π∗

β(c(s+1), s+1)| ≥ |p∗∆Vβ(2,s+1),β − p∗∆Vβ(1,s+2),β|

occurs, with |∆Vβ(2, s+1)−∆Vβ(1, s+2)|< (Vβ(1,1)− ph)h(β + β1ph)< 0 (since Vβ(1,1)− ph =

maxp∈[pl,ph] ph(β0+β1p)−ph <maxp∈[pl,ph](p−ph) = 0). The proof of Lemma EC.1(ii) implies that,

for all 0≤ a0, a1 < ph and all β ∈B,

|p∗a0,β − p∗a1,β| ≥ |a0 − a1| · inf
0≤a≤ph

−β1ḣ(β0 +β1p
∗
a,β)

|f̈a,β(p∗a,β)|
> 0,
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by application of the Mean Value Theorem. If we define

C = inf
β∈B

inf
0≤a≤ph

−β1ḣ(β0 +β1p
∗
a,β)

|f̈a,β(p∗a,β)|
> 0

then the magnitude of the price change v1(β) on the path (c(s), s)1≤s≤S, is bounded from below by

v1(β)≥ v0 := C ·min
{
inf
β∈B

h(β0 +β1ph)
C−1f∗

0,β, inf
β∈B

|(Vβ(1,1)− ph)h(β+β1ph)|
}
.

Proof of Theorem 2

Consider the k-th selling season, for some arbitrary fixed integer k ≥ 2. The prices generated by

Φ(ϵ) are based on the estimates β̂t, which are determined by the historical prices and demand

realizations. Now, different demand realizations can lead to the same state (c, s) of the MDP. For

example, a sale in the first period of a selling season and no sale in the second period leads to

state (C−2,3), but this state is also reached if there is no sale in the first period and a sale in the

second period of the selling season. These two “routes” may lead to different estimates β̂t, and to

different pricing decisions in state (C− 2,3). Thus, with Φ(ϵ), the prices in the k-th selling season

are not determined by a stationary policy for the Markov decision problem described in Section

2.3.

To be able to compare the optimal revenue in a selling season with that obtained by Φ(ϵ), we

define a new Markov decision problem, in which the states are sequences of demand realizations

in the selling season. Conditionally on all prices and demand realizations from before the start

of the selling season, Φ(ϵ) is then a stationary deterministic policy for this new MDP: each state

is associated with a unique price prescribed by Φ(ϵ). This enables us to calculate bounds on the

regret obtained in a single selling season.

We define this new MDP for any β ∈B. The state space X̃ consists of all sequences of possible

demand realizations in the selling season:

X̃ = {(x1, . . . , xs)∈ {0,1}s | 0≤ s≤ S,
s∑
i=1

xi ≤C},

where we denote the empty sequence by (∅). The action space is [pl, ph]. Using action p in state

(x1, . . . , xs), with 0≤ s < S induces a state transition from (x1, . . . xs) to (x1, . . . , xs,1) with proba-

bility h(β0+β1p)1∑s
i=1 xi<C

(corresponding to a sale, and inducing immediate reward p), and from

(x1, . . . xs) to (x1, . . . , xs,0) with probability 1− h(β0 + β1p)1∑s
i=1 xi<C

(corresponding to no sale,

and inducing zero reward). In the terminal state (x1, . . . , xS), no transitions occur, no reward is

received, and no actions are taken. Note that the actions in states with zero inventory do not

impact the reward or transitions.
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It is easily seen that the MDP described in Section 2.3 corresponds to the one described here,

except that there states are aggregated: all states (x1, . . . , xs) and (x′
1, . . . , x

′
s′) with s = s′ and∑s

i=1 xi =
∑s′

i=1 x
′
i are there taken together in the state (C −

∑s

i=1 xi, s+1).

Let π̃= {π̃(x) | x= (x1, . . . , xs)∈ X̃ ,0≤ s < S} be a stationary deterministic policy for this MDP

with augmented state space (defining an action for all except the terminal states (x1, . . . , xS)), and

let Ṽ π̃
β (x) be the corresponding value function, for β ∈B. For non-terminal states x= (x1, . . . , xs)∈

X̃ we write (x; 1) = (x1, . . . , xs,1) and (x; 0) = (x1, . . . , xs,0). Then, for all non-terminal states

x= (x1, . . . , xs)∈ X̃ , s < S, and all β ∈B, Ṽ π̃
β (x) satisfies the backward recursion

Ṽ π̃
β (x) = (π̃(x)1∑s

i=1 xi<C
+ Ṽ π̃

β (x; 1))h(β0 +β1π̃(x))1∑s
i=1 xi<C

+ Ṽ π̃
β (x; 0)(1−h(β0 +β1π̃(x))1∑s

i=1 xi<C
),

and Ṽ π̃
β (x) = 0 for all terminal states x.

Let π̃∗
β be the optimal policy corresponding to β ∈B, and write Ṽβ(x) = Ṽ

π̃∗β
β (x). Then

Ṽβ(x) = max
p∈[pl,ph]

[
p−

(
Ṽβ(x; 0)− Ṽβ(x; 1)

)]
h(β0 +β1p)+ Ṽβ(x; 0), (EC.4)

π̃∗
β(x) = argmax

p∈[pl,ph]

[
p−

(
Ṽβ(x; 0)− Ṽβ(x; 1)

)]
h(β0 +β1p), (EC.5)

for all states (x1, . . . , xs) with
∑s

i=1 xi <C and s < S, and Ṽβ(x) = 0 for all states (x1, . . . , xs) with∑s

i=1 xi =C or s= S. Analogous to Lemma EC.2, it is not difficult to show that π̃∗
β(x) is uniquely

defined and lies in (pl, ph), for all β ∈B and all states (x1, . . . , xs) with
∑s

i=1 xi <C and s < S. In

the notation of Lemma EC.1, this implies (Ṽβ(x; 0)− Ṽβ(x; 1), β)∈ UAB..

