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Emergent failures and cascades in power grids: a statistical physics perspective
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We consider complex networks where line failures occur indirectly as line flows are influenced
by fluctuating input at nodes, a prime example being a power grid where power is generated by
renewable sources. We examine the propagation of such emergent failures in the small noise regime,
combining concepts from statistical physics and the physics of power flow. In particular we charac-
terize rigorously and explicitly the configuration of inputs responsible for failures and cascades, and
analyze the propagation of failures, which often is not of nearest-neighbor type.

Cascading failures in complex networks received a lot
of attention in recent years [1–3, 10, 11, 13, 16–19, 26, 29–
32]. Despite proposing different mechanisms for the cas-
cade evolution, a common feature of all these works is
that the cascade is assumed to be triggered by some ex-

ternal initiating event or contingency. This initial contin-
gency, or attack, is chosen either (i) deliberately, e.g. tar-
geting the most vulnerable or crucial network component,
thus aiming for a worst-case analysis, or (ii) uniformly at
random, in order to understand the average reliability
of a network. This distinction led to the insight that
complex networks are resilient to random attacks, but
vulnerable to targeted attacks [8, 9, 19]. All attacks, ran-
dom or deterministic, lead to direct failure of the target
network line or node.

In the present work, we look at networks where line fail-
ures occur indirectly, by small fluctuations at the nodes.
Our inspiration is drawn from the power grid [5, 12], and
its potential vulnerability to fluctuations of renewable en-
ergy sources. Specifically, we look at the power grid as a
static noise-perturbed system, where nodes are attacked
globally but indirectly in the form of small fluctuations in
the power injections. Due to the interplay between net-
work structure, correlations in the power injections, and
power flow physics, these fluctuations may cumulate so
that line failures emerge, possibly triggering cascades.

This is highly relevant due to the increasing penetra-
tion of renewable energy sources in modern power grids
and their susceptibility to weather conditions. This de-
velopment poses several challenges to the design and con-
trol of such networks: intermittent and highly correlated
power generation causes random fluctuations in the line
power flows, possibly yielding outages and cascading fail-
ures. It is then of crucial importance to develop appro-
priate physical models that give fundamental insight.

The emerging nature of failures challenges the analysis.
To tackle this, we use ideas from statistical physics and
large deviations theory. We consider a stochastic model
for the network power injections similar to that proposed
in [28], introduce a positive real parameter ε describing
the magnitude of the noise and focus on the small-noise

regime where ε → 0. The parallel with statistical physics
allows us to determine the most likely configuration of
power injections that leads to failures and possibly cas-
cades. Our results are explicit, and yield fundamental
insights into the way cascades occur. Though we focus
on a power grid, our approach is applicable to any net-
work where fluctuations of the node inputs can trigger
line failures.

We now give a detailed model description. Our net-
work is represented by a connected graph G with n nodes
representing the buses and m directed edges modeling the
transmission lines. The stochastic fluctuations of the net
power injections around their nominal values µ ∈ R

n are
modeled as a multivariate n-dimensional Gaussian ran-
dom vector with mean µ

p ∼ Nn(µ, εΣp), (1)

with the convention that pi is the net power injected at
node i. Differently for the usual assumption of the fluctu-
ations being independent and identically distributed, we
can allow for heterogeneous standard deviations of the
power injections at the various nodes as well as for de-
pendencies between of the fluctuations in different nodes
by choosing a non-trivial covariance matrix Σp. This is
instrumental, for instance, to model positive correlations
due to geographical proximity of wind turbines and so-
lar panels. Gaussianity is consistent with atmospheric
physics [6, Section 1.7] and wind turbine statistics [4].

Assuming the mean power injection vector µ has zero
sum and using the DC approximation [5, Chapter 4], the
line power flows f are

f = V p, (2)

where V is a m×n matrix that encodes the power network
topology and weights (modeling susceptances).

The assumption that the mean power injection vector
µ has zero sum does not guarantee that the total net
power injected in the network

∑n

i=1 pi is equal to zero as
p is a random vector. This minor technical issue can be
easily resolved by assuming that the total power injection
mismatch is distributed uniformly among all the nodes
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(we account for this in the matrix V , for details see the
Supplemental Material).

