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ABSTRACT
Inspired by reliability issues in electric transmission networks, we
use a probabilistic approach to study the occurrence of large fail-
ures in a stylized cascading line failure model. Such models cap-
ture the phenomenonwhere an initial line failure potentially trig-
gers massive knock-on effects. Under certain critical conditions,
the probability that the number of line failures exceeds a large
threshold obeys a power-law distribution, a distinctive property
observed in empiric blackout data. In this paper, we examine the
robustness of the power-law behavior by exploring under which
conditions this behavior prevails.

1. Introduction

Cascading failure models are used to describe systems of interconnected compo-
nents where initial failures possibly trigger subsequent failures. Despite the decep-
tively simple nature, these models capture essential features of failure processes in
many settings. The abstract nature allows for a wide range of applications, such as
material science, traffic networks and earthquake dynamics[1]. Ourmain inspiration
comes from major power outages in energy networks.

Due to various advances, such as the rise of renewable sources, the complexity
and volatility in power transmission systems has increased tremendously in the last
15 years[2]. Large blackouts of electric power transmission systems have catastrophic
consequences in modern-day society. Examples include the Northeast Blackout of
2003, the India Blackout of 2012 and the Turkey Blackout of 2015. The analysis
of severe blackouts has therefore become a crucial part of transmission grid plan-
ning and operations[3,4]. Cascading failure is a key mechanism in the occurrence
of severe blackouts[5]. Typically the cascading phenomenon involves long and quite
complex sequences of line failures, making the evaluation of the failure propagation
extremely difficult.

CONTACT F. Sloothaak f.sloothaak@tue.nl Department of Mathematics and Computer Science, Eindhoven
University of Technology, P.O. Box ,  MB Eindhoven, The Netherlands.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lstm.
Published with license by Taylor & Francis ©  F. Sloothaak, S. C. Borst, and B. Zwart.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/./), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

https://doi.org/10.1080/15326349.2017.1383165
https://crossmark.crossref.org/dialog/?doi=10.1080/15326349.2017.1383165&domain=pdf&date_stamp=2017-11-16
mailto:f.sloothaak@tue.nl
http://www.tandfonline.com/lstm
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 F. SLOOTHAAK ET AL.

A possible method for analyzing involved and complex cascading failure
models is a rare-event simulation methodology, such as importance sampling and
splitting[4,6,7]. Importance sampling is an approach that changes the sampling distri-
bution tomake the rare event more probable, and thus easier to estimate. Re-scaling
then recovers the correct probability. However, choosing an appropriate sampling
distribution requires specific knowledge about the model. On the other hand, the
splitting method is based on exploring system states that make the rare-event more
likely. The idea is to create multiple copies for these settings in order to generate
more occurrences of the event. For practical purposes, this technique is particularly
advantageous as it allows for an analysis of fairly complex systems without the need
of a deeper understanding of the model dynamics. We refer the reader to Ref.[8]

for an excellent literature overview of rare-event simulation techniques applied to
power systems.

Although the splitting method has proven to be indispensable in analyzing
cascading power failures, they provide little structural insights in the cascading
failure mechanism in severe blackouts. There is a strong need for a deeper, more
fundamental understanding of the current power grid[9]. Therefore, we take a
macroscopic view by capturing some distinctive features of severe blackouts in elec-
tric transmission systems. By taking a high-level approach, we capture the major
features leading to severe blackouts while preserving the tractability of the model.
This allow for a mathematical approach that justifies the results in a rigorous way.
The central insightsmay then become a useful complement tomore detailedmodels
and simulations.

In this paper, we consider a stochastic load-dependent cascading line fail-
ure model. Specifically, we consider a star-topology where load demands,
imposed on the lines, are initially exceeded by the line capacities. A possible
cascading failure effect is initiated by a disturbance that additionally loads all lines.
When the load demand outstrips the capacity on a particular line, it fails. Each line
failure induces changes in the load distribution in the surviving network, possibly
causing further lines to trip in succession and triggering knock-on effects. The cas-
cading failure propagation continues until each line in the surviving network has
enough capacity to meet its load demand again. Since the evolution of power sys-
tem operation, upgrade, maintenance and design is much slower than a blackout
cascade, it is reasonable to assume a fixed system during the progression of any par-
ticular cascade[10]. That is, the capacities remain fixed throughout the cascading
failure process. A detailed description of the model is given in Section 2.

Historically, empirical data analyses of large blackouts in North America show
that the blackout size is heavy-tailed and has a power-law dependence[11]. Work in
Refs.[12–14] suggests that there is a critical loading regime where the blackout size
follows a power-law distribution, which indicates that the tail decay rate is much
slower than exponential. This heavy-tailed property reflects a significant risk of large
blackouts occurring.

Power-law behavior appears in a wide range of contexts and applications. On
one hand, motivated by empirical data, there are many models where the basic
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model primitives are assumed to follow a power-law distribution. Well-known
examples include insurance risk models with heavy-tailed claim sizes[15], queues
with heavy-tailed traffic characteristics[16] and random graphs with power-law
degree distributions[17]. On the other hand, power-law dependence potentially
arises from intrinsic model dynamics, even when the underlying random variables
do not necessarily have heavy-tailed distributions. For instance, power-law behavior
appears as the solution of random equations of multiplicative nature[18,19].

In the present paper, we are specifically interested in understanding the funda-
mental mechanism that leads to such power-law behavior in cascading failure mod-
els. We quantify the risk of cascading failures by the probability that the number
of failed lines exceeds some threshold. The main starting point is the analytically
tractable failure model introduced by Dobson et al.[5,11], where power-law behavior
is observed for the blackout size under critical conditions. It turns out that thismodel
corresponds to a particular setting in our framework.We study the robustness of the
power-law behavior for this setting, and extend the results in two directions. First,
we investigate whether the power-law behavior prevails when the threshold depends
on the network size under similar assumptions on the surplus capacities and the
load surge function as in Ref.[5] This extension provides a rigorous justification for
approximations such as the probability that the network partially breaks down, e.g.
the probability that at least 20% of all lines fail. Second, we allow for a wider range of
settings where the power-law distribution for the number of line failure is preserved.
This is outlined in the main result of our paper stated in Theorem 3.2. Whether a
setting falls within our framework depends on three factors, namely the distribution
of the difference between the capacity and the initial load demand, the load surge
after every failure and the threshold itself. We conclude by considering particular
examples and identifying the possible thresholds that yield power-law behavior.

The remainder of this paper is organized as follows. In Section 2, we describe
the cascading failure model. We explain our main results in detail in Section 3,
and defer the proofs to the Appendices. In Section 4, we consider illustrative exam-
ples that identify thresholds k where the power-law behavior prevails. We present
a few concluding remarks and discuss possible directions for further research in
Section 5.

2. Model description

We consider a star-topology consisting of N lines, see Figure 1. Each line has a
limited capacity for the amount of load it can carry before it trips. To simplify
the model, we consider a setting where all lines are statistically indistinguishable.
We assume that the network is initially stable, i.e. all lines have capacities that
exceed their initial load.We observe that whatmatters is the difference between load
demands and line capacities, which we refer to as the surplus capacity. We assume
that the differences between the initial load demands and capacities are random
variables that are independent and identically distributed, and denote these by CN

i
for line i. Moreover, we assume that its distribution function F(·) is continuous with
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Figure . Illustration of cascading line failure process with AN = 2.

a strictly positive density in zero.We will see that the continuity assumption ensures
we can use the theory of order statistics in our analysis. The reason for assuming a
strictly positive density will become apparent in Section 4.

In order to trigger a possible cascading failure effect, we include an initial distur-
bance that causes all lines to be additionally loaded. When the capacity on a line is
exceeded by its load demands, that line fails. Every line failure causes an additional
loading of the surviving lines in the network, which we refer to as the load surge. We
assume that the load surge can be described through a deterministic non-decreasing
function. We write lN (1) for the initial load surge on all lines, and lN (i) for the total
load surge on the surviving lines when i − 1 lines have failed. That is, all random-
ness is captured by the differences between the initial load demands and the line
capacities, while the load surges are deterministic. This is a modeling choice that
serves to create a setting with a single source of randomness.

Our model does not explicitly account for many complexities that exist in real
electric power transmission systems, such as the length of time between failure
occurrences or the network topology that can lead to non-identical line capacity
distributions or non-equal load distribution. Yet, this model does capture two
important features of large blackouts: the initial disturbance loading the system and
the cascading line failure mechanism.