Let U and v0 be as in Theorem 1, ρ1 as in Proposition 1, and choose ρ∈ (0, ρ1) such that β ∈ U

whenever ||β−β(0)|| ≤ ρ. For all l ∈N, if (l− 1)S > Tρ then β̂t ∈ U for all t= 1+(l− 1)S, . . . , S(l−

1)S, and Theorem 1 implies λmin(PlS)−λmin(P(l−1)S)≥ 1
8
v20(1+p

2
h)

−1 ≥ 1
2
ϵ2(1+p2h)

−1, using v0/2≥

ϵ. If (l − 1)S ≤ Tρ, then I) of the pricing strategy Φ(ϵ) guarantees that there are 1 ≤ s, s′ ≤ S

such that |ps+(l−1)S − ps′+(l−1)S| ≥ ϵ, and Lemma EC.3 then implies λmin(PlS) − λmin(P(l−1)S) ≥
1
2
ϵ2(1+ p2h)

−1. It follows that λmin(PlS)≥ l · 1
2
ϵ2(1+ p2h)

−1 for all l ∈N, and thus for all t > S,

λmin(Pt)≥ λmin(P(SSt−1)S)≥ (SSt− 1) · 1
2
ϵ2(1+ p2h)

−1 ≥ t · 1

4S
ϵ2(1+ p2h)

−1,

using SSt − 1 ≥ t (SSt−1)

S·SSt
≥ t

2S
. (Recall the definition SSt = 1 + ⌊(t − 1)/S⌋). By application of

Proposition 1 with t0 = S and L(t) = t · 1
4S
ϵ2(1+ p2h)

−1, we have

Tρ <∞ a.s., E[Tρ]<∞, and E[||β̂t−β(0)||21t>Tρ ] =O (log(t)/t). (EC.6)
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In addition, v0/2 > ϵ implies that I) of the pricing strategy Φ(ϵ) does not occur for all t with

(SSt− 1)S > Tρ. In particular, if (k− 1)S > Tρ, then

p1+s+(k−1)S = π̃∗
β̂s+(k−1)S

(d1+(k−1)S, d2+(k−1)S, . . . , ds+(k−1)S), (EC.7)

for all 1≤ s≤ S− 1, and

p1+(k−1)S = π̃∗
β̂(k−1)S

(∅). (EC.8)

Let H = (p1, . . . , p(k−1)S, d1, . . . , d(k−1)S) denote the history of prices and demand up to and in-

cluding time period (k − 1)S. Conditionally on H, and given that (k − 1)S > Tρ, the parameter

estimates β̂s+(k−1)S in (EC.7) and (EC.8) are completely determined by the state

(d1+(k−1)S, d2+(k−1)S, . . . , ds+(k−1)S). Thus, for each state (x1, . . . , xs) with
∑s

i=1 xi < C and s < S,

there is a uniquely associated price prescribed by Φ(ϵ). Consequently, there is a stationary deter-

ministic policy, denoted by π̃H , such that p1+(k−1)S = π̃H(∅) and

p1+s+(k−1)S = π̃H(x)

when x= (d1+(k−1)S, d2+(k−1)S, . . . , ds+(k−1)S), 1≤ s < S, and
∑s

i=1 di+(k−1)S <C.

This enables us to bound the regret in the k-th selling season:

Vβ(0)(C,1)−
kS∑

i=1+(k−1)S

E[pidi]

=E

Ṽβ(0)(∅)− kS∑
i=1+(k−1)S

pidi

1(k−1)S≤Tρ


+E

Ṽβ(0)(∅)− kS∑
i=1+(k−1)S

pidi

1(k−1)S>Tρ


≤Ṽβ(0)(∅)P ((k− 1)S ≤ Tρ)

+E

E
Ṽβ(0)(∅)− kS∑

i=1+(k−1)S

pidi

1(k−1)S>Tρ |H


≤Ṽβ(0)(∅)

E[Tρ]

(k− 1)S
(EC.9)

+E
[
E
[(
Ṽβ(0)(∅)− Ṽ π̃H

β(0)
(∅)
)
1(k−1)S>Tρ |H

]]
. (EC.10)

The term (EC.9) is finite because E[Tρ]<∞. To obtain an upper bound on the term (EC.10),

we need two sensitivity results:
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(S.1) Write d⃗s = (d1+(k−1)S, . . . , ds+(k−1)S) for 1≤ s≤ S − 1, and set d⃗0 = (∅). There is a K0 > 0

such that, for all stationary deterministic policies π̃ and all 0≤ s≤ S− 1,

(Ṽβ(0)(d⃗s)− Ṽ π̃
β(0)

(d⃗s))1∑s
i=1 di+(k−1)S<C

1(k−1)S>Tρ

≤K0

S−1∑
σ=s

(π̃∗
β(0)

(d⃗σ)− π̃(d⃗σ))
21∑σ

i=1 di+(k−1)S<C
·1(k−1)S>Tρ a.s.

(S.2) There is a K3 > 0 such that

|π̃∗
β(x)− π̃∗

β(0)
(x)| ≤K3||β−β(0)||, (EC.11)

for all β ∈B with ||β−β(0)|| ≤ ρ, and all states (x1, . . . , xs) with
∑s

i=1 xi <C and s < S.

The proof of these two sensitivity properties is given below.

Application of (S.1), (S.2), and (EC.6) now gives

E
[
E
[(
Ṽβ(0)(∅)− Ṽ π̃H

β(0)
(∅)
)
1(k−1)S>Tρ |H

]]
≤E

[
E

[
K0

S−1∑
σ=0

(π̃∗
β(0)

(d⃗σ)− π̃H(d⃗σ))
21∑σ

i=1 di+(k−1)S<C
·1(k−1)S>Tρ |H

]]

=E

[
K0

S−1∑
σ=0

(π̃∗
β(0)

(d⃗σ)− π̃∗
β̂σ+(k−1)S

(d⃗σ))
21∑σ

i=1 di+(k−1)S<C
·1(k−1)S>Tρ

]

≤E

[
K0K

2
3

S−1∑
σ=0

∣∣∣∣∣∣β(0) − β̂σ+(k−1)S

∣∣∣∣∣∣2 1(k−1)S>Tρ

]

≤K4

S−1∑
σ=0

log(σ+(k− 1)S)

σ+(k− 1)S
,

for some K4 independent of k and S.

We thus have

Vβ(0)(C,1)−
kS∑

i=1+(k−1)S

E[pimin{di, ci}]

≤Ṽβ(0)(∅)E[Tρ]
1

(k− 1)S
+K4

S−1∑
σ=0

log(σ+(k− 1)S)

σ+(k− 1)S

≤K5

kS∑
t=1+(k−1)S

log(t)

t
, (EC.12)

for some K5 > 0, independent of k and S.