In view of assumptions (1) and (2), the line power
flows f also follow a multivariate Gaussian distribution,
namely f ∼ Nm(ν, εΣf ). The vector ν = V µ ∈ R

m de-
scribes the average line flows, while the covariance matrix
Σf = V ΣpV T describes the correlations between line
flows taking in account both by the correlations of the
power injections (encoded by the matrix Σp) and those
created by the network topology due to the physics of
the power flows (Kirchhoff’s laws) via the matrix V .

A line overloads if the absolute amount of power flow-
ing in it exceeds a given line threshold. We assume that
such an overload immediately leads to the outage of the
corresponding line, to which we will henceforth refer sim-
ply as line failure. The failure of a line cause a global
redistribution of the line power flows according to Kirch-
hoff’s laws, which could trigger further failures and cas-
cades.

Without loss of generality, we assume that the matrix
V also contains information about the line thresholds, so
that f is the vector of normalized line power flows and
the failure of line ℓ is described by the event {|fℓ| ≥ 1}.

We consider a scenario where the power grid operates
on average safely within the limits by assuming that
maxℓ=1,...,m |νℓ| < 1 so that only large fluctuations of
line flows lead to failures, which correspondingly become
rare events as ε → 0. To assess how much a network is
“robust” against initiating failure and identify its most
vulnerable lines, we derive the exponential decay of prob-
abilities of single line failure events, namely {|fℓ| ≥ 1} for
ℓ = 1, . . . , m. The theory of large deviations [27] is con-
cerned precisely with calculating the exponential decay
of rare events probabilities, which are usually referred to
as rate functions or entropy functions. Since line flows
have been normalized, we are interested in evaluating the
rate function describing the failure event of any line ℓ in
a single point, i.e. 1, and we refer to the corresponding
value Iℓ as failure decay rate. Thanks to the fact that the
line power flow are Gaussian, we can explicitly calculate
Iℓ, see [27, Example 3.1], as

Iℓ = − lim
ε→0

ε logPε(|fℓ| ≥ 1) =
(1 − |νℓ|)2

2σ2
ℓ

, (3)

where σ2
ℓ = (Σf )ℓ,ℓ is the variance of the line flow fℓ.

Thus, for small ε, we can approximate the probability of
the emergent failure of line ℓ as

P(|fℓ| ≥ 1) ≈ exp(−Iℓ/ε), (4)

and that of the first emergent failure as

P(max
ℓ

|fℓ| ≥ 1) ≈ exp(− min
ℓ

Iℓ/ε). (5)

The decay rate Iℓ depends on how close the (normal-
ized) average power flow νℓ is to the threshold 1 and

how large the variance σ2
ℓ is. Note that σ2

ℓ accounts for
the power injections variability and correlations as well
as for how much the network possibly amplifies or miti-
gates them. Decay rates can be used to identify lines that
are most susceptible to the system’s noise, as illustrated
by Figure 1.

FIG. 1: Failure decay rates {Iℓ}ℓ=1,...,m heat-map for the
IEEE 118-bus test system. The likelihood of line failures is
visualized using a color gradient in which the red lines are the
most vulnerable ones.

Large deviations theory provides further analytic tools
that give valuable insight in understanding the way a spe-
cific rare event occurs. Conditionally on the failure of line
ℓ, the power injections configuration exhibits a sensible
(“large”) deviation from its mean that is characterized by

p(ℓ) = arg inf
p∈Rn : |eT

ℓ
V p|≥1

1

2
(p − µ)T Σ−1

p (p − µ). (6)

Provided that νℓ 6= 0, the solution is unique and reads

p(ℓ) = µ +
(sign(νℓ) − νℓ)

σ2
ℓ

√
ΣpV T eℓ ∈ R

n, (7)

where sign(a) = 1 if a ≥ 0 and −1 otherwise, while eℓ ∈
R

m is the vector with the ℓ-th entry equal to 1 and zeros
elsewhere (details in the Supplemental Material).

A key finding is that an emergent line failure does not
occur due to large deviations in the power injections of
the neighboring nodes, but as a cumulative effect of small
unusual fluctuations of the power injections in the entire
network “summed up” by power flow physics, see Fig-
ure 2.

