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ABSTRACT
We consider the queue lengths of a tandem queueing
network. The number of customers in the system can
be modelled as QBD with a doubly-infinite state-space.
Due to the infinite phase-space, this system does not
have a product-form solution. A natural approach to
find a numerical solution with the aid of matrix analytic
methods is by truncating the phase-space; however,
this approach imposes approximation errors. The goal
of this paper is to study these approximation errors
mathematically, using large deviations and extreme
value theory. We obtain a simple asymptotic error
bound for the approximations that depends on the
truncation level. We test the accuracy of our bound
numerically.

Keywords
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treme value analysis

1. INTRODUCTION
The algorithmic evaluation of performance measures

in stochastic networks is a central topic in applied
probability. Indeed, many processes of interest can
be modelled as Markov chains on a product space of
the form N × P ; the main coordinate of the Markov
chain, called the level, is integer-valued and the phase-
space P carries supplementary information. This par-
titioning is one of the key underlying ideas connecting
phase-type distributions with algorithms that are often
summarised as Matrix-Analytic Methods (MAM).

MAM are widely studied in the literature (see for ex-
ample [7, 8, 14, 16, 24, 26, 27, 28]) and can be effective
when the phase-space P is a finite set. This restriction
on P limits the applicability of MAM. For example,
it prevents the usage of heavy-tailed distributions as
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models for service times and it prevents the analysis of
queueing networks with infinite waiting rooms that do
not have a product form solution. Though the mathe-
matics behind MAM can be extended to this setting
using connections with the general theory of Markov
additive processes [2, 25], this does not seem to lead
to concrete numerical algorithms.

A natural idea to overcome this issue is simply the
truncation of the phase-space P so MAM become ap-
plicable. In the examples mentioned above, this en-
tails the approximation of heavy-tailed distributions by
phase-type distributions, truncating the waiting room
of a station in a queueing network, or approximat-
ing output processes by Markovian arrival processes.
These ideas have in fact been applied in many engi-
neering-oriented studies, a small sample of references
being [1, 10, 13, 17, 19, 20, 30].

Somewhat surprisingly, the impact of such approxi-
mations on the accuracy of the resulting numerical al-
gorithms is not well investigated mathematically. Clas-
sical bounds on truncation errors in Markov chains,
as in [32], do not offer much insight. They are not
aimed at the type of structured Markov chains encoun-
tered in queueing networks, where, for example, there
is no reason to truncate the level space. The goal of
this paper is to analyse mathematically the impact of
truncation by means of a rigorous analysis.

Motivated by this, we consider the queue lengths
of the MX/M/1→ •/M/1 tandem queueing network,
where customers arrive in batches in the first queue
(abbreviated as Q1). This tandem network is a useful
example of a non-product form queueing network (for
non-trivial batch sizes). The number of customers
in the system can be modelled as a two-dimensional
Markov chain, where the marginal distribution of the
number of jobs in the downstream queue (Q2) is the
hardest to obtain. For this reason, this coordinate will
be chosen to be the level. A numerical solution for
this model can be found by using MAM only if the
buffer size of either queue is finite. For this specific
model, we shall derive error bounds, with a particular
emphasis on the regime where the truncation level is
large, so that the resulting error is (hopefully) small.

Within the MAM literature, there have been several
related works. The model we consider in this paper
can be modelled as a Quasi-Birth and Death process
(QBD) with infinite phase-space. Formally, the invari-
ant distribution of such processes can be written as
πi = π0R

i, with R an infinite matrix [33]. A natural
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question is whether truncating the phase-space to a
size N leads to a matrix RN with the property that
RN → R. This is also related to the question how the
phase-space should be truncated: the transition prob-
abilities of the approximating Markov chain should be
augmented in such a way that the transition matrix
becomes stochastic. Background on this procedure
can be found in [6]. In our paper, we consider the
Partial Batch Acceptance Strategy (PBAS), which is
called last-column augmentation in [6]. Remarkably,
this procedure does not always imply that the invariant
distribution of the approximating Markov chain con-
verges to the original one, as illustrated by Example 4.1
of [6].

Even when the invariant distribution of the approxi-
mating Markov chain converges to the original invariant
distribution, one would like to know more, such as the
speed of convergence. Ideally, one would like to have
analytical guidelines on choosing the truncation level
in such a way that a pre-described accuracy level is
met. We are not aware of any analytic result in this
domain. The results that seem to come closest relate
to the robustness of large deviations approximations,
which are in turn related to the spectral radius ν(N) of
the matrix RN . There are studies showing that ν(N)
does not always converge to the spectral radius ν of
R [22, 31] and that the way the model is truncated
actually plays a role [23].