The proof of the theorem is complete by observing

Regret(Φ(ϵ), T ) =
T∑
k=1

[
Vβ(0)(C,1)−

kS∑
i=1+(k−1)S

E[pidi]
]

≤ Vβ(0)(C,1)+
T∑
k=2

K5

kS∑
t=1+(k−1)S

log(t)

t
≤ Vβ(0)(C,1)+K5

TS∑
t=1+S

log(t)

t

=O(log2(T )).
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Proof of (S.1)

Backward induction on s. Let s= S− 1. If
∑S−1

i=1 di+(k−1)S <C then Lemma EC.1(iii) implies

Ṽβ(0)(d⃗S−1)− Ṽ π̃
β(0)

(d⃗S−1) = max
p∈[pl,ph]

ph(β
(0)
0 +β

(0)
1 p)− π̃(d⃗S−1)h(β

(0)
0 +β

(0)
1 π̃(d⃗S−1))

≤K0(π̃
∗
β(0)

(d⃗S−1)− π̃(d⃗S−1))
2 a.s.,

and thus

(Ṽβ(0)(d⃗S−1)− Ṽ π̃
β(0)

(d⃗S−1)) ·1∑S−1
i=1 di+(k−1)S<C

·1(k−1)S>Tρ

≤K0(π̃
∗
β(0)

(d⃗S−1)− π̃(d⃗S−1))
2 ·1∑S−1

i=1 di+(k−1)S<C
·1(k−1)S>Tρ a.s.

Now let 0≤ s < S− 1. If
∑s

i=1 di+(k−1)S =C then Ṽβ(0)(d⃗s) = Ṽ π̃
β(0)

(d⃗s) = 0. If
∑s

i=1 di+(k−1)S <C,

then, again using Lemma EC.1(iii),

Ṽβ(0)(d⃗s)− Ṽ π̃
β(0)

(d⃗s)

= max
p∈[pl,ph]

[
p− (Ṽβ(0)(d⃗s; 0)− Ṽβ(0)(d⃗s; 1))

]
h(β

(0)
0 +β

(0)
1 p)+ Ṽ (d⃗s; 0)

−
[
π̃(d⃗s)− (Ṽβ(0)(d⃗s; 0)− Ṽβ(0)(d⃗s; 1))

]
h(β

(0)
0 +β

(0)
1 π̃(d⃗s))

+
[
π̃(d⃗s)− (Ṽβ(0)(d⃗s; 0)− Ṽβ(0)(d⃗s; 1))

]
h(β

(0)
0 +β

(0)
1 π̃(d⃗s))

−
[
π̃(d⃗s)− (Ṽ π̃

β(0)
(d⃗s; 0)− Ṽ π̃

β(0)
(d⃗s; 1))

]
h(β

(0)
0 +β

(0)
1 π̃(d⃗s))− Ṽ π̃(d⃗s; 0)

≤K0(π̃
∗
β(0)

(d⃗s)− π̃(d⃗s))
2

+
(
Ṽβ(0)(d⃗s; 0)− Ṽ π̃

β(0)
(d⃗s; 0)

)
·
(
1−h(β

(0)
0 +β

(0)
1 π̃(d⃗s))

)
+
(
Ṽβ(0)(d⃗s; 1)− Ṽ π̃

β(0)
(d⃗s; 1)

)
· (h(β(0)

0 +β
(0)
1 π̃(d⃗s))

≤K0(π̃
∗
β(0)

(d⃗s)− π̃(d⃗s))
2 +
[
Ṽβ(0)(d⃗s+1)− Ṽ π̃

β(0)
(d⃗s+1)

]
a.s.,

and the induction hypothesis implies

(Ṽβ(0)(d⃗s)− Ṽ π̃
β(0)

(d⃗s))1∑s
i=1 di+(k−1)S<C

1(k−1)S>Tρ

≤K0

S−1∑
σ=s

(π̃∗
β(0)

(d⃗σ)− π̃(d⃗σ))
21∑σ

i=1 di+(k−1)S<C
1(k−1)S>Tρ a.s.

Proof of (S.2)

Let x= (x1, . . . , xs)∈ X̃ with
∑s

i=1 xi <C and s < S. We have

π̃∗
β(x)− π̃∗

β(0)
(x) = p∗

Ṽβ(x;0)−Ṽβ(x;1),β
− p∗

Ṽ
β(0)

(x;0)−Ṽ
β(0)

(x;1),β(0)

= p∗a,β − p∗
a(0),β(0)

, (EC.13)
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in the notation of Lemma EC.1, with a = Ṽβ(x; 0) − Ṽβ(x; 1) and a(0) = Ṽβ(0)(x; 0) − Ṽβ(0)(x; 1).

Also we have that both (a,β)∈ UAB and (a(0), β(0))∈ UAB, since pl < π̃∗
β(x), π̃

∗
β(0)

(x)< ph (as noted

above, in the remarks below equation (EC.5)). The set

{Ṽβ(x; 0)− Ṽβ(x; 1) | β ∈B,
∣∣∣∣β−β(0)

∣∣∣∣≤ ρ,x∈ X̃}×{β ∈B |
∣∣∣∣β−β(0)

∣∣∣∣≤ ρ}

is compact and contained in UAB. Since p∗a,β is continuously differentiable in a and β on UAB, it

follows by a first order Taylor expansion that

|p∗a,β − p∗
a(0),β(0)

| ≤K6(|a− a(0)|+ ||β−β(0)||), (EC.14)

for a K6 > 0 independent of a, a(0). It is not difficult to show by backward induction that for all

x∈ X̃ there is a Kx > 0 such that, for all β with ||β−β(0)|| ≤ ρ,∣∣∣Ṽβ(x)− Ṽβ(0)(x)
∣∣∣≤Kx

∣∣∣∣β−β(0)
∣∣∣∣ . (EC.15)

Combining (EC.13), (EC.14), and (EC.15), we obtain

|π̃∗
β(x)− π̃∗

β(0)
(x)|

≤K6(|a− a(0)|+ ||β−β(0)||)

≤K6(|Ṽβ(x; 0)− Ṽβ(0)(x; 0)|+ |Ṽβ(x; 1)− Ṽβ(0)(x; 1)|+ ||β−β(0)||)

≤K6(1+2max
x∈X̃

Kx)||β−β(0)||.

This proves (S.2).

Proof of Theorem 3

First note that h, B and [pl, ph] satisfy the assumptions of Section 2.2.

The proof consists of three steps. In Step 1 we consider pricing strategies that select optimal

prices whenever inventory is strictly below C. For these strategies we show that the regret in a

single selling season is bounded from below by a term proportional to the mean squared estimation

error at the end of the selling season, viz. equation (EC.19). In Step 2 we prove a lower bound on

the expected value of this term, according to a probability density on β(0). The proof is analogous to

the proof of the van Trees inequality in Gill and Levit (1995, Section 2). We cannot directly apply

their result, however, because we are in a slightly different setting (discrete instead of continuous

random variables, and non-deterministic number of observations upon which the estimate of β0 is

based); we therefore include a complete proof, resulting in equation (EC.24). In Step 3 we combine

the results of Step 1 and Step 2 to show that the regret in the k-th single selling season is bounded
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from below by a term proportional to 1/k; this implies that the total regret after T selling seasons

is bounded from below by a term proportional to logT .