The main objective in this paper involves the probability that AN , the number
of failed lines in the network, exceeds a certain threshold k as N grows large. To
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express this in mathematical terms, we take a closer look at the cascading failure
process. After the dummy line has tripped, a next line will fail when the smallest
surplus capacity is exceeded by the load surge lN (1). If so, another line will fail if
and only if lN (2) exceeds the second smallest surplus capacity and so forth. Denote
by CN

(1) ≤ CN
(2) ≤ · · · ≤ CN

(N) the ordered surplus capacities. The above observation
yields that the blackout size is given by

AN = max
{
k ≤ N : CN

(i) ≤ lN (i), i = 1, . . . , k
}

(1)

and AN = 0 if CN
(1) > lN (1). The probability that the blackout size exceeds an

integer k is thus given by

P(AN ≥ k) = P
(
CN
(i) ≤ lN (i), i = 1, . . . , k

)
. (2)

Equation (2) can be rewritten into an expression that is easier to analyze. Let
UN
(i) denote the standard uniformly distributed ordered statistics for i = 1, . . . ,N.

Since F(·) is continuous, it follows from (2.4.1) in Ref.[20] that (F(CN
(i)))i=1,...,N and

(UN
(i)))i=1,...,N are equal in distribution. Therefore, (2) is equivalent to

P(AN ≥ k) = P
(
UN
(i) ≤ F(lN (i)), i = 1, . . . , k

)
, (3)

where F ◦ lN is a non-decreasing function in the number of failed lines with values
in [0, 1]. Much is known on uniformly distributed order statistics (see e.g. Section
4.7 in Ref.[20]), such as the density of every order statistic. In turn, this property can
be exploited to derive the asymptotic behavior of (3) in our framework.

Our framework can be seen as an extension of the model presented by Dobson
et al.[5]. Their model comprises loaded components that are independent and iden-
tically uniformly distributed, where components fail when a fixed load limit (larger
than all possible initial loads) is exceeded. Due to the properties of the uniform
distribution, it is shown in Ref.[5] how one can normalize this case to one with stan-
dard uniformly distributed initial loads and a fixed load limit of one. In this normal-
ized setting, there is an initial disturbance additionally loading all components by
θ/N and every line failure causes a load surge of λ/N on the remaining components.
The probability that the number of failed linesAN

d exceeds a threshold k is thus given
by

P(AN
d ≥ k) = P

(
UN
(N−i+1) +

θ + (i − 1)λ
N

≥ 1, i = 1, . . . , k
)

= P

(
1 −UN

(N−i+1) ≤ θ + (i − 1)λ
N

, i = 1, . . . , k
)

= P

(
UN
(i) ≤ θ + (i − 1)λ

N
, i = 1, . . . , k

)
.

Comparing this to (3), we observe this is equivalent to the case in our framework
with

F(lN (i)) = θ + (i − 1)λ
N

, i ≥ 1 (4)
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with constants θ > 0 and λ > 0. The main result in Ref.[5] is that the number of
failures follows a quasi-binomial distribution. Moreover, it is indicated that asN →
∞, the quasi-binomial distribution converges to a generalized Poisson distribution.
This latter distribution also appears in the setting of branching processes, where it
corresponds to the number of offspring. In Ref.[11], Dobson et al. use the branch-
ing process relation as an approximation for the blackout size, and note that λ = 1
corresponds to a critical window where a power-law dependence manifests itself. In
fact, it yields the approximation

P(AN = k) ≈ θ√
2π

k−3/2 (5)

for all large k independent of N.
In view of (4), we refer to the particular setting in Ref.[5] with λ = 1 as the affine

case. In this paper, we aim to find a broader set of scenarios for which this power-law
behavior prevails. First, we will extend to thresholds that allow for a dependency on
the network size. Second, we will explore how the assumptions on the load surge
function and the surplus capacity distribution can be relaxed while preserving the
power-law behavior for the line failure distribution.

3. Tail of the number of line failures

The main object of interest in this paper is the probability that the number of failed
linesAN exceeds network-dependent thresholds k := k(N) that satisfy both k → ∞
and N − k → ∞ as N → ∞. For compactness, we suppress the dependence of the
threshold k on N in the remainder of the paper.

3.1. Affine case

We first examine the robustness of the power-law behavior of the affine model. As
indicated in Section 2, this covers all cases with

F(lN (i)) = θ + i − 1
N

(6)

for some constant θ > 0. That is, the compositionF ◦ lN needs to be linearly increas-
ing with step increments 1/N. For example, Equation (6) holds for standard expo-
nentially distributed surplus capacities, i.e. F(x) = e−x for all x ≥ 0, and load surge
function lN (i) = − log((θ + i − 1)/N) for all 1 ≤ i ≤ k.

In Ref.[11], it is shown that a branching process approach yields the approxima-
tion (5). This method essentially uses a double limit approach: first the asymptotic
behavior is derived as N → ∞ for fixed k, followed by considering the behavior as
k → ∞. Specifically, (5) originates from the result

lim
k→∞

k3/2 lim
N→∞

P(AN = k) = θ√
2π
. (7)
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Table . Asymptotic behavior affine case.

k fixed k growing k = N − l , l fixed

P(AN = k) θ (θ+k)k−1

k! e−(θ+k) θ√
2π

k−3/2√
1−k/N

θ (l−θ )l
l! e−(l−θ )N−1

We provide a mathematically rigorous derivation of (7) in Appendix B. However,
this approach does not allow thresholds that grow large with the network size, such
as k = αN with α ∈ (0, 1). Our result accounts for the dependency between k and
N, and justifies an approximation for such thresholds as well.

Proposition 3.1. Let F ◦ lN be as in (6) with constant θ > 0 for each N ∈ N. Let k� :=
k�(N) and k� := k�(N) be functions of N with k� ≥ k�, k� → ∞ and N − k� → ∞
as N → ∞. Then,

lim
N→∞

sup
k∈[k�,k�]

∣∣∣∣k3/2√1 − k/NP(AN = k)− θ√
2π

∣∣∣∣ = 0. (8)

For network-size dependent thresholds k, we thus obtain the approximation

P(AN = k) ≈ θ√
2π

1√
1 − k/N

k−3/2. (9)

Particularly, if k = αN for some fixed coefficient α ∈ (0, 1), our approximation
leads to a different prefactor than the branching process approximation (5). The
proof of Proposition 3.1 is given in Appendix B.

Dobson et al. show in Ref.[5] that the blackout size for the affine case follows a
quasi-binomial distribution, and the proof of Proposition 3.1 relies heavily on the
explicit form of that distribution function. We note that the same technique can be
used for fixed k, which yields the generalized Poisson distribution, or for k = N − l
with l > θ a fixed integer. This gives rise to the results summarized in Table 1.

Proposition 3.1 can be used to derive the asymptotic behavior of the tail of the
blackout size distribution.

Theorem 3.1. Let F ◦ lN be of the form (6) with constant θ > 0 for each N ∈ N, and
k := k(N) < N a positive function of N such that k → ∞ and N − k → ∞ as N →
∞. Then,

lim
N→∞

√
kN

N − k
P(AN ≥ k) = 2θ√

2π
.

Theorem 3.1 yields the approximation

P(AN ≥ k) ≈ 2θ√
2π

√
1 − k/Nk−1/2. (10)

We conclude from Theorem 3.1 that the power-law behavior for the affine model
extends to thresholds k that are appropriately growing functions of the network size.
We refer the reader to Appendix B for the proof.
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3.2. Main result

Theorem 3.1 shows that the probability to exceed a network-dependent threshold
has a power-law distribution when the composition F ◦ lN is of the specific form
(6). To understand why this leads to power-law behavior, recall (3). In expecta-
tion, the difference between two consecutive uniformly distributed order statistics
is 1/(N + 1) ≈ 1/N. When F ◦ lN is of the form as in (6), the step increments are
1/N and thus (nearly) equal to the expected difference of two consecutive uniform
order statistics. It is this critical correspondence that leads to heavy-tailed behavior
for the exceedance probability.

The goal of this paper is to determine what other forms of the composition F ◦
lN lead to power-law behavior for the number of failed lines. To do so, we include
additive perturbations with respect to (6). Specifically, we consider compositions
F ◦ lN of the form

F(lN (i)) = θ + i − 1 +�(i,N)
N

, (11)

where �(·, ·) represents the perturbation with respect to the corresponding affine
case.We impose suitable conditions on themagnitude of the perturbations such that
the power-law behavior prevails as N → ∞.

Intuitively, these conditions can be understood as follows. The limiting behavior
of the perturbations �(i,N) can be of any (finite) size as long as i is fixed. Yet, for
larger values of i ≤ k that grow to infinity withN, the perturbations need to become
much smaller. In fact, they need to be zero in this domain. These conditions ensure
that for most values up to k, the step increment of F ◦ lN still equals the expected
difference of two consecutive uniform order statistics, and consequently remains in
the framework where power-law behavior appears.