The question examined in the present paper is closest
to [6], which is to analyse the accuracy of the invariant
distribution after the truncation and analyse how the
error decreases when the truncation level increases.
Unlike the above-mentioned works, our asymptotic
techniques are based on large-deviations theory and
extreme value theory, as well as Markov renewal the-
ory. We believe that such asymptotic techniques are
promising and natural to consider in this domain and
have the potential to provide useful insight in the qual-
ity of numerical algorithms. This has been observed
and exploited in the simulation literature (especially
rare event simulation), but less so in the literature on
MAM.

Specifically, our approach is as follows. Using uni-
formisation, we model our tandem network as a discrete
time Markov chain, of which the state (0, 0) will be
taken as regeneration point. Let T(0,0) be the length

of a cycle and let MT(0,0) be the maximum number of
customers in the first queue during a cycle. Our first
step is to show that

0 ≤ P
(
X∞ ≥ x, Y∞ ≥ y

)
−P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

≤ E
[
T(0,0)

∣∣MT(0,0) ≥ N
]P(MT(0,0) ≥ N

)
ET(0,0)

, (1)

where X∞ and Y∞ denote the number of customers in
the upstream and downstream queue in steady state,

while P
(
X∞ ≥ x, Y∞ ≥ y

)
, P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
are the steady-state probabilities of the original and
the truncated system, respectively. The first inequality
is derived using a so-called Markov reward approach.
The second inequality is based on arguments from
regenerative process theory and essentially exploits
that the original and approximating process only differ
in cycles where the first queue has at least N customers.
These are rather standard arguments. The main work
is to analyse the asymptotic behaviour of each of the
three factors on the right hand side as N →∞.

The behaviour of P
(
MT(0,0) ≥ N

)
can be reduced

to studying the maximum queue length during a small
cycle, corresponding to the busy period of the first
queue in isolation. This reduction is possible using
extreme value theory for regenerative processes, as
surveyed in [3]. We show that we are allowed to do
this by relying on ideas that date back to [18], which we
adapt to the lattice case. Moreover, the term ET(0,0)

is treated in conjunction with P
(
MT(0,0) ≥ N

)
.

The behaviour of E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

is more
challenging to derive. In this paper, we give a heuris-
tic treatment, using intuition from large deviations
theory. For a formal proof we have to decompose
T(0,0) into several (up to four) pieces, each of which we
analyse using different methods. Key ingredients are
optional stopping, the key Markov renewal theorem
(for Markov additive processes with countable back-
ground state space) and various estimates of stopped
(Markov) random walks; see e.g. [12]. Details of the
proof, which is omitted for space considerations, can
be found in the PhD thesis [34].

Our analysis results in a simple asymptotic estimate
of the error of the form KNe−γN , where K and γ can
be described explicitly in terms of the basic parameters
of the model. Although our expression for γ in the
leading term e−γN seems optimal, we do not exclude
that the linear term N may be removed using different
arguments that are beyond the scope of this study. A
numerical investigation shows that our bound may be
overly conservative. Still our study seems the first to
establish an asymptotic error estimate in this context.

The rest of the paper is organised as follows. In
Section 2, we introduce the model under consideration
and we present some additional preliminary results. In
Section 3, we derive the error bounds. Furthermore, in
Section 4, we derive a Cramér-Lundberg approximation
for the probability P

(
MT(0,0) ≥ N

)
, which we treat

together with the mean cycle length ET(0,0). We ex-
plain intuitively in Section 5 its asymptotic behaviour.
Furthermore, in Section 6, we perform numerical ex-
periments to check the quality of the asymptotic error
bound and we summarise our conclusions.

2. MODEL DESCRIPTION AND PRE-
LIMINARIES

We consider an MX/M/1→ •/M/1 tandem queueing
network. Customers arrive in batches according to a
Poisson stream with rate λ and join Q1. A customer
that finishes service in Q1 moves to Q2. The service
times for each queue are exponential with rates µ1 and
µ2, respectively. The customer leaves the system after
finishing his service in Q2. We describe the system by
a two-dimensional Markov chain (Xn, Yn) ∈ N2, where
Xn and Yn are the queue lengths at the nth jump
epoch of Q1 and Q2, respectively, including customers
in service in either queue. For this system, we are
interested in evaluating the distribution of its weak
limit (X∞, Y∞).

We denote by B a generic r.v. of the batch sizes
and we assume its mean EB =

∑∞
i=1 ibi <∞, where

bi = P(B = i), i = 1, 2, . . . Furthermore, for stability
reasons, we assume that λEB/µi < 1, i = 1, 2. In
addition, w.l.o.g., we consider a uniformised version
of this chain: λ + µ1 + µ2 = 1 and we denote the
netput between the (n− 1)st and the nth jump epoch
in the 1st and 2nd queue as Zn and Wn, respectively.