Throughout the proof, let ψ be an arbitrary price strategy.

Step 1. Let β = (β0, β1)∈B be arbitrary and fixed, and let k ∈N, k≥ 2. For shorthand notation,

write

hβ(p) = h(β0 +β1p).

Define

ε= inf
β∈B

inf
p∈[pl,ph]

min{hβ(p),1−hβ(p)},

and note that ε > 0. Let ψ′ be the pricing strategy that for all t ∈ N coincides with ψ if ct = C,

and that equals the optimal price π∗
β(ct, st) if ct < C. Let pi be the prices generated by ψ′. For

1≤ j < S write d⃗j = (d1+(k−1)S, . . . , dj+(k−1)S)∈ {0,1}j for the vector of demand realizations in the

first j stages of season k, and set d⃗0 = 0. For all j ∈ {1, . . . , S−1}, we have the following inequality:

V (C, j)−E
[ kS∑
i=j+(k−1)S

pidi | d⃗j−1 = 0
]

=hβ(π
∗
β(C, j)) · (π∗

β(C, j)+V (C − 1, j+1))+ (1−hβ(π
∗
β(C, j))) ·V (C, j+1)

−E
[ kS∑
i=j+(k−1)S+1

pidi | d⃗j−1 = 0, dj+(k−1)S = 1
]
P
(
dj+(k−1)S = 1 | d⃗j−1 = 0

)
−E
[ kS∑
i=j+(k−1)S+1

pidi | d⃗j−1 = 0, dj+(k−1)S = 0
]
P
(
d1+(k−1)S = 0 | d⃗j−1 = 0

)
−E[pj+(k−1)S hβ(pj+(k−1)S) | d⃗j−1 = 0]

= hβ(π
∗
β(C, j)) · (π∗

β(C, j)+V (C − 1, j+1))+ (1−hβ(π
∗
β(C, j))) ·V (C, j+1)

−E
[
hβ(pj+(k−1)S) · (pj+(k−1)S +V (C − 1, j+1))+ (1−hβ(pj+(k−1)S)) ·V (C, j+1) | d⃗j−1 = 0

]
+E
[
hβ(pj+(k−1)S) | d⃗j−1 = 0

]
·
(
V (C − 1, j+1))−E

[ kS∑
i=j+(k−1)S+1

pidi | d⃗j−1 = 0, dj+(k−1)S = 1

])

+E
[
1−hβ(pj+(k−1)S) | d⃗j−1 = 0

]
·
(
V (C, j+1))−E

[ kS∑
i=j+(k−1)S+1

pidi | d⃗j−1 = 0, dj+(k−1)S = 0

])

≥ε ·
(
V (C, j+1)−E

[ kS∑
i=j+(k−1)S+1

pidi | d⃗j = 0
])
. (EC.16)

In the first equality we use the recursive definition of V (C, j), condition E[
∑kS

i=j+1+(k−1)S pidi |

d⃗j−1 = 0] on the event {dj+(k−1)S = 1 | d⃗j−1 = 0} and its complement, and use E[pj+(k−1)S dj+(k−1)S |

d⃗j−1 = 0] = E[pj+(k−1)S hβ(pj+(k−1)S) | d⃗j−1 = 0]. In the second inequality we add and substract

E[hβ(pj+(k−1)S) ·V (C−1, j+1)+(1−hβ(pj+(k−1)S)) ·V (C, j+1) | d⃗j−1 = 0], and use P (dj+(k−1)S =
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1 | d⃗j−1 = 0) = E[hβ(pj+(k−1)S) | d⃗j−1 = 0]. The inequality follows from the fact that π∗
β(C, j), by

definition, maximizes

hβ(p) · (p+V (C − 1, j+1))+ (1−hβ(p)) ·V (C, j+1), p∈ [pl, ph],

and from

V (C − 1, j+1))−E

[ kS∑
i=j+(k−1)S+1

pidi | d⃗j−1 = 0, dj+(k−1)S = 1

]
= 0,

which follows from the fact that, by definition of ψ′, optimal prices are chosen whenever inventory

is strictly lower than C.

Repeated application of (EC.16) gives

V (C,1)−E

[ kS∑
i=1+(k−1)S

pidi

]
≥ εS−1 ·

(
V (C,S)−E

[
pkSdkS | d⃗S−1 = 0

])
. (EC.17)

Write bkS for pkS multiplied by −2β1, given that d⃗S−1 = 0:

bkS =−2β1 ·ψ′
kS(p1, . . . , pkS−1, d1, . . . , d(k−1)S,0,0, . . . ,0︸ ︷︷ ︸

S− 1 zeros

).

Note that bkS (as well as all prices p(k−1)S+1, . . . , pkS−1) only depends on prices p1, . . . , p(k−1)S and

demand realizations d1, . . . , d(k−1)S up to selling season k−1; in particular, bkS does not depend on

the event {d⃗S−1 = 0}. Together with π∗
β(C,S) = β0/(−2β1) this implies

V (C,S)−E
[
pkSdkS | d⃗S−1 = 0

]
= π∗

β(C,S)hβ(π
∗
β(C,S))−E

[
pkS hβ(pkS) | d⃗S−1 = 0

]
=−β1E

[
(π∗
β(C,S)− pkS)

2 | d⃗S−1 = 0
]
=

−1

4β1

E
[
(β0 − bkS)

2
]
. (EC.18)

Combining (EC.17) and (EC.18) with infβ∈B
−1
4β1

= 1/3 yields

V (C,1)−E

[ kS∑
i=1+(k−1)S

pidi

]
≥ 1

3
εS−1E

[
(β0 − bkS)

2
]
. (EC.19)

Step 2. In this step we view β as a random variable β = (β0,β1), drawn from B according to

the probability density function λ, defined by

λ(β0, β1) =
256

3
cos2(8πβ0 − 11π/2), (β0, β1)∈B.