Theorem 3.2. Let k := k(N) < N be a positive function of N such that k → ∞ and
N − k → ∞ as N → ∞. Let F ◦ lN be as in (11) with�(·, ·) satisfying the following
properties:
(A) �(i,N) → �(i) pointwise as N → ∞ for some well-defined function �(·) :

N → R with limi→∞�(i) = 0;
(B) For all i(N) ≤ k satisfying limN→∞ i(N) = ∞, it must hold that

limN→∞�(i(N),N) = 0.
Then, there exists a constant V (θ,�) ∈ (0,∞) such that

lim
N→∞

√
kN

N − k
P(AN ≥ k) = V (θ,�).

That is, if�(·, ·) satisfies (A) and (B) specified in Theorem 3.2, then there exists
a finite, strictly positive constantV (θ,�) (not depending on k) such that

P(AN ≥ k) ≈ V (θ,�)

√
N − k
kN

for large N. The proof of Theorem 3.2 is given in Appendix A.
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The main point to take from this result is that the perturbations only change the
prefactor, while the more relevant decay rate remains the same. For instance, for all
k = αN with α ∈ (0, 1), the power of the exponent of the power-law remains 1/2.

The constant V (θ,�) is generally difficult to compute explicitly, but we can
approximate its value with arbitrary precision. The idea is to account for only the
first M < ∞ perturbations, where M is chosen large enough, and take the corre-
sponding prefactorVM(θ,�) as an approximation of the true value. The definition
of the approximationVM(θ,�) requires some notation. Write ci,N = NF(lN (i)) =
θ + i − 1 +�(i,N) and for every fixed i ∈ N,

ci = lim
N→∞

NF(lN (i)) = θ + i − 1 +�(i). (12)

Let βi, i ∈ N, be defined as

βi =
i∑

j=1

(−1) j+1

j!
βi− j(ci− j+1)

j, β0 = 1, (13)

where

σM(y) = max{i ∈ N : i ≤ M, ci < y}.
Finally, let γ (·, ·) denote the lower incomplete gamma distribution:

γ (s, x) =
∫ x

0
t s−1e−t dt.

Then, the value ofVM(θ,�) can be expressed as

VM(θ,�) = 2√
2π

⎛
⎝ θ

(M − 1)!
γ (M, cM)+ (cM)M

(M − 1)!
e−cM

+
M−1∑
j=1

β j−1e−c j �( j)
(M − j)!

γ (M − j + 1, cM − c j)

−
M−1∑
j=1

β j−1
(cM − c j)M− j+1

(M − j)!
e−cM

⎞
⎠ . (14)

The constantV (θ,�) is defined as

V (θ,�) = lim
M→∞

VM(θ,�). (15)

The idea to approximateV (θ,�) byVM(θ,�) for a sufficiently largeM gives rise
to Algorithm 1.

Whether conditions (A) and (B) on the perturbations �(·, ·) are satisfied,
depends on the surplus capacity distribution F(·), the load surge function lN (·) and
the threshold k. The proof of Theorem 3.2 uses an equivalent, but more technical,
condition to (A) and (B). However, conditions (A) and (B) are more tractable for
examples and therefore stated in the theorem. In the next section, we consider some
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Algorithm 1: Approximation scheme forV (θ,�).
Input: Target error δ > 0, constant θ > 0 and perturbations�(·, ·) satisfying

(A) and (B) in Theorem 3.2.
Output: ApproximationVMε

(θ,�) such that
∣∣V (θ,�)−VMε

(θ,�)
∣∣ < δ.

1. Determine ε > 0 such that 8ε(1+ε)√
2π

≤ δ.
2. Determine pair (Mε,Nε ) such that |�(i,N)| < ε for all N ≥ Nε and all

Mε ≤ i ≤ k(N).
3. ReturnVMε

(θ,�) defined in Proposition (14).

examples where we identify thresholds k such that the power-law behavior prevails.
A particularly compelling example involves the case where the loads of the failed
lines are equally redistributed over the remaining lines, see e.g., Ref.[6]. Every time a
line fails, the total load is redistributed over all surviving lines. Theorem 3.2 implies
that in this case for power-law behavior to prevail, the step increments of the compo-
sition F ◦ lN should become approximately 1/N up to the k’th failure from a certain
point on. In Example 4.2 in the next section, we explain that a Taylor expansion of
the composition F ◦ lN suggests for which settings this holds, indicating that power-
law behavior only prevails in a remarkably narrow window.

4. Identifying thresholds where power-law behavior prevails

The purpose of this section is to illustrate the use of Theorem 3.2. When the
surplus capacity distribution and/or load surge function are given, we would like
to know what (growing) thresholds k := k(N), if any, yield power-law behavior
for the exceedance probability. A sufficient condition is provided by Theorem 3.2
and accordingly, we need to determine the thresholds k such that (A) and (B) are
satisfied. As we will illustrate in the two examples, the key approach involves a
Taylor expansion. To conclude this section, we consider an approach that can be
used to numerically explore the asymptotic behavior for settings that do not fall in
the framework of Theorem 3.2.

Example 4.1. First, we illustrate the impact of a different surplus capacity distribu-
tion. That is, suppose

lN (i) = i
N
, i ≥ 1,

and let the surplus capacities be exponentially distributed with mean one. Using a
Taylor expansion we obtain

F(lN (i)) = 1 − e− i
N = i

N
+ O

((
i
N

)2
)
,

whereO(·) denotes the big-O notation in relation withN → ∞. Hence,�(i,N) =
i2/N for all (i,N) ∈ N × N and condition (A) is satisfied. We note that for (B) to
hold, we need k = o(

√
N). All thresholds that satisfy k = o(

√
N) thus result in

power-law behavior for the exceedance probability.
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The final claim holds generally for any surplus capacity distribution with a
positive density in zero. That is, in general, Taylor expansion yields

F(lN (i)) = F ′(0)lN (i)+ O((lN (i))2). (16)

Weobserve that (16) leads to an approximation of the composition that only requires
information on the value F ′(0) and the load surge function. That is, the only prop-
erty of the surplus capacity distribution we need for checking whether power-law
behavior prevails, is its behavior near its minimum. In particular, the mean of the
surplus capacity does not play any role.

If the load surge function is given by

lN (i) = i
F ′(0)N

, i ≥ 1,

and k = o(
√
N), we thus remain in the setting described in Theorem 3.2.

Example 4.2. Next, we verify and formalize the claims for the model in Ref.[6] that
we discussed in Section 3. Specifically, the load surge function is given by

lN (i) = aN
N − i

− a = ai
N − i

,

and suppose that a = 1/F ′(0). Then, applying the Taylor expansion (16), we obtain

�(i,N) = O

((
i
N

)2
)

+ O

(
N
(

i
N − i

)2
)

for all (i,N) ∈ N × N. Again, we have pointwise convergence�(i) = 0 for all i ∈ N.
In addition, we require that k = o(

√
N) for condition (B) to hold for all i ≤ k.

We close this section by setting the threshold k to a certain fixed integer, which
allows us to analyze cases where the perturbations do not satisfy conditions (A) and
(B). We suggest a method to explore the asymptotic behavior numerically for these
cases.

Example 4.3. Observe that if the value �(1,N) tends too close to its lower bound
as N → ∞, the system does not perceive an initial disturbance and no line will fail.
On the other hand, if�(k,N) becomes too large asN → ∞, the system cannot deal
with such a strong increase of load and the threshold k will certainly be exceeded.
If �(1,N) is not too small and �(k,N) is not too large as N → ∞, we obtain a
non-degenerate limit for the exceedance probability.

Proposition 4.1. Let ci,N := N · F(lN (i)) for (i,N) ∈ N × N and ci = limN→∞ ci,N
for i ∈ N, which is a non-decreasing sequence. If c1 > 0 and ck = O(1), then

lim
N→∞

P(AN ≥ k) = 1 −
k∑
j=1

β j−1e− j

where βi, i ∈ N are defined as in (13).
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This result can be proven by applying results from extreme value theory, see
Appendix B. Proposition 4.1 thus provides a method to determine the asymptotic
exceedance probability for every fixed k. This can be used to numerically explore
how the asymptotic tail of the number of failed lines decays as k grows large.