Our approach allows to differentiate between different
types of line failures: by calculating the line power flow
profile f (ℓ) := V p(ℓ) corresponding to the most likely
power injections configuration leading to the failure of
line ℓ, we can assess whether the most likely way for fail-
ure of line ℓ to occur is as

• an isolated failure, if |f
(ℓ)
k | < 1 for any line k 6= ℓ,

or

• a joint failure of multiple lines together, if there

exists some other line k 6= ℓ such that |f
(ℓ)
k | ≥ 1.
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FIG. 2: Representation of the most likely power injections
configuration of the IEEE 118-bus test system leading to the
failure of the green line. Nodes size is adjusted proportionally
to their deviations from their mean, while their color describes
whether these deviations are positive (blue) or negative (red)

The resulting non-standard power injections configura-
tion p(ℓ) redistributes across an altered network G̃(ℓ) (a
subgraph of the original graph G) in which line ℓ (and
possible other lines, in case of a joint failure) has been
removed, possibly increasing the stress on the remaining
lines. The way this redistribution happens on G̃(ℓ) is
governed by the power flow physics and we assume that
it occurs instantaneously, without any transient effects.
The power flow redistribution amounts to compute a new
matrix Ṽ linking the power injections and the new power
flows. The most likely power flow configuration on G̃(ℓ)

after redistribution is then f̃ (ℓ) = Ṽ p(ℓ).
In the special case of an isolated failure (say of line ℓ) it

is enough to calculate only a vector φ(ℓ) ∈ R
m−1 of redis-

tribution coefficients, known as line overload distribution

factors (LODF) in power system engineering. Indeed,

the most likely power flow configuration on G̃(ℓ) after re-

distribution is equal to f̃ (ℓ) = (f
(ℓ)
k )k 6=ℓ ± φ(ℓ), where the

sign of the second term depends to the direction in which
the power flowed on line ℓ when the overload occurred.

The power flow configuration f̃ (ℓ) can be efficiently
used to determine which lines will fail with high probabil-
ity as a consequence of the original (possibly joint) failure,
by checking for which line indices k we have |f̃

(ℓ)
k | ≥ 1, see

the Supplemental Material for more details.
A rigorous probabilistic theory of emergent cascading

failures can be developed by combining these two ingre-
dients, the statistical physics results describing the most
likely power injections configuration leading to the first
failure and the power flow redistribution in the network
afterwards. In particular, this approach explains several
qualitative features of cascades in power grids that have
been observed empirically, the most prominent one being
the non-local propagation of failures.

We now illustrate how our framework can transpar-
ently explain this phenomenon using a ring network, in
which there are exactly two paths along which the power
can flow between any two nodes. Upon the failure of
line ℓ, the power originally flowing on line ℓ must now

flow on the unique remaining path in the opposite direc-
tion. This observation can be made rigorous by showing
that the redistribution coefficients are φ

(ℓ)
k = −1 for ev-

ery k 6= ℓ. It is intuitive that neighboring lines have
positive correlated power flows, while distant lines have
negative correlations as power flows must sum to zero by
Kirchhoff’s law. Hence, the most likely power injections
configuration that makes the power flow in line ℓ exceed-
ing the line threshold (say by becoming larger than 1)
also makes the power flows in the antipodal half of the
network negative. These will then go beyond the line
threshold (by becoming smaller than −1) after the power
flow redistributes, see Figure 3.

1
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FIG. 3: On the left, the most likely power injections p(ℓ) lead-
ing to the failure in black and power flows f (ℓ) in blue. On the
right, the situation after the power flow redistribution with

three subsequent failures and the values of f̃ (ℓ) = (f
(ℓ)
k −1)k 6=ℓ

in blue

Non-local failure propagation thus emerges from the in-
terplay between the power flow configuration just before
the line failure and the network structure, which deter-
mines the alternative paths along which power could flow
after the line failure. Figure 4 shows an example of non-
local failure propagation on a IEEE test system.

FIG. 4: The power injection configuration for the IEEE 118-
bus test system that most likely causes the failure of green
line after the power redistribution causes the red line to fail.