We prove a lower bound on the term Eλ

[
(β0− bkS)2

]
in (EC.19), where the subscript λ emphasizes

that we take expectation not only with respect to the distribution of the demand, but also with

respect to λ. To this end, we need to introduce some notation. Let D= (D1, . . . ,D(k−1)S), with Di

equal to the (random) demand in period i, 1≤ i≤ (k−1)S. Note that, conditional on β= β, Di is
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Bernoulli with mean hβ(pi) if ci > 0, and Di = 0 with probability one if ci = 0. For d∈ {0,1}(k−1)S,

let ci(d) = C −
∑

j<i,SSj=SSi
dj be the inventory available at the beginning of period i given the

vector of demand realizations d, and write c(d) = (c1(d), . . . , c(k−1)S(d)). Note that D takes values

in D = {d ∈ {0,1}(k−1)S | d ≤ c(d)}. The probability mass function f(d | β) of D, conditional on

β= β, is given by

f(d | β) =
(k−1)S∏
i=1,

ci(d)>0

hβ(pi(d))
di(1−hβ(pi(d))

1−di ,

where pi(d) is the price in period i, given demand realizations d1, . . . , di−1, under strategy ψ
′. For

d∈D, write

b(d | β) =−2β1ψ
′
kS(p1(d), p2(d), . . . , pkS−1, d1, . . . , d(k−1)S,0,0, . . . ,0︸ ︷︷ ︸

S− 1 zeros

)

for −2β1 times the price in period kS given that demand is zero in periods (k−1)S+1, . . . , kS−1

and demand in preceding selling seasons is given by d; all of this conditional on β= β.

We now prove a lower bound on

Eλ[(b(D |β)−β0)
2] =

∫ 6/8

5/8

∫ −9/16

−3/4

∑
d∈D

f(d | β0, β1)λ(β0, β1)(b(d | β0, β1)−β0)
2 dβ1dβ0.

By the mean-value theorem, there is a β̃1 ∈ [−3/4,−9/16] such that

Eλ[(b(D |β)−β0)
2] =

3

16

∫ 6/8

5/8

∑
d∈D

f(d | β0, β̃1)λ(β0, β̃1)(b(d | β0, β̃1)−β0)
2 dβ0.

For notational convenience we stop writing the dependence of f , λ, b on β̃1. Applying Cauchy-

Schwarz on the integral-sum and integrating by parts, we obtain

3

16

∫ 6/8

5/8

∑
d∈D

(b(d | β0)−β0)
2f(d | β0)λ(β0)dβ0 ·

∫ 6/8

5/8

∑
d∈D

( ∂

∂β0

log(f(d | β0)λ(β0))
)2

f(d | β0)λ(β0)dβ0

≥ 3

16

∫ 6/8

5/8

∑
d∈D

(b(d | β0)−β0)
( ∂

∂β0

log(f(d | β0)λ(β0))
)
f(d | β0)λ(β0)dβ0

=
3

16

∑
d∈D

b(d | β0)
(
f(d | 6/8)λ(6/8)− f(d | 5/8)λ(5/8)

)
− 3

16

∑
d∈D

β0

(
f(d | 6/8)λ(6/8)− f(d | 5/8)λ(5/8)

)
+

3

16

∫ 6/8

5/8

∑
d∈D

f(d | β0)λ(β0)dβ0 = 1, (EC.20)

since λ(5/8) = λ(6/8) = 0 and
∫ 6/8

5/8
λ(β0)dβ0 =

∫ 6/8

5/8
λ(β0, β̃1)dβ0 = 16/3.

We have ∫ 6/8

5/8

( ∂

∂β0

log(λ(β0))
)2

λ(β0)dβ0 =
4096π2

3
, (EC.21)
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and

E

[
∂

∂β0

log f(D | β0)

]
=
∑
d∈D

∂

∂β0

f(d | β0) = 0 for all β0, (EC.22)

and

E

[(
∂

∂β0

log f(D | β0)

)2
]
=E


 (k−1)S∑

i=1,
ci(D)>0

Di−hβ0(pi(D))

hβ0(pi(D))(1−hβ0(pi(D)))


2

=

(k−1)S∑
i=1,

ci(D)>0

1

hβ0(pi(D))(1−hβ0(pi(D)))
≤ (k− 1)S

ε2
, (EC.23)

which follows from

E

[
Di−hβ0(pi(D))

hβ0(pi(D))(1−hβ0(pi(D)))
· Dj −hβ0(pj(D))

hβ0(pj(D))(1−hβ0(pj(D)))

]
= 0

for all i ̸= j with ci(D)> 0, cj(D)> 0, and

E

[(
Di−hβ0(pi(D))

hβ0(pi(D))(1−hβ0(pi(D)))

)2
]
=

1

hβ0(pi(D))(1−hβ0(pi(D)))

for all i with ci(D)> 0.

Plugging (EC.21), (EC.22) and (EC.23) into (EC.20), we obtain the following lower bound:

Eλ[(b(D |β)−β0)
2]≥ 16

3

(∫ 6/8

5/8

∑
d∈D

( ∂

∂β0

log(f(d | β0)λ(β0))
)2

f(d | β0)λ(β0)dβ0

)−1

≥ 1

(k− 1)S/ε2 + 4096π2

3

. (EC.24)

Step 3. Combining (EC.19) and (EC.24), we obtain

sup
β(0)∈B

Regret(ψ,T )≥Eλ[Regret(ψ,T )]

≥
T∑
k=2

Eλ

[
V (C,1)−E

[ kS∑
i=1+(k−1)S

pidi

]]

≥
T∑
k=2

1

3
εS−1Eλ[(b(D1, . . . ,D(k−1)S |β)−β0)

2]

≥
T∑
k=2

1

3
εS−1 1

(k− 1)S/ε2 + 4096π2

3

≥K0 log(T ),

where we define

K0 =
1

3
εS−1 1

max{S/ε2, 4096π2
3

}
· 1

2 log(2)
.

This completes the proof.
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Proof of Theorem 4

The proof of Theorem 2 shows, for the base case of non-overlapping selling seasons with non-varying

capacity and season length, that the regret of the k-th selling season (k≥ 2) satisfies

Vβ(0)(C,1)−
kS∑

i=1+(k−1)S

E[pimin{di, ci}]≤K5

kS∑
t=1+(k−1)S

log(t)

t
, (EC.25)

for some K5 > 0 independent of k; viz. Equation (EC.12).