5. Summary and outlook

The model of Dobson et al.[5] shows power-law dependence for the exceedance
probability when the system is critically loaded. In this paper, we identify settings
where the power law prevails by extending the setting of Ref.[5] in two directions.
First, we show that the threshold can grow with the network size. Second, we con-
sider broader load surge functions and surplus capacity distributions. We show that
the power-law distribution prevails when the composition of the surplus capac-
ity distribution function and the load surge function ultimately tends to a linearly
increasing function with critical slope.

We emphasize that there are many aspects that exist in reality and are not
accounted for by this model. For example, the propagation of the cascading failure
process often depends heavily on the network topology. In particular in an energy
transmission system,when a part of the network becomes disconnected to the power
generators, all the lines in that part fail immediately. Given a particular network
structure, we are highly interested in finding all combinations of surplus capacity
distributions, load surge functions, network-dependent thresholds that yield power-
law behavior for the blackout size. We intend to pursue this complex problem in
future research.

Appendices

A. Proofs for the affine case

When relation (6) holds, the blackout size follows a quasi-binomial distribution[5], ensuring an
analytic expression for the probability distribution of the blackout size. A double limit method to
derive the asymptotic behavior used in Ref.[11] yields an incorrect prefactor.

Proof of (7). The probability distribution of the number of failed lines is given by[5]

P(AN = k) =

⎧⎪⎪⎨
⎪⎪⎩
(N
k

)
θ
N

(
θ+k
N

)k−1 (1 − θ+k
N

)N−k
, if k ≤ N − θ,

0, if N − θ < k < N,∑N
i=�N−θ�+1

(N
i

)
θ
N

(
θ+i
N

)i−1 (1 − i+θ
N

)N−i
, if k = N.

(A.1)

This distribution converges to a generalized Poisson distribution, i.e.[5],

lim
N→∞

P(AN = k) = θ
(θ + k)k−1

k!
e−(θ+k).
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Applying Stirling’s approximation, we obtain

lim
k→∞

k3/2 lim
N→∞

P(AN = k) = lim
k→∞

k3/2θ
(θ + k)k−1

k!
e−(θ+k)

= lim
k→∞

θ√
2π

(
1 + θ

k

)k−1

e−θ = θ√
2π
.

�

Yet, when accounting for the dependency of k onN, the analytic expression for the probability
distribution function of the number of failed lines can be exploited to derive the correct prefactor.

Proof of Proposition 3.1. Recall that the probability distribution of the number of failed lines is
given by (A.1). The idea of the proof is to use Stirling’s approximation to derive an upper and
lower bound for (A.1) and show they asymptotically coincide.

Sincewe consider k ∈ [k�, k�], we are only concernedwith the probability for k ≤ N − θ .With
Stirling’s approximation (formula (6.1.38) of Ref.[21]) we have that for every integerm > 0

m! = √
2πmm+1/2e−m+ y(m)

12m ,

for some 0 < y(m) < 1. So the binomial term is bounded by(
N
k

)
≥ 1√

2π
NN

kk(N − k)N−k

√
N

k(N − k)
e− 1

12k e− 1
12(N−k) ,

(
N
k

)
≤ 1√

2π
NN

kk(N − k)N−k

√
N

k(N − k)
e

1
12N .

Using these bounds for the binomial term in (A.1) yields

k3/2
√
1 − k/NP(AN = k) ≥ θ√

2π

(
1 + θ

k

)k−1 (
1 − θ

N − k

)N−k

e− 1
12k e− 1

12(N−k)

and

k3/2
√
1 − k/NP(AN = k) ≤ θ√

2π

(
1 + θ

k

)k−1 (
1 − θ

N − k

)N−k

e
1

12N

for any k� ≤ k ≤ k�. Note that for every constant θ > 0 the functions (1 + θ/x)x−1 and (1 −
θ/x)x are both monotone increasing in x > 0. Moreover, the function e−1/(12x) is monotone
increasing in x > 0. Therefore, we obtain the lower bound

sup
k∈[k�,k�]

k3/2
√
1 − k/NP(AN = k) ≥ θ√

2π
sup

k∈[k�,k�]

(
1 + θ

k

)k−1

e− 1
12k sup

k∈[k�,k�]

(
1 − θ

N − k

)N−k

e− 1
12(N−k)

= θ√
2π

(
1 + θ

k�

)k�−1 (
1 − θ

N − k�

)N−k�
e− 1

12k� e− 1
12(N−k� ) .

Moreover, since (1 + θ/x)x−1 ≤ eθ and (1 − θ/x)x ≤ e−θ for all x > 0,we have the upper bound

sup
k∈[k�,k�]

k3/2
√
1 − k/NP(AN = k) ≤ θ√

2π
e

1
12N .

We observe that both the upper bound and the lower bound converge to θ/
√
2π as N → ∞

under the given assumptions on k� and k�, implying that (8) holds. �

Next, we turn to the asymptotic behavior of the probability that the blackout size exceeds the
threshold k. For this, we bound the discrete density function of the blackout size by two con-
tinuous functions that grow arbitrarily close to one another for all i ∈ [k,N − log(N − k)], see
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i = 0.75N i

Figure . Continuous bounds for P(AN = i).

Figure 2.We conclude the proof by deriving the integral counterparts of the continuous functions
and showing that P(AN ≥ N − log(N − k)) is asymptotically negligible.

Proof of Theorem 3.1. Set k� = N − log(N − k). Observe that k� ≥ k and note that this choice
ensures k� = N − o(N) andN − k� → ∞ asN → ∞. Due to Proposition 3.1, it follows that for
every ε > 0 there is a Nε > 0 such that for all N ≥ Nε and i ∈ [k, k�]

θ√
2π

i−3/2(1 − i/N)−1/2(1 − ε) ≤ P(AN = i) ≤ θ√
2π
i−3/2(1 − i/N)−1/2(1 + ε).

Next, we use this observation to bound the exceedance probability from above and below and
show that these bounds coincide as ε ↓ 0.

An upper bound for the exceedance probability is given by

P(AN ≥ k) ≤ P(AN = k)+ (1 + ε)

k�∑
i=k+1

θ√
2π

i−3/2(1 − i/N)−1/2 +
N∑

i=k�+1

P(AN = i)

We consider the first term separately from the second term, because this results in a
nicer expression for the second term and the contribution of P(AN = k) is asymptotically
negligible. That is, for every integer m, Stirling’s bound[21] yields

√
2πmm+1/2e−m ≤ m! ≤

e
√
2πmm+1/2e−m. Therefore,√

kN
N − k

P(AN = k) ≤ e
√

N
N − k

√
N

N − k
θ

θ + k

(
1 + θ

k

)k (
1 − θ

N − k

)N−k

≤ e
N

k(N − k)
θ

θ/k + 1
−→ 0

as N → ∞.
For the second term, we consider the integral∫ N

k
x−3/2

(
1 − x

N

)−1/2
dx =

∫ π/2

arcsin(
√

k/N)
N−3/2 sin(u)−3(1 − sin(u)2)−1/22N sin(u) cos(u) du

= 2N−1/2
∫ π/2

arcsin(
√

k/N)
sin(u)−2 du

= 2N−1/2

√
1 − k/N√
k/N

= 2

√
N − k
kN

,
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where we applied the variable substitution x = N sin(u)2. Then, the second term is bounded by

k�∑
i=k+1

θ√
2π

i−3/2(1 − i/N)−1/2 ≤
∫ N

k

θ√
2π

i−3/2(1 − i/N)−1/2 di = 2θ√
2π

√
N − k
kN

.

For the third term,

N∑
i=k�+1

P(AN = i) ≤ (N − k�) sup
i∈(k�,N]

P(AN = i).

To determine the supremum,we take a closer look at (A.1). For all i ∈ (N − θ,N), if any,P(AN =
i) = 0. Moreover, for all integers i ∈ (k�,N − θ], Stirling’s bound yields

(
N
i

)
θ

N

(
θ + i
N

)i−1 (
1 − θ + i

N

)N−i

≤ e

√
N

i(N − i)
θ

θ + i

(
1 + θ

i

)i (
1 − θ

N − i

)N−i

≤ e
√

N
N − θ

θ

θ + k�
.

Therefore, supi∈(k�,N−θ] P(AN = i) ≤ c1/k� for some constant c1 > 0, and

P(AN = N) = θ

N

(
1 + θ

N

)N−1

+
N−1∑

i=�N−θ�+1

(
N
i

)
θ

N

(
θ + i
N

)i−1 (
1 − θ + i

N

)N−i

≤ θeθ

N
+ θe

√
N

N − 1
θ

θ + k�
≤ c2

k�

for some constant c2 > 0. Recall k ≤ k� = N − log(N − k), and set c = max{c1, c2}. This yields√
kN

N − k
(N − k�) sup

i∈(k�,N]
P(AN = i) ≤ c

√
kN
k�

N − k�√
N − k

= c
√
k/N

1 − log(N − k)/N︸ ︷︷ ︸
=O(1)

log(N − k)√
N − k︸ ︷︷ ︸
=o(1)

as N → ∞, since N − k → ∞ as N → ∞. We conclude that

lim sup
N→∞

√
kN

N − k
P(AN ≥ k) ≤ (1 + ε)

2θ√
2π
.