Namely,

Zn =


0, w.p.µ2,

−1, w.p. µ1,

m, w.p. λbm,m = 1, 2, . . . ,

(2)

and

Wn =


−1, if Zn = 0,

1, if Zn = −1 and Xn−1 > 0,

0, otherwise.

(3)

Recall that due to uniformisation, λ, µ1, µ2 < 1 and
the rates λ, µ1, µ2 can be seen as probabilities.

The number of customers Xn in Q1 satisfies the
following Lindley recursion

X0 = 0, Xn+1 =
(
Xn +Zn+1

)+
, n = 0, 1, . . . (4)

Thus, {Xn}n=0,1,... evolves as a reflected at 0 discrete
version of a random walk with increments Z1, Z2, . . .
Similarly, the number of customers Yn in Q2 satisfies

Y0 = 0, Yn+1 =
(
Yn +Wn+1

)+
, n = 0, 1, . . . (5)

The initial state of the system is (X0, Y0) = (0, 0)
and we define the first return time to the origin as
T(0,0) = inf{n ≥ 1 : Xn = Yn = 0 | X0 = Y0 = 0},
which is also called cycle length. Therefore, since we
have a two-dimensional positive recurrent irreducible
Markov chain, it is known that

P
(
X∞ ≥ x, Y∞ ≥ y

)
=

1

ET(0,0)

E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y)

]
.

From Eqs. (2) and (3), we can easily verify that the
two-dimensional Markov chain (Xn, Yn) is a QBD with
an infinite phase-space P = {0, 1, . . . }, which does not
admit a product form solution according to Theorem
15.1.1 of [24] unless B = 1.

State space truncation
As we mentioned in Section 1, the number of customers
in Q1 and Q2 correspond to the phase and level, re-
spectively, of the QBD introduced earlier. Thus, we
truncate the buffer size of Q1 at level N , which we call
truncation level. More precisely, the arriving customers
are admitted in the system by applying the PBAS; i.e.
if the batch size is larger than the number of available
free positions in the buffer (which has capacity N − 1),
then we accept only so many customers until there are
in total N customers waiting in front of Q1 and we
dismiss the remaining ones.

Moreover, we denote by
(
X

(N)
n , Y

(N)
n

)
∈ (NN ×N)

the approximate Markov chain associated with the

truncation level N and by
(
Z

(N)
n ,W

(N)
n

)
the corre-

sponding netput process, where Nn = {0, 1, . . . , n}
⊂ N. Observe that definitions (3)–(5) are still valid
(but with the notation adapted to the truncated sys-

tem) for the processes X
(N)
n , Y

(N)
n , and W

(N)
n , respec-

tively. However, the definition of Z
(N)
n+1 takes two alter-

native forms depending on the value of X
(N)
n . More

precisely, if X
(N)
n = N , then

Z
(N)
n+1 =

{
0, w.p. λ+ µ2,

−1, w.p. µ1,
(6)

while in case X
(N)
n = N −m, m ∈ {1, . . . , N}

Z
(N)
n+1 =


0, w.p. µ2,

−1, w.p. µ1,

k, w.p. λbk for k < m,

m, with probability λ
∑∞
i=m bi.

(7)

We also define T
(N)

(0,0) = inf{n ≥ 1 : X
(N)
n = Y

(N)
n = 0 |

X
(N)
0 = Y

(N)
0 = 0} as the first return time to the

origin for the truncated system. Finally, we denote
by m = (m1,m2) the two-dimensional states of the
Markov chain (Xn, Yn), where m1 and m2 are non-
negative integers. If P is the transition probability
matrix of the Markov chain and P (N) its truncation,
then ∀m,n with m1, n1 ∈ NN−1 we have that

P (N) (m,n) = P (m,n) . (8)

In other words, the entries in the two matrices P (N)

and P coincide as long as both two-dimensional Markov
chains (original and truncated) live within the bound-
aries. This property is very useful in Section 3, where
our error bounds for the approximation of the joint
queue length distribution stem from this truncation.

Note that to analyse the terms P
(
MT(0,0) ≥ N

)
and E

[
T(0,0)

∣∣ MT(0,0) ≥ N
]

(see Sections 4–5), an
exponential change of measure is first required. Thus,
we conclude this section by providing some results with
respect to such an exponential change of measure.

Exponential change of measure
We define the cumulant generating function (c.g.f.) of
the r.v.’s Z1, Z2, . . . as

κ(α) : = lnEeαZ1 = ln
(
µ2 + µ1e

−α + λEeαB
)

= ln
(
µ2 + µ1e

−α + λMB(α)
)
, (9)

whereMB(α) is the moment generating function (m.g.f.)
of the batch sizes. We assume that there exists a solu-
tion γ > 0 to the Lundberg equation κ(γ) = 0 such that
κ′(γ) <∞. The parameter γ is called the adjustment
coefficient and conditions for its existence can be found
in [5].