For any season j, estimation of β(0) to determine the prices during season j is based only on (i)

sales data preceding tj and (ii) sales data generated during season j (thus, all sales data generated

in other seasons overlapping with season j is neglected). Because of this assumption, we can use

the same MDP as the one constructed in the proof of Theorem 2 to show, analogous to (EC.25),

that the regret of the j-th selling season (tj > 1) satisfies

Vβ(0),Sj (Cj,1)−
Sj∑
s=1

E[pj,sdj,s]≤K5

Sj∑
s=1

log(tj − 1+ s)

tj − 1+ s

≤K5Sj log(tj)/tj

for some constant K5 = K5(Cj, Sj). The constant Kj(Cj, Sj) may depend on Cj and Sj. How-

ever, K̃5 := supj∈NSjK5(Cj, Sj) does not depend on (Cj, Sj), and K̃5 <∞ because it is simply a

supremum over a finite set (note that Cj and Sj are bounded). It follows that

Regret(Φ′(ϵ), T ) =
∑

j:tj−1+Sj<T

{
Vβ(0),Sj (Cj,1)−

Sj∑
s=1

E[pj,sdj,s]
}

≤
∑
j:tj=1

Vβ(0),Sj (Cj,1)+
∑

j:tj>1,tj−1+Sj<T

K̃5 log(tj)/tj

≤ Vβ(0),Sj (Cj,1) · sup
t∈N

|{j ∈N : tj = t}|+
T∑
i=2

∑
j:tj=i,tj−1+Sj<T

K̃5 log(tj)/tj

≤ Vβ(0),Sj (Cj,1) · sup
t∈N

|{j ∈N : tj = t}|+
T∑
i=2

K̃5 sup
t∈N

|{j ∈N : tj = t}| · log(i)/i

=O(log2(T )).

EC.2. Auxiliary Lemmas

Lemma EC.1. For all a∈R and β ∈B, define the function fa,β : [pl, ph]→R, f(p) = (p−a)h(β0+

β1p). Write ḟa,β(p) and f̈a,β(p) for the first and second derivative of fa,β(p) with respect to p, and

let p∗a,β = argmaxp∈[pl,ph]
fa,β(p). In addition, let

UB =
{
(β0, β1)∈×R× (−∞,0)

∣∣0<h(z)< 1 and ḣ(z)> 0, for all z = β0 +β1p, p∈ [pl, ph]
}
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and

UAB =
{
(a,β0, β1)∈R×UB

∣∣p∗a,β ∈ (pl, ph)
}
.

Then:

(i) For each (a,β) ∈ R×UB, p∗a,β is uniquely defined, and for each (a,β) ∈ UAB, ḟ(p∗a,β) = 0 and

f̈(p∗a,β)< 0.

(ii) On UAB, p∗a,β is continuously differentiable in a and β, strictly increasing in a, and nondecreas-

ing in β0 and β1. On R×UB, p∗a,β is nondecreasing in a, β0 and β1. In addition, on UAB, fa,β(p∗a,β)

is continuously differentiable in a and β, strictly decreasing in a, and strictly increasing in β0 and

β1.

(iii) There is a K0 > 0 such that fa,β(p
∗
a,β)− fa,β(p)≤K0(p− p∗a,β)

2 for all p ∈ [pl, ph] and (a,β) ∈

UAB.

Lemma EC.2. Let β ∈B be arbitrary.

(i) ∆Vβ(c, s)≥ 0 for all 1≤ c≤C and 1≤ s < S.

(ii) ph ≥ Vβ(1, s)≥ Vβ(1, s+1)≥ pl for all 1≤ s < S.

(iii) ∆Vβ(c, s)≥∆V (c+1, s) for all 1≤ c≤C and 1≤ s≤ S.

(iv) Vβ′(1, s)≤ Vβ(1, s), for all 1≤ s≤ S and all β′ = (β′
0, β

′
1)∈B with β′

0 ≤ β0 and β′
1 ≤ β1.

(v) π∗
β(C,S)≤ π∗

β(c, s)≤ π∗
β(1,1), for all 1≤ c≤C and 1≤ s≤ S.

(vi) π∗
β(c, s) is continuous in β, for all 1≤ c≤C and 1≤ s≤ S.

Lemma EC.3. Let k ∈N and δ > 0. If there are s, s′ ∈ {1, . . . , S} such that |ps+(k−1)S−ps′+(k−1)S| ≥

δ and c(s+(k− 1)S)c(s′ +(k− 1)S)> 0, then λmin(PkS)≥ λmin(P(k−1)S)+
1
2
δ2(1+ p2h)

−1.

Proof of Lemma EC.1

(i) Let (a,β)∈R×UB. We have

ḟ(p) = h(β0 +β1p)+ (p− a)β1ḣ(β0 +β1p)

and

f̈(p) = 2β1ḣ(β0 +β1p)+ (p− a)β2
1 ḧ(β0 +β1p),

for all p∈ [pl, ph]. Log-concavity of h implies

2− h(z)ḧ(z)

ḣ(z)2
= 1+

ḣ(z)2 −h(z)ḧ(z)

h(z)2
· h(z)

2

ḣ(z)2
= 1− h(z)2

ḣ(z)2
· ∂

2 log(h(z))

∂z2
> 0,
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for all z = β0 +β1p, p∈ [pl, ph]. It follows that all p∈ [pl, ph] with ḟ(p) = 0 satisfy

f̈(p) = 2β1ḣ(β0 +β1p)+
−h(β0 +β1p)

β1ḣ(β0 +β1p)
β2
1 ḧ(β0 +β1p)

= β1ḣ(β0 +β1p)
[
2− h(β0 +β1p)ḧ(β0 +β1p)

ḣ(β0 +β1p)2

]
< 0.

This implies that either fa,β(p) is strictly monotone on [pl, ph] (in which case the unique maximum

of fa,β(p) is on the boundary of [pl, ph], or fa,β(p) has a unique maximum p∗a,β on [pl, ph] with

f̈(p∗a,β)< 0.

(ii) Note that UAB is an open set, and that, for each (a,β) ∈ UAB, the equation ḟa,β(p) = 0 has

a unique solution p∗a,β ∈ (pl, ph) with f̈a,β(p
∗
a,β) < 0. By the Implicit Function Theorem (see e.g.

Duistermaat and Kolk 2004), p∗a,β is continuously differentiable in a and β on UAB, with derivatives

given by

∂p∗a,β
∂a

∣∣∣∣
a,β

=
−1

f̈a,β(p∗a,β)
· ∂ḟa,β(p)

∂a

∣∣∣∣∣
p∗
a,β

and
∂p∗a,β
∂βi

∣∣∣∣
a,β

=
−1

f̈a,β(p∗a,β)
· ∂ḟa,β(p)

∂βi

∣∣∣∣∣
p∗
a,β

, (i= 1,2).