A lower bound is given by

P(AN ≥ k) ≥ (1 − ε)

k�∑
i=k

θ√
2π

i−3/2(1 − i/N)−1/2 ≥ (1 − ε)

∫ k�

k

θ√
2π

i−3/2(1 − i/N)−1/2 di

= (1 − ε)
2θ√
2π

(√
N − k
kN

−
√
N − k�

k�N

)
.

It follows that

lim inf
N→∞

√
kN

N − k
P(AN ≥ k) ≥ lim inf

N→∞
(1 − ε)

2θ√
2π

⎛
⎜⎜⎜⎜⎝1 −

√
k
k�︸︷︷︸

=O(1)

√
N − k�

N − k︸ ︷︷ ︸
=o(1)

⎞
⎟⎟⎟⎟⎠ = (1 − ε)

2θ√
2π
.

As ε ↓ 0, the limsup and liminf coincide. �
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B. Proofs for perturbations of the composition

Whether we obtain power-law behavior for the black-out size distribution depends on the surplus
capacity distribution, the load surge function and the threshold k. Due to relation (3), we observe
that the relation between the surplus capacity distribution and the load surge function is captured
by the composition F ◦ lN , see Figure 3. In this section, we prove that if F ◦ lN has a form as in
(11) with perturbations�(·, ·) satisfying (A) and (B) as in Theorem 3.2, the power-law behavior
for the exceedance probability prevails.

Recall (12) and note that by conditions (A) and (B), ci, i ∈ N, is a well-defined non-decreasing
sequence that tends to the function θ + i − 1 as i grows large. We will show that these condi-
tions result in power-law behavior for the exceedance probability. To do so, we leverage two basic
asymptotic properties formulated in the following two lemmas.

Lemma B.1. Let k be a function ofN such that both k → ∞ andN − k → ∞ asN → ∞. Then
for every fixedM1,M2 ∈ N,

lim
N→∞

√
kN

N − k
P

(
UN−M1
(i) ≤ θ + i − 1

N − M1
, ∀i ≤ k − M2

)
= 2θ√

2π
.

F (x)

xlN (k)

k

Δ(i, N)

i

F (lN (i))

Figure . Relation surplus capacity distribution function and load surge function.
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Proof. Recall (3) and (6), and observe that the case withM1 = M2 = 0 is implied by Theorem 3.1.
The general case follows from a straightforward calculation:√

kN
N − k

P

(
UN−M1
(i) ≤ θ + i − 1

N − M1
, i = 1, . . . , k − M2

)

=
√

k
k − M2︸ ︷︷ ︸

→1

√
N

N − M1︸ ︷︷ ︸
→1

√
N − k + M2 − M1

N − k︸ ︷︷ ︸
→1

·
√
(k − M2)(N − M1)

N − k + M2 − M1
P

(
UN−M1
(i) ≤ θ + i − 1

N − M1
, i = 1, . . . , k − M2

)
N→∞−→ 2θ√

2π
.

The last convergence follows from noting (3) and applying Theorem 3.1 to a network with
N − M1 lines and threshold k − M2. �

Lemma B.2. Let k be a function ofN such that both k → ∞ andN − k → ∞ asN → ∞. Then
for every fixedM ∈ N

lim
N→∞

√
kN

N − k
P

(
UN−M
(i) ≤ θ + i − 1

N
, i = 1, . . . , k

)
= 2θ√

2π
. (B.1)

Proof. Note that

lim sup
N→∞

√
kN

N − k
P

(
UN−M
(i) ≤ θ + i − 1

N
, i = 1, . . . , k

)

≤ lim sup
N→∞

√
kN

N − k
P

(
UN
(i) ≤ θ + i − 1

N
, i = 1, . . . , k

)
= 2θ√

2π
.

To obtain a lower bound, we first consider the case M = 1. Consider a Poisson process with
unit rate where the epoch of the i’th event is denoted by Si =∑i

j=1 Ej with Ej standard indepen-
dent exponential random variables for all j ≥ 1. Note that, given Si = t , the joint distribution of
(S1, . . . , Si−1) is the same as the joint distribution of i − 1 ordered independent uniform random
variables on (0, t ). Therefore, Equation (B.1) withM = 1 is equivalent to

lim
N→∞

√
kN

N − k
P

(
Si
SN

≤ θ + i − 1
N

, i = 1, . . . , k
)

= 2θ√
2π
.

We observe that for every ε > 0,

P

(
Si

SN+1
≤ θ + i − 1

N
, ∀i ≤ k

)
≤ P

(
Si ≤ (θ + i − 1)SN+1

N
, ∀i ≤ k;EN+1 ≤ εSN

)
+P (EN+1 > εSN )

≤ P

(
Si ≤ (θ + ε + i − 1)

SN
N
, ∀i ≤ k

)
+ P (EN+1 > εSN ) .

Since

P (EN+1 > εSN ) = E
(
e−εSN ) = E

(
e−εS1)N =

(
1

1 + ε

)N

,

it follows that
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lim inf
N→∞

√
kN

N − k
P

(
Si
SN

≤ θ + i − 1
N

, ∀i ≤ k
)

≥ lim inf
N→∞

√
kN

N − k

(
P

(
Si

SN+1
≤ θ − ε + i − 1

N
, ∀i ≤ k

)
−
(

1
1 + ε

)N
)

= 2(θ − ε)√
2π

for every ε > 0. The result for M = 1 follows by letting ε ↓ 0. Using induction yields the result
for any fixedM > 0. �

In view of (1), (3) and (11), it is convenient to introduce the stopping times

τNθ,� = min
{
i ∈ N : UN

(i) >
θ + i − 1 +�(i,N)

N

}
− 1 (B.2)

for all constants θ ∈ R and functions� : N × N → R. In particular, if the constant θ and func-
tion �(·, ·) are chosen as in (11), then AN = τNθ,�. Yet, the advantage of the notation as in (B.2)
appears when we compare the asymptotic exceedance probability for different constants θ and
functions�(·, ·).

Our derivation of the asymptotic behavior of the exceedance probability makes use of similar
arguments multiple times in the proof. We present these arguments separately by means of the
next two lemmas.

Lemma B.3. Let k := k(N) ≤ N be a positive function of N such that k → ∞ and N − k → ∞
as N → ∞. Let ci, i ∈ N be as in (12) and for some fixed M ∈ N, suppose �(i,N) = 0 for all
i ≥ M and N ≥ N0 for some N0 ∈ N. For all constants a, b ∈ R≥0 with a ≤ b,

lim
N→∞

√
kN

N − k
P

(
τNθ,� ≥ k;UN

(M) ∈
[
a
N
,
b
N

])

= 2√
2π

∫ b

a
P

(
UM−1
(i) ≤ ci

y
, ∀i ≤ M − 1

)
(θ + M − y)

yM−1

(M − 1)!
e−y dy. (B.3)

Proof. The density of the M’th order statistic of a sample of N standard uniformly distributed
random variables is given by a beta distribution[20, 78,79]

fUN
(M)
(x) = N!

(M − 1)!(N − M)!
xM−1(1 − x)N−M.

Conditioning on theM’th order statistic yields

P(τNθ,� ≥ k) =
∫ b

N

a
N

P

(
UN
(i) ≤ ci,N

N
, ∀i ≤ k

∣∣UN
(M) = x

)
fUN

(M)
(x) dx

=
∫ b

a
P

(
UN
(i) ≤ ci,N

N
, ∀i ≤ k

∣∣UN
(M) = y

N

) fUN
(M)

( y
N

)
N

dy

=
∫ b

a
P

(
UM−1
(i) ≤ ci,N

y
, ∀i ≤ M − 1

)

·P
(
UN−M
(i) ≤ θ + M − y + i − 1

N(1 − y
N )

, ∀i ≤ k − M

)
fUN

(M)

( y
N

)
N

dy.