If F is the distribution of the Z
D
= Zn, we define F̆ to

be the probability distribution with density eγx w.r.t.
F , i.e. F̆ (dx) = eγxF (dx) (obvious notations like κ̆(α),

P̆, Ĕ, etc, are used for quantities under the exponential
change of measure). It can easily be verified that, under
this exponential change of measure, the arrival rate of
the batches is equal to λ̆ = λ+ (1− e−γ)µ1, the batch
size distribution is equal to

P̆(B = n) =
eγn

MB(γ)
P(B = n), n = 1, 2, . . . , (10)

and the customers are served with rates µ̆1 = e−γµ1

and µ̆2 = µ2 in each server, respectively. In addition,
it holds that ĔZ = λ̆ĔB − µ̆1 > 0.

We continue in the next section by providing the
main results of the paper.

3. MAIN RESULTS
In this section, we present error bounds for the prob-

ability P
(
X∞ ≥ x, Y∞ ≥ y

)
. In particular, we prove

the two inequalities in Eq. (1). The left hand side of

Eq. (1) shows that P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
always



underestimates the exact probability. We formulate
this result in the following proposition.

Proposition 1. If N is the truncation level of the
buffer size of Q1, then ∀(x, y) ∈ N2 it holds:

P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
≤ P

(
X∞ ≥ x, Y∞ ≥ y

)
. (11)

Proof. The proof is based on Markov reward tech-
niques and is omitted for space considerations, for
details see Section 5.3 of [34].

To prove the right hand side of Eq. (1), we split the
steady state probability as follows

P
(
X∞ ≥ x, Y∞ ≥ y

)
=

1

ET(0,0)

(
I + II

)
, (12)

I = E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl < N

)]
,

II = E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl ≥ N

)]
.

Let MT(0,0) = max1≤n≤T(0,0)
Xn be the maximum

queue length of the first queue before the first return
time to the state (0, 0). We show in Proposition 2

that term I is related to P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
,

while term II evolves in some sense like MT(0,0) . With
the aid of Eq. (12), we derive an upper bound for
P
(
X∞ ≥ x, Y∞ ≥ y

)
.

Proposition 2. An upper bound for the probability
P
(
X∞ ≥ x, Y∞ ≥ y

)
is as follows:

P
(
X∞ ≥ x, Y∞ ≥ y

)
≤ P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

+E
[
T(0,0)

∣∣MT(0,0) ≥ N
]P(MT(0,0) ≥ N

)
ET(0,0)

.

Proof. We discuss the terms I and II separately.
Term I: If we set ζ = inf{n ≥ 0 : Xn ≥ N} and ζ(N) =

inf{n ≥ 0 : X
(N)
n ≥ N}, then from Eq. (8) it holds that

(Xn : n < ζ)
D
= (X

(N)
n : n < ζ(N)). Observe that

T(0,0) = T
(N)

(0,0) when 1
(

max1≤l≤T(0,0)
Xl < N

)
= 1.

Thus, since term I contains the sample paths of the
truncated system, we obtain:

I =E

[ T (N)
(0,0)∑
n=1

1
(
X

(N)
n ≥ x, Y

(N)
n ≥ y

)

× 1

 max
1≤l≤T (N)

(0,0)

X
(N)
l < N

]

≤E
[ T (N)

(0,0)∑
n=1

1
(
X

(N)
n ≥ x, Y

(N)
n ≥ y

)]
=ET

(N)
(0,0)

P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
. (13)

Term II: For the second term, we have

II = E

[ T(0,0)∑
n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl ≥ N

)]

≤ E

[
T(0,0) · 1

(
max

1≤l≤T(0,0)

Xl ≥ N

)]
= E

[
T(0,0) · 1

(
MT(0,0) ≥ N

) ]

= E
[
T(0,0)

∣∣MT(0,0) ≥ N
]
P
(
MT(0,0) ≥ N

)
. (14)

Combining Eqs. (12), (13), and (14), we obtain

P
(
X∞ ≥ x, Y∞ ≥ y

)
≤
ET

(N)

(0,0)

ET(0,0)

P
(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

+
P
(
MT(0,0) ≥ N

)
ET(0,0)

E
[
T(0,0)

∣∣MT(0,0) ≥ N
]
. (15)

Finally, we need to show that ET(0,0) ≥ ET
(N)

(0,0).

Observe that ET(0,0) and ET
(N)

(0,0) are by definition the

expected first return times to the state (0, 0) in the
original and the truncated system, respectively. By
the strong law of large numbers for ergodic Markov

chains [21], ET
(N)

(0,0) = 1/P
(
X

(N)
∞ = 0, Y

(N)
∞ = 0

)
and ET(0,0) = 1/P

(
X∞ = 0, Y∞ = 0

)
. Therefore, it

is sufficient to show that the inequality P
(
X

(N)
∞ =

0, Y
(N)
∞ = 0

)
≥ P

(
X∞ = 0, Y∞ = 0

)
holds. This

inequality follows from a cost structure approach; for
details see Section 5.5 of [34].