For all (a,β)∈ UAB we have f̈a,β(p
∗
a,β)< 0,

∂ḟa,β(p)

∂a

∣∣∣∣∣
p∗
a,β

=−β1ḣ(β0 +β1p
∗
a,β)> 0, (EC.26)

∂

∂β0

ḟa,β(p)

∣∣∣∣
p∗
a,β

= ḣ(β0 +β1p
∗
a,β)+ (p∗a,β − a)β1ḧ(β0 +β1p

∗
a,β) (EC.27)

= ḣ(β0 +β1p
∗
a,β)

(
1−

h(β0 +β1p
∗
a,β)ḧ(β0 +β1p

∗
a,β)

ḣ(β0 +β1p∗a,β)
2

)
≥ 0,

and

∂

∂β1

ḟa,β(p)

∣∣∣∣
p∗
a,β

= p∗a,βḣ(β0 +β1p
∗
a,β)+ (p∗a,β − a)ḣ(β0 +β1p

∗
a,β)+ p∗a,β(p

∗
a,β − a)β1ḧ(β0 +β1p

∗
a,β)

(EC.28)

= p∗a,β
∂

∂β0

ḟ(p)

∣∣∣∣
p∗
a,β

+
1

−β1

h(β0 +β1p
∗
a,β)≥ 0,

using (p∗a,β − a)β1 =−h(β0 + β1p
∗
a,β)/ḣ(β0 + β1p

∗
a,β) and log-concavity of h. It follows that p∗a,β is

strictly increasing in a and nondecreasing in β0 and β1.
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If (a,β) ∈ R × UB and p∗a,β = pl, then ḟa,β(pl) ≤ 0. By (EC.26), ∂
∂a
ḟa,β(pl) ≥ 0, which implies

ḟa′,β(pl)≤ 0 and p∗a′,β = pl for all a
′ ≤ a. By (EC.27) and (EC.28),

∂

∂β0

ḟa,β(pl) = ḣ(β0 +β1pl)+ (pl− a)β1ḧ(β0 +β1pl)

≥ ḣ(β0 +β1pl)

h(β0 +β1pl)
· (ḟa,β(pl)−h(β0 +β1pl)) ·

ḧ(β0 +β1pl)h(β0 +β1pl)

ḣ(β0 +β1pl)2
≥ 0,

and

∂

∂β1

ḟa,β(pl) = pl
∂

∂β0

ḟa,β(pl)+
(ḟa,β(pl)−h(β0 +β1pl))

β1

≥ 0,

using ḟa,β(pl)−h(β0+β1pl)≤ 0 and log-concavity of h. This implies ḟa,β′(pl)≤ 0 and thus p∗a,β′ = pl

for all β′ ∈B with β′ ≤ β (in both coordinates). By similar arguments we can show that p∗a′,β′ = ph if

p∗a,β = ph, a
′ ≥ a and β′ ≥ β. These observations, combined with the fact that p∗a,β is nondecreasing

in a, β0 and β1 if p∗a,β ∈ (pl, ph), show that p∗a,β is nondecreasing in a, β0 and β1 on R×UB.

The assertions on fa,β(p
∗
a,β) follow by observing that

∂fa,β(p
∗
a,β)

∂a

∣∣∣∣
a,β

=
∂fa,β(p)

∂p

∣∣∣∣
p∗
a,β

·
∂p∗a,β
∂a

∣∣∣∣
a,β

+
∂fa,β(p)

∂a

∣∣∣∣
p∗
a,β

= 0−h(β0 +β1p
∗
a,β)< 0,

∂fa,β(p
∗
a,β)

∂β0

∣∣∣∣
a,β

=
∂fa,β(p)

∂p

∣∣∣∣
p∗
a,β

·
∂p∗a,β
∂β0

∣∣∣∣
a,β

+
∂fa,β(p)

∂β0

∣∣∣∣
p∗
a,β

= 0+ (p∗a,β − a)ḣ(β0 +β1p
∗
a,β) =

−h(β0 +β1p
∗
a,β)

β1

> 0,

and

∂fa,β(p
∗
a,β)

∂β1

∣∣∣∣
a,β

=
∂fa,β(p)

∂p

∣∣∣∣
p∗
a,β

·
∂p∗a,β
∂β1

∣∣∣∣
a,β

+
∂fa,β(p)

∂β1

∣∣∣∣
p∗
a,β

= 0+ (p∗a,β − a)p∗a,βḣ(β0 +β1p
∗
a,β) =

−h(β0 +β1p
∗
a,β)p

∗
a,β

β1

> 0,

again using (p∗a,β − a)β1 =−h(β0 +β1p
∗
a,β)/ḣ(β0 +β1p

∗
a,β).

(iii) Let K0 = sup(a,β,p)∈UAB×[pl,ph]
−f̈a,β(p)/2. Since f̈a,β(p) is defined and continuous on the

closure of UAB × [pl, ph] (which is compact) and since f̈a,β(p
∗
a,β)< 0 for all (a,β) ∈ UAB, it follows

that 0<K0 <∞. A Taylor expansion then implies

fa,β(p)≥ fa,β(p
∗
a,β)−K0(p− p∗a,β)

2,

using ḟa,β(p
∗
a,β) = 0 for all (a,β)∈ UAB.
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Proof of Lemma EC.2

Throughout the proof, fix β ∈B.

(i) If s= S then ∆Vβ(c,S) = 0 for c > 1 or c= 0, and Vβ(1, S) =maxp∈[pl,ph] ph(β0 + β1p)≥ 0. If

s < S then by backward induction on s,

∆Vβ(c, s) = (π∗
β(c, s)−∆Vβ(c, s+1))h(β0 +β1π

∗
β(c, s))+Vβ(c, s+1)

− (π∗
β(c− 1, s)−∆Vβ(c− 1, s+1))h(β0 +β1π

∗
β(c− 1, s))−Vβ(c− 1, s+1)

≥ (π∗
β(c− 1, s)−∆Vβ(c, s+1))h(β0 +β1π

∗
β(c− 1, s))+Vβ(c, s+1)

− (π∗
β(c− 1, s)−∆Vβ(c− 1, s+1))h(β0 +β1π

∗
β(c− 1, s))−Vβ(c− 1, s+1)

=∆Vβ(c, s+1))(1−h(β0 +β1π
∗
β(c− 1, s)))

+∆Vβ(c− 1, s+1))h(β0 +β1π
∗
β(c− 1, s))≥ 0.

(ii) By backward induction on s it follows that V (1, s)∈ [pl, ph] for all 1≤ s≤ S. This implies

Vβ(1, s) = h(β0 +β1π(1, s))π(1, s)+ (1−h(β0 +β1π(1, s)))V (1, s+1)

≥ h(β0 +β1V (1, s+1))V (1, s+1)+ (1−h(β0 +β1V (1, s+1)))V (1, s+1)

= V (1, s+1),

for all 1≤ s < S.