The latter equality follows from the Markov property: Given that UN
(M) = y/N, the first M − 1

order statistics are independent of the other order statistics and distributed asM − 1 uniformly
distributed randomvariables on the interval [0, y/N]. Similarly, the other order statistics are inde-
pendent of the first M order statistics, and have the same law as N − M uniformly distributed
random variables on the interval [y/N, 1]. Rescaling the intervals results in the above expression.
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Next, we show that an interchange of limit and integration is justified by bounding all three
terms within the integral form above. First, we observe that for all y ∈ [a, b],

fUN
(M)

( y
N

)
N

= (N − 1)!
(M − 1)!(N − M)!

( y
N

)M−1 (
1 − y

N

)N−M
≤ NM−1

(M − 1)!

( y
N

)M−1

≤ bM−1

(M − 1)!
< ∞.

Second, we show that the second termmultiplied with
√
kN/(N − k) is also bounded. LetM� =

�b�, and hence for all y ∈ [a, b], N − M� ≤ N − y ≤ N,

P

(
UN−M
(i) ≤ θ + M − y + i − 1

N(1 − y
N )

, ∀i ≤ k − M

)

≥ P

(
UN−M
(i) ≤ θ + M − y + i − 1

N
, ∀i ≤ k − M

)
and

P

(
UN−M
(i) ≤ θ + M − y + i − 1

N(1 − y
N )

, ∀i ≤ k − M

)

≤ P

(
UN−M
(i) ≤ θ + M − y + i − 1

N − M�
, ∀i ≤ k − M

)
.

Applying Lemmas B.1 and B.2 and subsequently the squeeze theorem yields

lim
N→∞

√
kN

N − k
P

(
UN−M
(i) ≤ θ + M − y + i − 1

N(1 − y
N )

, ∀i ≤ k − M

)

= lim inf
N→∞

√
kN

N − k
P

(
UN−M
(i) ≤ θ + M − y + i − 1

N
, ∀i ≤ k − M

)

= lim sup
N→∞

√
kN

N − k
P

(
UN−M
(i) ≤ θ + M − y + i − 1

N − M�
, ∀i ≤ k − M

)

= 2(θ + M − y)√
2π

.

We find that the second term multiplied with
√
kN/(N − k) is indeed bounded, since every

converging sequence is bounded. Finally, the first term is trivially bounded by one, and therefore
the dominated convergence theorem justifies an interchange of limit and integration. SinceUM−1

(i) ,
i = 1, . . . ,M − 1, have a density not depending on N, it holds that

lim
N→∞

P

(
UM−1
(i) ≤ ci,N

y , ∀i ≤ M − 1
)

= P

(
UM−1
(i) ≤ ci

y , ∀i ≤ M − 1
)
,

and moreover,

lim
N→∞

1
N

fUN
(M)

( y
N

)
= yM−1

(M − 1)!
e−y.

We conclude that (B.3) holds. �

To obtain a more quantitative handle on the integral expression in (B.3), we need to have a
deeper understanding of the probability term within the integral. The second lemma expresses
this probability by means of a recursive formula.



20 F. SLOOTHAAK ET AL.

Lemma B.4. Let M ∈ N be fixed, and suppose �(i,N) = 0 for all i ≥ M and N ≥ N0 for some
N0 ∈ N. Let ci, i ∈ N be as in (12) and for every y ∈ R≥0, define σM(y) = 0 if c1 > y and
otherwise

σM(y) = max{i ∈ N : i ≤ M, ci < y}.
Then,

P

(
UM
(i) ≤ ci

y
, ∀i ≤ M

)
= 1 − M!

yM

σM (y)∑
j=1

β j−1
(y − c j)M− j+1

(M − j + 1)!
,

where βi are defined as in (13).

The proof of Lemma B.4 uses the two following identities.

Lemma B.5. For βk, k ≥ 1 defined as in (13),

βk =
∫ 0

−c1

∫ y1

−c2
· · ·
∫ yk−1

−ck
dyk · · · dy1.

Proof. The proof is by induction. For k = 1, we indeed have
∫ 0
−c1 dy1 = c1 = β1. Suppose the

lemma holds for all integers strictly smaller than k. Then,∫ 0

−c1

∫ y1

−c2
· · ·
∫ yk−1

−ck
dyk · · · dy1 =

∫ 0

−c1

∫ y1

−c2
· · ·
∫ yk−2

−ck−1

yk−1 dyk−1 · · · dy1 + ckβk−1

=
∫ 0

−c1

∫ y1

−c2
· · ·
∫ yk−3

−ck−2

(yk−2)
2

2
dyk−2 · · · dy1 − (ck−1)

2

2
βk−2 + ckβk−1

=
∫ 0

−c1

1
(k − 1)!

yk−1
1 dy1 +

k−1∑
j=1

(−1) j+1

j!
βk− j(ck− j+1)

j

=
k∑
j=1

(−1) j+1

j!
βk− j(ck− j+1)

j = βk.

�
Lemma B.6. Let (ci)i∈N be a non-negative, non-decreasing sequence and βk, k ≥ 0 defined as in
(13). If x ≥ ck, then

βk +
k∑
j=1

β j−1

k+1− j∑
l=0

(x − c j)l

l!
=

k∑
l=0

xk

k!
.

Proof. Particularly, we note that the identity is true for k = 0. For k ≥ 1, we find that due to the
binomial formula,

k∑
j=1

β j−1

k+1− j∑
l=0

(x − c j)l

l!
=

k∑
j=1

k+1− j∑
l=0

l∑
m=0

β j−1

(
l
m

)
xm(−c j)l−m

l!

=
k∑
j=1

k+1− j∑
m=0

k+1− j∑
l=m

β j−1
xm(−c j)l−m

m!(l − m)!

=
k∑
j=1

k+1− j∑
l=0

β j−1
(−c j)l

l!
+

k∑
m=1

xm

m!

k+1−m∑
j=1

k+1− j∑
l=m

β j−1
(−c j)l−m

(l − m)!

=
k∑
j=1

β j−1 +
k∑
j=1

k+1− j∑
l=1

β j−1
(−c j)l

l!
+

k∑
m=1

xm

m!

k+1−m∑
j=1

β j−1 +
k∑

m=1

xm

m!

k−m∑
j=1

k+1−m− j∑
l=1

β j−1
(−c j)l

l!
.
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In the second term and the fourth term, we observe a double summation for all pairs of integers
in a triangle. We apply the variable substitution u = l + j − 1 and v = l to sum over all pairs in
the triangle via the diagonal lines. For the second term this yields

k∑
j=1

k+1− j∑
l=1

β j−1
(−c j)l

l!
=

k∑
u=1

u∑
v=1

βu−v
(−cu−v+1)

v

v!
= −

k∑
u=1

βu.

Similarly, this argument can be applied to the fourth term. In the end, we obtain

k∑
j=1

β j−1

k+1− j∑
l=0

(x − c j)l

l!
=

k∑
j=1

β j−1 −
k∑

u=1

βu +
k∑

m=1

xm

m!

⎛
⎝k+1−m∑

j=1

β j−1 −
k−m∑
u=1

βu

⎞
⎠

= β0 − βk + β0

k∑
m=1

xm

m!
= −βk +

k∑
m=0

xm

m!
.

�

Proof of Lemma B.4. First, note that if σM(y) = 0, then y ≤ ci for all i = 1, . . . ,M and the
probability equals one, and hence the identity holds in this case.

To show the result for σM(y) ∈ (0,M), we need the joint density ofM order statistics. This is
given by the constantM![20, p. 11], yielding

P

(
UM
(i) ≤ ci

y
, ∀i ≤ M

)
=
∫ c1/y

0

∫ c2/y

u1
· · ·
∫ cσM (y)/y

uσM (y)−1

∫ 1

uσM (y)

· · ·
∫ 1

uM−1

M! duM · · · du2 du1

= M!
yM

∫ c1

0

∫ c2

v1

· · ·
∫ cσM (y)

vσM (y)−1

∫ y

vσM (y)

· · ·
∫ y

vM−1

1 dvM · · · dv2 dv1

= M!
yM

∫ c1

0

∫ c2

v1

· · ·
∫ cσM (y)

vσM (y)−1

(y − vσM (y) )
M−σM (y)

(M − σM(y))!
dvσM (y) · · · dv2 dv1

= −M!
yM
βσM (y)−1

(y − cσM (y) )M−σM (y)+1

(M − σM(y)+ 1)!

+ M!
yM

∫ c1

0

∫ c2

v1

· · ·
∫ cσM (y)−1

vσM (y)−2

(y − vσM (y) )
M−σM (y)+1

(M − σM(y)+ 1)!
dvσM (y)−1 · · · dv2 dv1

= −M!
yM

σM (y)∑
j=2

β j−1
(y − c j)M− j+1

(M − j + 1)!
+ M!

yM

∫ c1

0

(y − v1)
M−1

(M − 1)!
dv1

= 1 − M!
yM

σM (y)∑
j=1

β j−1
(y − c j)M− j+1

(M − j + 1)!
,

where we used the change of variable ui = vi/y for i = 1, . . . ,M and then applied Lemma B.5
multiple times.