Observe that the term E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
×

P
(
MT(0,0) ≥ N

)
/ET(0,0) is involved in the upper

bound of the steady state probability, according to
Proposition 2. All factors involved in this term are
hard to evaluate exactly. Instead, we examine the
behaviour of these factors as N →∞.

With the aid of the exponential change of mea-
sure presented in the previous section, in Section 4,
we provide asymptotic results for P

(
MT(0,0) ≥ N

)
,

which is treated in conjunction with the factor ET(0,0).
Asymptotic results for the conditional expectation
E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

are derived in Section 5.
The expression for the asymptotic upper bound is then
formulated in Theorem 1. With f(N) . g(N) we
denote lim supN→∞ f(N)/g(N) ≤ 1.

Theorem 1. As N →∞,

P
(
X∞ ≥ x, Y∞ ≥ y

)
−P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

. KNe−γN ,

where

K =

(
1

µ2 − λEB
·
( (µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
(µ1 − µ2)+

µ1 − λEB

)
+

1

λ̆ĔB − µ̆1

+
1

µ1 − λEB

)
× C1e

γ

(
1− λEB

µ1

)
,

and C1 is a constant calculated from Proposition 3.

We devote Sections 4–5 to the proof of Theorem 1.

4. ASYMPTOTIC APPROXIMATION
FOR THE MAXIMUM

In this section, we derive an asymptotic approxi-
mation for P

(
MT(0,0) ≥ N

)
with the aid of extreme

value theory. Observe that the number of customers in
the first queue {Xn}n=0,1,... forms a one-dimensional
Markov chain on its own. Therefore, we denote as
T0 = inf{n ≥ 1 : Xn = 0 | X0 = 0} the return time
to the origin of the first queue only and we define
MT0 = max1≤n≤T0 Xn. We show that the probability
P
(
MT(0,0) ≥ N

)
exhibits a similar tail behaviour with



the probability P
(
MT0 ≥ N

)
. Thus, we first discuss

the behaviour of P
(
MT0 ≥ N

)
as N →∞.

We define τ1 = inf{n : Xn ≥ N}. Observe that
P
(
MT0 ≥ N

)
= P(τ1 < T0). Moreover, the Lindley

process Xn has the same transition mechanism as the
random walk Un = Z1 + · · ·+ Zn, with U0 = 0, until
T0, because Xn does not hit zero before T0. Thus,
it also holds that {τ1 < T0} = {τ(N − 1) < τ−},
and consequently P

(
MT0 ≥ N

)
= P(τ(N − 1) < τ−),

where τ(N) = inf{n ≥ 1 : Un > N} is the time of first
passage to level N ≥ 0 and τ− = inf{n ≥ 1 : Un ≤ 0}
is the first (weak) descending ladder epoch. We also
denote the first (strict) ascending ladder epoch as τ+ =
inf{n ≥ 1 : Un > 0}. If B(N) = Uτ(N) − N is the
overshoot of N , then a variant of the Cramér-Lundberg
approximation is already known for the probability
P
(
MT0 ≥ N

)
by Corollary XIII.5.9 in [4]. Therefore,

we provide the following lemma without proof.

Lemma 1. If B(N) converges in P̆ as N →∞, say
to B(∞), then

eγ(N−1)
P
(
MT0 ≥ N

)
= Ĕe−γB(N−1)

1 (τ1 < T0)→ C1,

where C1 = P̆(τ− =∞)C0 and C0 = Ĕe−γB(∞).

We continue by showing that the tail behaviour of
P
(
MT(0,0) ≥ N

)
is similar to the tail behaviour of

P
(
MT0 ≥ N

)
. For this purpose, note that both T(0,0)

and T0 are regeneration cycles for the Markov chain

Xn. Thus, if we denote MT0
i

D
= MT0 as the maximum

of Xn in the ith cycle T0, where MT0 is the generic

cycle maximum, and similarly M
T(0,0)

i

D
= MT(0,0) as

the maximum of Xn in the ith cycle T(0,0), we have
that [3, 18, 29]

max
i=1,..., n

ET(0,0)

M
T(0,0)

i ≈ max
i=1,...,n

Xi ≈ max
i=1,..., n

ET0

MT0
i .

(16)
We now make this precise. From Lemma 1, we

know the tail behaviour of MT0 . Therefore, we can
derive asymptotics for the maximum maxi=1,...,nXi.
As such, Eq. (16) indicates that in order to study the
asymptotic behaviour of MT(0,0) , we first need to study
the asymptotics of maxi=1,...,nXi, as n→∞.