The most likely power injection configuration leading
to the emergent failure of a given line can be used in
combination with power flow redistribution routines to
generate the failures triggered by that initial scenario.
By repeating this procedure for all lines, one can obtain
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Graph % joint failures E(F ec
1 ) E(F ec

2 ) E(F cc
2 )

IEEE14 65.0% 4.40 8.40 4.95

IEEE30 97.6% 3.73 9.88 4.95

IEEE39 80.4% 4.78 11.39 4.85

IEEE57 88.5% 8.00 19.00 10.44

IEEE96 72.2% 6.70 21.47 7.31

IEEE118 91.6% 10.40 24.53 7.56

IEEE300 87.0% 18.13 39.19 7.42

Table I: Percentage of joint failures in emergent cascades and
average number of failed lines F1 up to stage 1 and F2 up to
stage 2 for emergent cascades (ec) and classical cascades (cc)
for some IEEE test systems.

insightful statistics of the first two stages of emergent
cascading failures (ec) and compare them with those of
classical cascading failures (cc), obtained using nominal
power injection values rather than the most likely ones
and deterministic removal of the initial failing line. For
these numerical experiments, line thresholds are taken to
be proportional to the average absolute power flow on the
corresponding lines, i.e. Cℓ = (1 + α)|νℓ| with α = 0.25,
and Σp to be the identity matrix.

As shown in Table I, emergent cascades have a very
high percentage of joint failures and an average number
of failures in the first cascade stage much larger than one
(in classical cascades only one line is removed in the first
cascade stage). Furthermore, the expected total number
of failed lines up to the second cascade stage is signifi-
cantly larger for emergent cascades than for classical cas-
cades. Lastly, failures propagate in emergent cascades on
average a bit less far than in classical cascades, as illus-
trated by the statistics of the failure jumping distance in
Table II.

Graph E(Dec) E(Dcc) cv(Dec) cv(Dcc)

IEEE14 0.388 0.987 0.600 1.050

IEEE30 0.754 1.198 0.879 1.115

IEEE39 0.898 1.633 0.891 1.149

IEEE57 1.210 2.507 0.863 1.415

IEEE96 1.450 1.781 0.879 0.946

IEEE118 0.679 1.638 0.745 1.169

IEEE300 1.408 2.580 0.806 1.081

Table II: Average and coefficient of variation of the failure
jumping distance D in stage 2 both for emergent cascades
(ec) and classical cascades (cc). The distance between two
lines is measured as the shortest path between any of their
endpoints.

Our approach also gives a constructive way to build
the so-called “influence graph” [14, 15, 22], in which a di-
rected edge connects lines ℓ and ℓ′ if the failure of the line
ℓ triggers (simultaneously or after redistribution) that of
line ℓ′. Figure 5 shows an example of influence graph

built using our large deviations approach. The cliques

of the influence graph (i.e. its maximal fully connected
subgraphs) can then be used to identify clusters of cosus-
ceptable lines [34], which are the lines that statistically
fail often in the same cascade event.

FIG. 5: The influence graph of the IEEE 118-bus test sys-
tem (in black) built using the first two stages of all cascade
realizations has a deeply different structure than the original
network (in blue)

The proposed viewpoint on endogenous cascade fail-
ures can have important practical implications in terms
of power system reliability: the most likely power injec-
tion configurations leading to (possibly joint) failures can
be leveraged to improve the current N −1 safety criterion
which uses nominal values of power injection configura-
tions.
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SUPPLEMENTAL MATERIAL

Power grid model and DC approximation

We model the power grid network as a connected
weighted graph G with n nodes, modeling buses, and m
edges, representing the transmission lines. Choosing an
arbitrary but fixed orientation of the transmission lines,
the network structure is described by the edge-vertex in-

cidence matrix B ∈ R
m×n definite entry-wise as

Bℓ,i =






1 if ℓ = (i, j),

−1 if ℓ = (j, i),

0 otherwise.

(8)

Denote by βℓ = βi,j = βj,i > 0 the weight of edge
ℓ = (i, j), corresponding to the susceptance of that trans-
mission line. By convention, we set βi,j = βj,i = 0 if there
is no transmission line between i and j. Denote by W the
m×m diagonal matrix defined as W := diag(β1, . . . , βm).
The network topology and weights are simultaneously en-
coded in the weighted Laplacian matrix of the graph G,
defined as L := BT WB or entry-wise as

Li,j =

{
−βi,j if i 6= j,∑

k 6=j βi,k if i = j.
(9)