For σM(y) = M, we observe that y > ci for all i ≤ M, and thus requires a separate analysis.
Note

yM

M!
P

(
UM
(i) ≤ ci

y
, ∀i ≤ M

)
=
∫ c1

0

∫ c2

v1

· · ·
∫ cM

vM−1

dvM · · · dv2 dv1

= βM =
M∑
j=0

y j

j!
−

M∑
j=1

β j−1

M+1− j∑
l=0

(y − c j)l

l!
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Δ(i, N)

M k

Figure . Effect of perturbations for the truncated case.

= yM

M!
−

M∑
j=1

β j−1
(y − c j)M+1− j

(M + 1 − j)!

+
M−1∑
j=0

y j

j!
−

M−1∑
j=1

β j−1

M− j∑
l=0

(y − c j)l

l!
− βM−1

= yM

M!
−

M∑
j=1

β j−1
(y − c j)M+1− j

(M + 1 − j)!
,

where we applied Lemma B.6 twice. �

Next, we use these results to prove Theorem 3.2. As a first step, we consider a scenario with
only finitely many perturbations, see Figure 4.

Proposition B.1. Let k := k(N) ≤ N be a positive function of N such that k → ∞ and N − k →
∞ as N → ∞. Let F ◦ lN be as in (11) with�(i,N) = 0 for all i ≥ M and N ≥ N0 for some fixed
M ∈ N andN0 ∈ N, and let ci, i ∈ N be as in (12). Then, there exists a constantVM(θ,�) ∈ (0,∞)

such that

lim
N→∞

√
kN

N − k
P(AN ≥ k) = VM(θ,�).

Let βi, i ∈ N, be as in (13) and let γ (·, ·) denote the lower incomplete gamma distribution. The
value of VM(θ,�) can be expressed as in (14), i.e.

VM(θ,�) = 2√
2π

⎛
⎝ θ

(M − 1)!
γ (M, cM )+ (cM )M

(M − 1)!
e−cM

+
M−1∑
j=1

β j−1e−c j �( j)
(M − j)!

γ (M − j + 1, cM − c j)−
M−1∑
j=1

β j−1
(cM − c j )M− j+1

(M − j)!
e−cM

⎞
⎠ .

Proof. Noting (3) and (B.2), applying Lemma B.3 with a = 0 and b = cM and subsequently invok-
ing Lemma B.4 yields
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lim
N→∞

√
kN

N − k
P(AN ≥ k) = 2√

2π

∫ cM

0
P

(
UM−1
(i) ≤ ci

y
,∀i ≤ M − 1

)
(θ + M − y)

yM−1

(M − 1)!
e−y dy

= 2√
2π

∫ cM

0
(θ + M − y)

yM−1

(M − 1)!
e−y dy

−
∫ cM

0

2(θ + M − y)√
2π

σM−1(y)∑
j=1

β j−1
(y − c j)M− j

(M − j)!
e−y dy.

The first term can also be expressed as∫ cM

0
(θ + M − y)

yM−1

(M − 1)!
e−y dy = (θ + M)γ (M, cM )

(M − 1)!
− Mγ (M, cM )

(M − 1)!
+ (cM )M

(M − 1)!
e−cM

= θ

(M − 1)!
γ (M, cM )+ (cM )M

(M − 1)!
e−cM .

The second term yields

∫ cM

0
(θ + M − y)

σM−1(y)∑
j=1

β j−1
(y − c j)M− j

(M − j)!
e−y dy

=
M−1∑
m=1

m∑
j=1

∫ cm+1

cm
(θ + M − y)β j−1

(y − c j)M− j

(M − j)!
e−y dy

=
M−1∑
j=1

∫ cM

c j
β j−1(θ + M − y)

(y − c j)M− j

(M − j)!
e−y dy

=
M−1∑
j=1

β j−1e−c j
∫ cM−c j

0

(θ + M − c j − u)uM− j

(M − j)!
e−u du,

and similarly as for the first term, this can also be expressed as

∫ cM

0
(θ + M − y)

σM−1(y)∑
j=1

β j−1
(y − c j)M− j

(M − j)!
e−y dy

=
M−1∑
j=1

β j−1e−c j
(
θ + M − c j
(M − j)!

γ (M − j + 1, cM − c j)

− M − j + 1
(M − j)!

γ (M − j + 1, cM − c j)+ (cM − c j)M+ j−1

(M − j)!
e−(cM−c j )

)

=
M−1∑
j=1

β j−1e−c j −�( j)
(M − j)!

γ (M − j + 1, cM − c j)+
M−1∑
j=1

β j−1
(cM − c j)M+ j−1

(M − j)!
e−cM .

Subtracting the second term from the first concludes the proof. �

Next, we allow for all perturbations that satisfy conditions (A) and (B) as in Theorem 3.2. It
turns out that for the proof it is more convenient to use the following equivalent condition: for
every ε > 0 there exists a pair (Mε,Nε ) ∈ N × N such that |�(i,N)| < ε for all N ≥ Nε and
all Mε ≤ i ≤ k(N). Conditions (A) and (B) are more intuitive and tractable when considering
examples, such as given in Section 4.
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Mε

ε

Δ

Figure . Illustration of infinitely many perturbations setting.

LemmaB.7. Conditions (A) and (B) for perturbations�(·, ·) defined in Theorem 3.2 are equiva-
lent to the following: For every ε > 0 there exists a pair (Mε,Nε ) ∈ N × N such that |�(i,N)| <
ε for all N ≥ Nε and allMε ≤ i ≤ k(N).

Proof. (⇒)The boundedness of�(·) is an immediate consequence of the boundedness of�(·, ·).
By definition of �(·), we can pick a N̂i,ε ≥ Nε/2 for every ε > 0 and for all i ≥ Mε/2 such that
|�(i,N)−�(i)| < ε/2 for all N ≥ N̂i,ε . Then,

|�(i)| ≤ |�(i, N̂i,ε )| + ε/2 < ε

for all i ≥ Mε/2, showing that limi→∞�(i) = 0.
For condition (B) to hold, suppose ε > 0 and let Ñε ∈ Nbe such that i(N) ≥ Mε for allN ≥ Ñε

and Ñε ≥ Nε . Then, by assumption we obtain |�(i(N),N)| < ε for all N ≥ Ñε .
(⇐) If not, then ∃ε > 0 such that for every (Mε,Nε ) ∈ N × N there exists an i > Mε andN ≥

Nε such that |�(i,N)| ≥ ε. In particular, if we chooseMε = k(Nε )/2, then there exists an ε > 0
such that for everyNε ∈ N there are a k(Nε )/2 ≤ i ≤ k(Nε ) andN ≥ Nε such that |�(i,N)| ≥ ε,
contradicting condition (B). �

We show that the exceedance probability times
√
kN/(N − k) still converges to a constant by

considering the bounds illustrated by the dashed lines in Figure 5 for every fixed ε > 0. That
is, for an upper bound, we consider the exceedance probability in case of an initial disturbance
(θ + ε)/N and allowing for the firstMε − 1 perturbations. Indeed, this yields an upper bound for
all N ≥ Nε : the values are the same for all pairs (i,N) with i ≤ Mε − 1, and for i ≥ Mε , we have
θ + i − 1 +�(i,N) ≤ θ + ε + i − 1 for all N ≥ Nε . Similarly, for a lower bound we consider
the case with initial disturbance (θ − ε)/N where we allow for the firstMε − 1 perturbations. By
applying Proposition B.1, we can determine the asymptotic behavior of the bounds explicitly. We
show that as ε ↓ 0, the upper and lower bound converges to the same constantV (θ,�) ∈ (0,∞)

defined as in (15).

Proof of Theorem 3.2. By assumption and Lemma B.7, we know that ∀ε > 0 there exists a pair
(Mε,Nε ) ∈ N × N such that |�(i,N)| < ε for everyN ≥ Nε andMε ≤ i ≤ k(N). Fix ε > 0, and
define for all (i,N) ∈ N × N,

�1(i,N) =
{
�(i,N)− ε if i < Mε,

0 if i ≥ Mε,
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and

�2(i,N) =
{
�(i,N)+ ε if i < Mε,

0 if i ≥ Mε .