Classically, extreme value theory focuses on finding
constants an, bn, such that

maxi=1,...,nXi − an
bn

D→ H, (17)

where H is some non-degenerate r.v. and
D→ denotes

convergence in distribution. This is equivalent to show-
ing that the probability P

(
maxi=1,...,nXi ≤ anx+ bn

)
has a limit, for any x. In our case, we prove that given
the tail behaviour of MT0 from Lemma 1, there exist
constants an, bn, such that (17) holds with H following

the Gumbel function Λ(x) = e−e
−x

, x ∈ R [15].
The asymptotic behaviour of P

(
MT(0,0) ≥ N

)
is

given in the following theorem. To establish this asymp-
totic result, we use Eq. (16) to first derive the asymp-
totics of maxi=1,...,nXi, as n→∞, and later connect
these asymptotics with P

(
MT(0,0) ≥ N

)
.

Theorem 2. It holds that

P
(
MT(0,0) ≥ N

)
∼
ET(0,0)

ET0
C1e

−γ(N−1), N →∞,

where C1 is defined in Lemma 1.

Proof. The proof is based on the above-mentioned
approach and is omitted for space limitations; see
Section 5.5 of [34] for details.

Observe that only the constants C0 and C1 are miss-
ing in order to find a closed-form asymptotic relation
for the fraction P

(
MT(0,0) ≥ N

)
/ET(0,0) that appears

in Eq. (1). We can find explicit expressions for these
constants by using properties of lattice random walks.
Thus, we conclude this section by providing explicit
expressions for C0 and C1. We also calculate ET0.

Observe that both C0 and C1 require the evaluation
of the limiting distribution of the overshoot B(∞),
which can be found through the ladder height distribu-
tion with respect to the probability measure P̆.

Let now H̆+ be the distribution function of the as-
cending ladder height with respect to P̆ and l̆+ be its
corresponding mean. In addition, we denote by H̆−
the (weak) descending ladder height distribution with

respect to P̆. We have the following result.

Lemma 2. For a discrete-time lattice random walk,
B(∞) exists with respect to P̆. In this case, C0 is given
in terms of the ladder height distributions by

C0 = Ĕe−γB(∞) =

(
1− ‖H+‖

)(
1− ‖H̆−‖

)
(eγ − 1)κ′(γ)

,

where ‖H+‖ = P(τ+ <∞) and ‖H̆−‖ = P̆(τ− <∞).

Proof. To prove this lemma, we need the limiting
distribution of the overshoot, which can be obtained
by adapting the renewal theorem to the lattice case,
and we use Wald’s equation; see Section 5.5 of [34] for
details.

Proposition 3. For a downward skip-free (or left-
continuous) random walk, the constant C1 in Lemma 1
is equal to

C1 = −EZ
ĔZ

(1− e−γ)e−γµ1 = −κ
′(0)

κ′(γ)
(1− e−γ)e−γµ1.

Proof. From Lemma 2, it is evident that we need
to find exact values for 1−‖H+‖ and 1−‖H̆−‖. Observe
that Un is downward skip-free random walk.

We start with the evaluation of 1− ‖H+‖. We set
fn = P(Z = n). Under the probability measure P,
it holds that EZ = κ′(0) < 0. Therefore, according
to Corollary VIII.5.6 [4], ‖H+‖ = 1 +EZ/f−1, where
from Eq. (3) we know that f−1 = P(Z = −1) = µ1.

By the definition of the descending ladder height
distribution, we have that

1− ‖H̆−‖ = P̆(τ− =∞) = P̆(Un ≥ 1 for all n ≥ 1).

We set now f̆n = P̆(Z = n) and T1 = inf{n : Un = −1}.
Since Un is a downward skip-free random walk with
an upward drift under the probability measure P̆, it
holds from Proposition 11 in [9] that

1− ‖H̆−‖ = f̆−1 ·
1− P̆(T1 <∞)

P̆(T1 <∞)
.

Thus, it is left to find the probability P̆(T1 <∞), which
according to Lemma 2 in [9] is equal to the unique value

s ∈ (0, 1) that satisfies the equation ĔsZ = 1. Using
κ(α) = 0, we get from Proposition XIII.1.1 in [4] that

ĔeαZ1 = eκ(α+γ). Therefore, Ĕe−γZ = eκ(0) = 1, and
consequently s = e−γ ∈ (0, 1) is the unique solution to



the equation ĔsZ = 1. As a result, P̆(T1 <∞) = e−γ .

We also find f̆−1 = P̆(Z = −1) = e−γµ1. Combining
all the above and Lemma 1, the result is immediate.