(iii) The proof is by backward induction on s, and mimics the proof of Proposition 5.2, page 238

of Talluri and van Ryzin (2004). For s= S the assertion follows immediately from ∆Vβ(1, s)≥ 0

and ∆Vβ(c, s) = 0 for all 2≤ c≤C. Now assume the assertion is true for s+1, and consider stage

s, 1≤ s < S. For 2≤ c≤C we have

∆Vβ(c+1, s)−∆Vβ(c, s)

=(π∗
β(c+1, s)−∆Vβ(c+1, s+1)h(β0 +β1π

∗
β(c+1, s))+Vβ(c+1, s+1)

−(π∗
β(c, s)−∆Vβ(c, s+1)h(β0 +β1π

∗
β(c, s))−Vβ(c, s+1)

−(π∗
β(c, s)−∆Vβ(c, s+1)h(β0 +β1π

∗
β(c, s))−Vβ(c, s+1)

+(π∗
β(c− 1, s)−∆Vβ(c− 1, s+1)h(β0 +β1π

∗
β(c− 1, s))+Vβ(c− 1, s+1)

≤(1−h(β0 +β1π
∗
β(c+1, s)))(∆Vβ(c+1, s+1)−∆Vβ(c, s+1))

+h(β0 +β1π
∗
β(c− 1, s)))(∆Vβ(c, s+1)−∆Vβ(c− 1, s+1))

≤0,
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using the optimality of π∗
β(c, s) and the induction hypothesis, and for c= 1 we have

∆Vβ(2, s)−∆Vβ(1, s)

≤(π∗
β(2, s)−∆Vβ(2, s+1)h(β0 +β1π

∗
β(2, s))+Vβ(2, s+1)

−(π∗
β(1, s)−∆Vβ(1, s+1)h(β0 +β1π

∗
β(1, s))−Vβ(1, s+1)

≤(1−h(β0 +β1π
∗
β(2, s)))(∆Vβ(2, s+1)−∆Vβ(1, s+1))≤ 0,

using the induction hypothesis.

(iv) The proof is by backward induction on s.

First observe that for all fixed p∈ [pl, ph] and 0≤ a≤ p,

∂

∂β0

{ph(β0 +β1p)+ a(1−h(β0 +β1p))}= (p− a)ḣ(β0 +β1p)≥ 0 (EC.29)

and

∂

∂β1

{ph(β0 +β1p)+ a(1−h(β0 +β1p))}= p(p− a)ḣ(β0 +β1p)≥ 0. (EC.30)

The optimality of π∗
β(1, S), together with (EC.29) and (EC.30) applied to p= π∗

β(1, S) and a= 0,

implies for any β′ = (β′
0, β

′
1)∈B with β′

0 ≤ β0 and β′
1 ≤ β1,

Vβ(1, S) =π
∗
β(1, S)h(β0 +β1π

∗
β(1, S))≥ π∗

β′(1, S)h(β0 +β1π
∗
β′(1, S))

≥π∗
β′(1, S)h(β

′
0 +β′

1π
∗
β′(1, S)) = Vβ′(1, S).

Let 1≤ s < S, and assume the assertion is true for s+1, . . . , S. Since ∆Vβ(1, s+1) = Vβ(1, s+1)∈

(pl, ph) by (ii), it follows that π∗
β(1, s)≥ Vβ(1, s+1). The optimality of π∗

β(1, s) and the induction

hypothesis, together with equations (EC.29) and (EC.30) applied to p= π∗
β(1, s) and a= Vβ(1, s+

1), imply for any β′ = (β′
0, β

′
1)∈B with β′

0 ≤ β0 and β′
1 ≤ β1,

Vβ(1, s) =π
∗
β(1, s)h(β0 +β1π

∗
β(1, s))+Vβ(1, s+1) · (1−h(βu+βuπ

∗
β(1, s)))

≥π∗
β′(1, s)h(β0 +β1π

∗
β′(1, s))+Vβ′(1, s+1) · (1−h(β0 +β1π

∗
β′(1, s)))

≥π∗
β′(1, s)h(β

′
0 +β′

1π
∗
β′(1, s))+Vβ′(1, s+1) · (1−h(β′

0 +β′
1π

∗
β′(1, s)))

=Vβ′(1, s).

(v) For all 1≤ s < S and 1≤ c≤C, we have by (repeated) application of (i) and (ii),

0≤∆Vβ(c, s+1)≤∆Vβ(1, s+1)≤∆Vβ(1,2).

Let p∗a,β be as in Lemma EC.1. Since

π∗
β(C,S) = p∗0,β, π∗

β(c, s) = p∗∆Vβ(c,s+1),β, and π∗
β(1,1) = p∗∆Vβ(1,2),β,
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it follows from Lemma EC.1(ii) that π∗
β(C,S)≤ π∗

β(c, s)≤ π∗
β(1,1).

For s= S, note that π∗
β(C,S) = π∗

β(c, s) = π∗
β(1, S) = p∗0,β ≤ p∗∆Vβ(1,2) = π∗

β(1,1), for all 1≤ c≤C.

(vi) Let 1≤ c≤C and 1≤ s≤ S. Since π∗
β(c, s) = p∗∆Vβ(c,s+1),β and π∗

β(c, s)∈ [π∗
β(C,S), π

∗
β(1,1)]⊂

(pl, ph) (Lemma EC.2(v) and equation (4)), we have (∆Vβ(c, s+ 1), β) ∈ UAB. The continuity as-

sertion then follows from Lemma EC.1(ii).

Proof of Lemma EC.3

For any 2×2 positive definite matrix A with eigenvalues 0<λ1 ≤ λ2, we have λ2 ≤ λ1+λ2 = tr(A),

det(A) = λ1λ2, and consequentially λ1 =det(A)/λ2 ≥ det(A)/tr(A). For a, b≤ ph we thus have

λmin

(
2 a+ b
a+ b a2 + b2

)
≥ 2a2 +2b2 − (a+ b)2

2+ a2 + b2
≥ (a− b)2

2(1+ p2h)
.

Since λmin(Pt) ≥ λmin(Pr) + λmin(Pr′) for all r, r′, t ∈ N with r + r′ = t (Bhatia 1997, Corollary

III.2.2, page 63), we have

λmin(PkS)≥ λmin(P(k−1)S)+λmin

 ∑
1≤i≤S,i/∈{s,s′}

(
1
pi+(k−1)S

)
(1, pi+(k−1)S)1ci+(k−1)S>0


+λmin

((
1
ps+(k−1)S

)
(1, ps+(k−1)S)1cs+(k−1)S>0 +

(
1
ps′+(k−1)S

)
(1, ps′+(k−1)S)1cs′+(k−1)S>0

)
≥ λmin(P(k−1)S)+

(ps+(k−1)S − ps′+(k−1)S)
2

2(1+ p2h)

≥ λmin(P(k−1)S)+
δ2

2(1+ p2h)
.