Denote by J ∈ R
n×n the matrix with all entries equal

to one. The relation between any vector of power injec-
tions p ∈ R

n and the phase angles θ ∈ R
n they induce in

the network nodes can be written in matrix form as

θ = L+Sp, (10)

where L+ ∈ R
n×n is the Moore-Penrose pseudo-inverse of

L and the matrix S := I − 1
n

J ∈ R
n×n acts as a “global

slack”, ensuring that the net power injection is always
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identically zero. Exploiting the eigenspace structure of
L, L+ can be calculated as

L+ =
(

L +
1

n
J

)−1

−
1

n
J, (11)

In the literature, instead of L+ it is commonly used
another matrix L̂, calculated using the inverse of the
(n−1)× (n−1) sub-matrix obtained from L deleting the
first row and first column the matrix L. In our method
we are implicitly choosing an average value of zero as a
reference for the nodes voltage phase angles, while in the
classical one the first node is used as reference by setting
is phase angle equal to zero. We remark that these two
procedure are equivalent if one is interested in the line
power flows, as these latter depend only on the phase
angle differences.

We make use of the DC approximation, which is com-
monly used in high-voltage transmission system analy-
sis [20, 21, 25, 33], according to which the real power

flows f̂ are related with the phase angles θ via the linear
relation f̂ = Bθ. In view of (10), the line power flow f̂
can be written as a linear transformation of the power
injections p, i.e.

f̂ = WBL+Sp. (12)

It is convenient to look at the normalized line power flow

vector f ∈ R
m, defined component-wise as fℓ := f̂ℓ/Cℓ

for every ℓ = 1, . . . , m, where Cℓ is the line threshold,
which we define using the nominal average power injec-
tion vector µ and choosing a tolerance parameter α > 0
as

Cℓ = (1 + α)|(WBL+Sµ)ℓ|, ℓ = 1, . . . , m. (13)

The relation between line power flows and normalized
power flows can be rewritten as f = Cf̂ , where C is the
m×m diagonal matrix C := diag(C−1

1 , . . . , C−1
m ). In view

of (12), the normalized power flows f can be expressed
in terms of the power injections p as

f = V p, (14)

where V := CWBL+S ∈ R
m×n.

Large deviation principles for failure events

In the following statement we write fε to stress the
dependence of the line power flows on the noise parameter
ε.

Proposition 1 Assume that maxj=1,...,m |νk| < 1.

Then, for every ℓ = 1, . . . , m, the sequence of line power

flows (fε)ε>0 satisfies the large deviations principle

lim
ε→0

ε logP(|(fε)ℓ| ≥ 1) = −
(1 − |νℓ|)2

2σ2
ℓ

. (15)

The most likely power injection configuration p(ℓ) ∈ R
n

given the event {|(fε)ℓ| ≥ 1} is the solution of the varia-

tional problem

p(ℓ) = arg inf
p∈Rn : |eT

ℓ
V p|≥1

1

2
(p − µ)T Σ−1

p (p − µ). (16)

which, when νℓ 6= 0, can be explicitly computed as

p(ℓ) = µ +
(sign(νℓ) − νℓ)

σ2
ℓ

√
ΣpV T eℓ. (17)

The line power flows corresponding to the power injec-
tion configuration p(ℓ) can be calculated as

f (ℓ) = V p(ℓ) = ν+
(sign(νℓ) − νℓ)

σ2
ℓ

V ΣpV T eℓ ∈ R
m. (18)

The vector f (ℓ) can be also seen as the conditional expec-
tation of random line power flow vector fε conditional on
the failure event {fℓ = sign(νℓ)}, namely

f (ℓ) = E[fε | (fε)ℓ = sign(νℓ)], (19)

and thus, in particular, for every k = 1, . . . , m

f
(ℓ)
k = νk + (sign(νℓ) − νℓ)

Cov(fℓ, fk)

Var(fℓ)
. (20)

Note that the case νℓ = 0 has been excluded only for
compactness. Indeed, in that case the variational prob-
lem (16) has two solutions, p(ℓ,+) and p(ℓ,−). This is easily
explained as if the power flow on line ℓ has mean νℓ = 0,
then it is equally likely for the overload event {|fℓ| ≥ 1}
to occur as {fℓ ≥ 1} or as {fℓ ≤ −1} and the most likely
power injection configurations that trigger them can be
different.