We turn now our attention to the evaluation of ET0.
Observe that ET0 = 1/P

(
X∞ = 0

)
. By applying Lit-

tle’s law for a busy server we find that ρ1 = λEB/µ1,
with λEB being the average number of customers
entering the system per time unit. Consequently,
P
(
X∞ = 0

)
= 1 − ρ1 = 1 − λEB/µ1. Thus, we

have proven:

Lemma 3. ET0 =
(
1− λEB/µ1

)−1
.

5. THE CONDITIONAL MEAN
RETURN TIME

Our last goal is to study the asymptotic behaviour
of the conditional expectation E

[
T(0,0)

∣∣MT(0,0) ≥ N
]
.

More precisely, we study the limit lim
N→∞

1

N
E
[
T(0,0)

∣∣
MT(0,0) ≥ N

]
. We take a heuristic approach, using

intuition from large deviations theory. A formal proof
can be found in Section 5.6 of [34]. Define

τ1: the time at which Q1 reaches or exceeds level
N . Recall that it was defined in Section 4 as
τ1 = inf{n : Xn ≥ N}.

τ2: the return time to 0 in Q1 after τ1. Formally,
τ2 = inf{n > τ1 : Xn = 0}.

τ3: the first time Q2 empties after τ2. Formally,
τ3 = inf{n > τ2 : Yn = 0}. The time τ3 can
either coincide with or happen before T(0,0).

We describe heuristically how both queues behave,
given that the number of customers in Q1 has reached
a very high level before the first return time T(0,0) to
the empty state (0, 0). Our description is based on
intuition from large deviations theory and fluid limits.
We write a ≈ b to denote that a is approximately
equal to b, without explicitly determining the degree
of accuracy. Denote by #Q1 and #Q2 the number of
customers in Q1 and Q2.

Observe that the behaviour of Q1 is not affected by
what happens in Q2. On the other hand, we recognise
three different cases for the behaviour of Q2 that arise
from the relation between the rates µ1, µ2, and µ̆1. We
summarise all cases in Figure 1. We start by discussing
the behaviour of Q1.

To describe the behaviour of Q1 until time T(0,0),
given that #Q1 reached or exceeded level N , we apply
arguments from large deviations theory. According
to Section 2, this event happens by a change of mea-
sure, from P to P̆. Since N →∞, the time its takes
Q1 from τ1 to reach its maximum value (something
above N) before T(0,0) is negligible (compared to τ1).
Moreover, until τ1, the departure rate of the customers
is asymptotically equal to µ̆1 because the system is
overloaded (λ̆ĔB > µ̆1). On the other hand, after τ1,
all the rates are back to normal. As we have already
mentioned, τ2 is the point at which the Q1 reaches 0
after reaching its maximum value within cycle T(0,0).
Since during the time interval [τ1, τ2] Q1 is always full,
the departure rate of customers equals µ1.

Next, we describe the behaviour of Q2 before T(0,0).

Case 1: µ1 < µ2

It always holds that µ̆1 < µ1 (see Section 2 for the
definition of µ̆1). Therefore, in this case, Q2 behaves
asymptotically as a stable M/M/1 queue in all time
intervals (but with different arrival rates of customers).
Thus, the number of customers in Q2 is bounded by
the number of customers in a stable M/M/1 queue
until T(0,0). Consequently, the time interval [τ2, T(0,0)]
is negligible compared to [0, τ2] and we expect that
E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
≈ E

[
τ2

∣∣ MT(0,0) ≥ N
]
,

where from Euclidean geometry we can easily verify
that (see Figure 1)

τ1 ≈
N

λ̆ĔB − µ̆1

, τ2 − τ1 ≈
N

µ1 − λEB
. (18)

Case 2: µ̆1 < µ2 < µ1

Since µ̆1 < µ2, Q2 behaves asymptotically as a stable
M/M/1 queue with arrival rate µ̆1 and service rate
µ2 until time τ1. This means that the number of
customers in Q2 at time τ1 is bounded by the number
of customers in the latter M/M/1 queue. From τ1
onwards, the arrival rate of customers in Q2 is equal to
µ1, which is greater than the service rate µ2. Therefore,
the number of customers in Q2 grows linearly with rate
µ1 − µ2 up until τ2. After τ2, the output rate from
Q1 is equal to λEB and the customers in Q2 reduce
linearly with rate λEB − µ2 until the queue empties
at time τ3. We calculate (see Figure 1)

h2 ≈ (µ1 − µ2)
N

µ1 − λEB
,

τ3 − τ2 ≈
h2

µ2 − λEB
=

µ1 − µ2

µ2 − λEB
·

N

µ1 − λEB
.

(19)

Obviously, in this case E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
≈

E
[
τ3
∣∣MT(0,0) ≥ N

]
, because the interval [τ3, T(0,0)] is

negligible compared to [0, τ3].