Recall the definition of the stopping times defined in (B.2) and particularly, τNθ,� = AN . Observe
that the case of the upper and lower bound described above thus correspond to stopping times
τNθ+ε,�1

and τNθ−ε,�2
respectively. Applying Proposition B.1 to these cases withM = Mε yields

lim
N→∞

√
kN

N − k
P
(
τNθ+ε,�1

≥ k
) = VMε

(θ + ε,�1),

lim
N→∞

√
kN

N − k
P
(
τNθ−ε,�2

≥ k
) = VMε

(θ − ε,�2).

Couple τNθ+ε,�1
, τNθ,� = AN and τNθ−ε,�2

. Then the inequalities τNθ−ε,�2
≤ AN ≤ τNθ+ε,�1

hold, and
hence we obtain

lim
N→∞

√
kN

N − k
P (AN ≥ k) ∈ [VMε

(θ − ε,�2),VMε
(θ + ε,�1)

]
.

Next, we show that the limits of the upper and lower bound coincide as ε ↓ 0, i.e.

lim
ε↓0
[
VMε

(θ + ε,�1)−VMε
(θ − ε,�2)

] = 0.

For this, we condition on the value ofUN
(Mε )

:

VMε
(θ + ε,�1)−VMε

(θ − ε,�2) = lim
N→∞

√
kN

N − k
(
P
(
τNθ+ε,�1

≥ k
)

−P
(
τNθ−ε,�2

≥ k
)) ≤ z1(ε)+ z2(ε),

where

z1(ε) = lim
N→∞

√
kN

N − k
(
P
(
τNθ+ε,�1

≥ k;UN
(Mε )

∈ I1
)− P

(
τNθ−ε,�2

≥ k;UN
(Mε )

∈ I1
))
,

and

z2(ε) = lim
N→∞

√
kN

N − k
P
(
τNθ+ε,�1

≥ k;UN
(Mε )

∈ I2
)

with I1 = [0, θ−ε+Mε−1
N ] and I2 = [ θ−ε+Mε−1

N , θ+ε+Mε−1
N ].

Note that for all i < Mε and N ∈ N, ci,N are the same for τNθ+ε,�1
and τNθ+ε,�1

by definition of
�1 and�2. Applying Lemma B.3 to z1(ε), we obtain

z1(ε) = 2√
2π

∫ θ−ε+Mε−1

0
P

(
UMε−1
(i) ≤ ci

y
, ∀i ≤ Mε − 1

)

·
(
(θ + ε + Mε − y)

yMε−1

(Mε − 1)!
e−y − (θ − ε + Mε − y)

yMε−1

(Mε − 1)!
e−y
)

dy

≤ 4ε√
2π

∫ θ+ε+Mε−1

0

yMε−1

(Mε − 1)!
e−y dy ≤ 4ε√

2π
.

For every fixed M ∈ N, differentiating yMe−y with respect to y and determining its roots shows
that this function has one maximum attained at y = M and hence, yMe−y ≤ MMe−M . Using
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Lemma B.3, the previous argument and Stirling’s bound yields

z2(ε) = 2√
2π

∫ θ+ε+Mε−1

θ−ε+Mε−1
P

(
UM−1
(i) ≤ ci

y
, ∀i ≤ M − 1

)
(θ + ε + Mε − y)

yM−1

(M − 1)!
e−y dy

≤ 2√
2π

∫ θ+ε+Mε−1

θ−ε+Mε−1
(1 + 2ε)

(M − 1)M−1

(M − 1)!
e−(M−1) dy ≤ 4ε(1 + 2ε)√

2π
.

Consequently,

VMε
(θ + ε,�1)−VMε

(θ − ε,�2) ≤ 8ε(1+ε)√
2π

,

and since the difference is non-negative, it must converge to zero as ε ↓ 0.
What remains to be shown is that the limit of VMε

(θ + ε,�1) exists, and thus also VMε
(θ −

ε,�2), and is the same asV (θ,�) defined in (15). The existence of the limit follows frommono-
tonicity. That is, VMε

(θ + ε,�1) is non-decreasing and bounded from below by a strictly posi-
tive constant, for exampleVMε

(θ − ε,�2) with ε = 1. Since every monotone bounded function
in a complete metric space converges, it follows that the limit exists as ε ↓ 0. Moreover, since
V (θ,�) ∈ [V (θ − ε,�2),V (θ + ε,�1)] for every ε > 0, the value of the limit must in fact be
V (θ,�). �

Suppose that for a fixed ε > 0, we determined the pair (Mε,Nε ) such that |�(i,N)| < ε for
allN ≥ Nε and allMε ≤ i ≤ k(N). SinceV (θ,�) lies betweenV (θ − ε,�2) andV (θ + ε,�1),
it follows from the proof of Theorem 3.2 that

∣∣V (θ,�)−VMε
(θ,�)

∣∣ ≤ 8ε(1 + ε)√
2π

.

This observation explains why Algorithm 1 can be used to find an approximation for V (θ,�)
that is within a preset distance from its true value.

C. Asymptotic tail behavior for fixed thresholds

Proof of Proposition 4.1. It is known that the distribution function of a standard uniformly
distributed random variable is contained in the maximum domain of attraction of a Weibull
distribution:

P
(
N(UN

(N) − 1) ≤ x
) = P

(
UN
(N) ≤ 1 + x

N

)
−→

{
ex x ≤ 0,
1 x > 0,

as N → ∞.
Then for every fixed k ∈ N, the first k order statistics converge in distribution to[20, Chapter 8](

N(UN
(N−i+1) − 1)

)
i=1,...,k

d−→ (
Y (i))

i=1,...,k

as N → ∞, where the joint density of (Y (1),Y (2), . . . ,Y (k)) is given by

ψ1(x1, . . . , xk) = exk , xk < · · · < x1 < 0.

This observation is essential to determine the asymptotic exceedance probability, whichwe derive
next.

First suppose that ci,N does not depend on N, i.e. ci,N = ci for all N ∈ N. Then, the proof
follows by induction. For k = 1, the statement holds, since

lim
N→∞

P

(
UN
(1) ≤ c1

N

)
= lim

N→∞
1 −

(
1 − c1

N

)N
= 1 − e−c1 .
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Suppose the statement holds for all integers strictly smaller than k. Then,

lim
N→∞

P

(
UN
(i) ≤ ci

N
, ∀i ≤ k

)
= lim

N→∞
P

(
UN
(N−i+1) > 1 − ci

N
, ∀i ≤ k

)
= P

(
Y (i) > −ci, ∀i ≤ k

)
=
∫ 0

−c1

∫ y1

−c2
· · ·
∫ yk−1

−ck
eyk dyk · · · dy1

=
∫ 0

−c1

∫ y1

−c2
· · ·
∫ yk−1

−ck−1

eyk−1 dyk−1 · · · dy1 − e−ck
∫ 0

−c1

∫ y1

−c2
· · ·
∫ yk−2

−ck−1

dyk−1 · · · dy1

= 1 −
k−1∑
j=1

β j−1e− j − eckβk−1 = 1 −
k∑
j=1

β j−1e− j.

By induction, the statement thus holds for all k ≥ 1.
Next, suppose ci,N does depend onN, i.e. there is at least oneN ∈ N such that ci,N �= ci. Then,

P(AN ≥ k) = lim
N→∞

P

(
UN
(i) ≤ ci,N

N
, ∀i ≤ k

)
N→∞−→ P

(
N(UN

(N−i+1) − 1) ≥ −ci(1 + o(1)), ∀i ≤ k
)
.

Note that for every ε > 0 (small enough) there exists a N0 ∈ N such that for all N ≥ N0 and
1 ≤ i ≤ k,

P(AN ≥ k) ≥ P
(
N(UN

(N−i+1) − 1) ≥ −ci + ε, ∀i ≤ k
)

and

P(AN ≥ k) ≤ P
(
N(UN

(N−i+1) − 1) ≥ −ci − ε, ∀i ≤ k
)
.

WriteV1,V2 for the integration area of the upper bound and the lower bound respectively, and
V for the integration area corresponding to c1, . . . , ck. Since ex < 1 for all x < 0, it follows that

lim sup
N→∞

P(AN ≥ k) =
∫
V1

ey dy ≤
∫
V
ey dy +

∫
V1\V

1 dy ≤ 1 −
k∑
j=1

β j−1e− j + k(ck + ε)k−1ε.

Similarly, for the lower bound, we have

lim inf
N→∞

P(AN ≥ k) ≥
∫
V
ey dy −

∫
V\V2

1 dy ≥ 1 −
k∑
j=1

β j−1e− j − k(ck)k−1ε.

Letting ε ↓ 0 we obtain that both the upper bound and the lower bound converge to
1 −∑k

j=1 β j−1e− j . �
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