The previous proposition immediately yields the large
deviation principle also for the first line failure event
{‖fε‖∞ ≥ 1}, which reads

lim
ε→0

ε logP(||fε||∞ ≥ 1) = − min
ℓ=1,...,m

(1 − |νℓ|)2

2σ2
ℓ

. (21)

Indeed, the decay rate for the event that at least one
line fails is equal to the minimum of the decay rates for
the failure of each line. The most likely power injections
configuration that leads to the event {‖fε‖∞ ≥ 1} is

p(ℓ∗) with ℓ∗ = arg minℓ=1,...,m
(1−|νℓ|)2

2σ2

ℓ

.

Proof of Proposition 1.

Let (Z(i))i∈N be a sequence of i.i.d. multivariate normal
vectors Z(i) ∼ Nm(ν, Σ), and let Sn := 1

n

∑n

i=1 Z(i) be
the sequence of the partial sums. By setting ε = 1

n
, it

immediately follows that that fε
d
= Sn. Denote g(p) :=
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1
2 (p − µ)T Σ−1

p (p − µ). Following [27, Section 3.D], we get

lim
ε→0

ε logP((fε)ℓ ≥ 1) = lim
n→∞

1

n
logP((Sn)ℓ ≥ 1) =

= − inf
p∈Rn : eT

ℓ
V p≥1

g(p) = −
(1 − νℓ)

2

2σ2
ℓ

, (22)

lim
ε→0

ε logP((fε)ℓ ≤ −1) = lim
n→∞

1

n
logP((Sn)ℓ ≤ −1) =

= − inf
p∈Rn : eT

ℓ
V p≤−1

g(p) = −
(−1 − νℓ)

2

2σ2
ℓ

. (23)

The optimizers of problems (22) and (23) are easily com-
puted respectively as as

p(ℓ,+) = µ +
1 − νℓ

σ2
ℓ

√
ΣpV T eℓ,

p(ℓ,−) = µ +
−1 − νℓ

σ2
ℓ

√
ΣpV T eℓ.

Note that trivially

inf
p∈Rn : |eT

ℓ
V p|≥1

g(p) =

= min
{

inf
p∈Rn : eT

ℓ
V p≥1

g(p), inf
p∈Rn : eT

ℓ
V p≤−1

g(p)
}

,

and thus identities (15) and (16) immediately follow.

Power flow redistribution

For every line ℓ define J (ℓ) to be the collection of lines
that fail jointly with ℓ as

J (ℓ) := {k : |f
(ℓ)
k | ≥ 1}. (24)

Let j(ℓ) = |J (ℓ)| its cardinality and note that j(ℓ) ≥ 1

as trivially ℓ always belongs to J (ℓ). Denote by G̃(ℓ) the
graph obtained from G by removing all the lines in J (ℓ).

Let us focus first on the case of the isolated fail-
ure of line ℓ, that is when J (ℓ) = {ℓ}. In this case

G̃(ℓ) = G(V, E \ {ℓ}) is the graph obtained from G after
removing the line ℓ = (i, j). Provided that the power in-
jections remain unchanged, the power flows redistribute
among the remaining lines. Using the concept of resis-

tance matrix R ∈ R
m×m and under the DC approxima-

tion, in [7, 23, 24] it is proven that alternative paths for

the power to flow from node i to j exists (i.e. G̃(ℓ) is still
connected) if and only if βi,jRi,j 6= 1. In other words,
βi,jRi,j = 1 can only occur in the scenario where line
ℓ = (i, j) is a bridge, i.e. its removal results in the dis-
connection of the original graph G in two components.
If G̃(ℓ) is still a connected graph, the power flows after
redistribution f̃ (ℓ) ∈ R

m−1 are related with the original
line flows f ∈ R

m in the network G by the relation

f̃
(ℓ)
k = fk + φℓ,ksign(νℓ), for every k 6= ℓ, (25)

where if ℓ = (i, j) and k = (a, b) the coefficient φℓ,k ∈ R

can be computed as

φℓ,k = φ(i,j),(a,b) := βk ·
Cℓ

Ck

·
Ra,j − Ra,i + Rb,i − Rb,j

2(1 − βℓRi,j)
,

(26)
It is easy to prove that in a ring network with homo-
geneous line thresholds and susceptances φℓ,k = −1 for
every ℓ 6= k.