Case 3: µ2 < µ̆1 < µ1

Since µ̆1 > µ2, the number of customers in Q2 grows
linearly with rate µ̆1 − µ2 up until time τ1. For the
remaining time intervals, Q2 behaves in a similar man-
ner as in Case 2. Therefore, E

[
T(0,0)

∣∣MT(0,0) ≥ N
]
≈

E
[
τ3
∣∣MT(0,0) ≥ N

]
, where (see Figure 1)

h1 ≈ (µ̆1 − µ2)
N

λ̆ĔB − µ̆1

,

h2 ≈ h1 + (µ1 − µ2)
N

µ1 − λEB
,

τ3 − τ2 ≈
h2

µ2 − λEB
.

(20)

To prove rigorously the behaviour of Q2 in [0, τ2], we
use renewal theory arguments and the relation between
P and P̆. For the time interval [τ2, τ3], the idea is to
see our two-dimensional Markov chain as a Markov
Additive Process (MAP) [11]. Finally, for [τ3, T(0,0)],
we use that the hitting time of the origin is finite since
the latter is a recurrent state for our ergodic Markov
chain.

6. NUMERICAL EXPERIMENTS
We perform now numerical experiments to check the

quality of our asymptotic upper error bound (a.u.e.b.)
in Theorem 1. As an example, we use geometric
batch sizes, where we calculate the exact queue lengths
through simulation.
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Figure 1: The asymptotic behaviours of Q1 and Q2, given that #Q1 before T(0,0) exceeded the
truncation level N , for all 3 different cases; solid black for Case 1, dash-dotted red for Case 2, and
solid blue for Case 3.

Suppose that P(B = n) = β(1− β)n−1, n = 1, 2, . . .
We find γ = − ln

(
(λ + µ1 − βµ1)/µ1

)
and the rates

with respect to the measure P̆ take the form λ̆ = βµ1

and µ̆1 = λ + µ1 − βµ1. We also find that ĔB =
(λ+µ1− βµ1)/λ. Finally, using Proposition 3, we also
calculate that C1 = (βµ1 − λ)λ/βµ1. Combining these
expressions, we calculate the a.u.e.b. in Theorem 1.

For our numerical experiments, we focus on the
marginal distribution of Q2. We performed extensive
numerical experiments for various combinations of the
parameters. We present here the combinations {β =
0.5, ρ1 = 0.7, ρ2 = 0.8} (Case 2), since qualitatively
they represent the most pessimistic case among the
various combinations we tested. Observe that due
to the uniformisation λ + µ1 + µ2 = 1 of the rates,
there exists a unique combination of {λ, µ1, µ2} given
a combination {β, ρ1, ρ2}. For this combination, we
choose a number of truncation levels and we calculate
for each N the truncated approximation P

(
Y

(N)
∞ ≥ y

)
,

y ≥ 0, with MAM.
To check the quality of our a.u.e.b., we compare it

with the differences between the exact and the trun-
cated approximation of the marginal distribution of
Q2. We summarise our findings in Table 1.

From the table, we observe that the truncated ap-
proximations become more accurate as N increases,
which is in accordance with our expectations. The
same also holds for the asymptotic bound. However,
the bound is at least 5 times greater than the observed
error, which makes it rather conservative.

Similar results were derived in [34], where we per-
formed additional numerical experiments for the special
case of single arrivals of customers.

7. CONCLUSIONS
The conclusions we can draw for the asymptotic up-

y N = 10 N = 20 N = 30 N = 50
5 0.128921 0.025536 0.005539 0.000755
10 0.123171 0.029763 0.006556 0.000517
15 0.086761 0.026535 0.006317 0.000349
20 0.054454 0.020534 0.005432 0.000237
25 0.032516 0.014616 0.004358 0.000221
30 0.018948 0.009835 0.003276 0.000195

a.u.e.b. 0.617191 0.243018 0.018839 0.004636

Table 1: Observed errors between the original
marginal distribution of Q2 and its QBD ap-
proximation for ρ1 = 0.7 and ρ2 = 0.8. The last
line corresponds to the a.u.e.b for each N .

per bound are summarised as follows: (i) The bound
depends only on the truncation level and the param-
eters of the model; i.e. it is uniform in the values x

and y of P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
. (ii) The bound is

rather conservative. Moreover, the bound becomes
more conservative as the truncation level increases.
(iii) Given that it seems impossible to improve upon
the leading factor e−γN , the conservative behaviour
that our bound exhibits is probably attributed to the
factor N .

The above observations indicate that further mod-
ifications are important to improve the accuracy of
the asymptotic upper bound. One possible direction
is to make the bound dependent on the values x and
y. Most importantly, since the factor N of the bound
seems to be more responsible for the latter’s conserva-
tive behaviour, further improvements should be sought
towards the removal of this factor from the bound.
Nonetheless, the advantage of our bound is clear, in
that it makes the procedure of truncating the back-
ground state rigorous while leading to an asymptotic
expression that converges to zero.
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