More in general (hence also in the case of joint fail-

ures), the most likely power flow configuration f̃ (ℓ) after
redistribution in general can be written as

f̃ (ℓ) = Ṽ p(ℓ), (27)

where the (m−j(ℓ))×n matrix Ṽ can be constructed anal-
ogously to V , but considering the altered graph G(ℓ) in-
stead of G. The next proposition shows that it is enough
to look at the vector f̃ (ℓ) to determine whether a line
that survived at the first cascade stage (i.e. that did not
fail jointly with ℓ) will fail with high probability or not
after the power redistribution (e.g. at the second cascade
stage).

Proposition 2 For any δ ∈ (0, 1), define Q
(ℓ)
δ := {y ∈

R
m−j(ℓ) : |yi| ≤ 1 − δ}. The following statement hold:

i) If |f̃
(ℓ)
k | < 1 for any k 6∈ J(ℓ), then

lim
ε→0

ε logP(f̃ε /∈ Q̊
(ℓ)
0

∣∣ |(fε)ℓ| ≥ 1) < 0; (28)

ii) If there exists k 6∈ J(ℓ) such that |f̃
(ℓ)
k | ≥ 1, then

lim
ε→0

ε logP(f̃ε ∈ Q
(ℓ)
δ

∣∣ |(fε)ℓ| ≥ 1) < 0. (29)

Proof of Proposition 2. i) We have

P(fε /∈ Q̊(k)
∣∣ (fε)ℓ ≥ 1) =

P(fε /∈ Q̊(k), (fε)ℓ ≥ 1)

P((fε)ℓ ≥ 1)
,

Denote g(p) := 1
2 (p − µ)T Σ−1

p (p − µ). From large devia-
tions theory it readily follows that

lim
ε→0

ε logP((fε)ℓ ≥ 1) = − inf
p∈Rn : eT

ℓ
V p≥1

g(p) (30)

lim
ε→0

ε logP(f̃ε /∈ Q̊
(ℓ)
0 , (fε)ℓ ≥ 1) =

= − inf
p∈R

n : eT

ℓ
V p≥1,

∃ k 6∈J (ℓ) : |eT

k
Ṽ p|≥1

g(p). (31)

Define the corresponding decay rates as

Iℓ := inf
p∈Rn : eT

ℓ
V p≥1

g(p), Jℓ := inf
p∈R

n : eT

ℓ
V p≥1,

∃ k 6∈J (ℓ) : |eT

k
Ṽ p|≥1

g(p).

(32)
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Then we can rewrite

lim
ε→0

ε logP(f̃ε /∈ Q̊(k)
∣∣ (fε)ℓ ≥ 1) = −Jℓ + Iℓ. (33)

and, therefore,

lim
ε→0

ε logP(f̃ε /∈ Q̊(k)
∣∣ (fε)ℓ ≥ 1) = 0 ⇐⇒ Jℓ = Iℓ.

(34)
Notice that the feasible set of the minimization problem
(31) is strictly contained in that of the problem (30), im-
plying that Jℓ ≥ Iℓ.
Recall that we denoted by p(ℓ) the unique optimal solu-
tion of (30) and the corresponding line power flow vector

f̃ (ℓ) = Ṽ p(ℓ). Let p̂(ℓ) be an optimal solution of (31) and

define f̂ (ℓ) := Ṽ p̂(ℓ). Clearly p̂(ℓ) is feasible also for prob-
lem (30). If it was the case that Jℓ = Iℓ, then p̂(ℓ) would
be an optimal solution also for (30), and thus by unique-

ness (g(p) is strictly convex) p̂(ℓ) = p(ℓ) and f̂ (ℓ) = f̃ (ℓ).
But this leads to a contradiction, since by assumption

|f̃
(ℓ)
k | < 1 for all k 6∈ J (ℓ), while f̂ (ℓ) is by construc-

tion such that there exists k 6∈ J (ℓ) such that |f̂
(ℓ)
k | ≥ 1.

Hence Jℓ > Iℓ and we conclude that

lim
ε→0

ε logP(f̃ε /∈ Q̊(k)
∣∣ (fε)ℓ ≥ 1) < 0. (35)

The proof in the case (fε)ℓ ≤ −1 is analogous and so is
that of statement (ii).


