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Hidden Markov Models for Wind Farm Power
Output
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Abstract—The reliability of the transmission grid is
challenged by the integration of intermittent renewable
energy sources into the grid. For model-based reliability
studies, it is important to have suitable models available
of renewable energy sources like wind and solar power.
In this study, we investigate to what extent the power
output of wind farms can be modeled with discrete
Hidden Markov Models (HMMs).

The parameters of the HMMs are inferred from mea-
surement data from multiple turbines in a wind farm. We
use these models both for individual turbine output and
for total aggregated power output of multiple turbines.
When modeling individual turbine output, the hidden
process in the HMM is instrumental in capturing the de-
pendencies between the output of the different turbines.
It is important to account for these dependencies in order
to correctly capture the upper quantiles (90%, 95%, 99%)
of the distribution of the wind farm aggregated power
output. We show that despite their simple structure,
HMMs are able to reproduce important features of the
power output of wind farms. This opens up possibilities
to model and analyze these features with methods and
techniques stemming from the field of Markov models
and stochastic processes.

Index Terms—Wind farm power generation, data mod-
els, power system modeling, time series analysis, hidden
Markov models.
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Nomenclature
Pw
t t-th datum of power output of the w-th

turbine, t = 1, . . . , T .
Gt t-th datum of total power produced, t =

1, . . . , T .
RP Rated power of a wind turbine.
G∗ Quantile threshold.
γP Quantile fraction for measurement data,

i.e., γP := 1
T

∑T
t=1 1(Gt > G∗).

Y w
t Stochastic output process for the power

output of the w-th turbine at time t, t =
1, 2, . . . .

Xt Hidden process at time t, t = 1, 2, . . . .
p Number of free parameters in a model.
L Likelihood function.

I. Introduction

THE necessity to reduce carbon footprints has
led to a need for integrating renewable en-

ergy sources like wind turbines and photo-voltaic
arrays into the power grid. These renewable energy
sources, being unpredictable in nature, inject power
intermittently into the grid, thereby challenging the
reliability of the power network, cf. [1]–[3]). It is
therefore of great importance, for both the planning
and the operation of grids, to develop appropriate
stochastic models of power systems with intermit-
tent, renewable power generation. This is particularly
important in reliability studies [4], [24].

In this study, we focus on the occurrence of high
levels of wind farm power output. We purposefully
chose wind farms as they are the largest source of
intermittent renewable energy worldwide. Further-
more, assessing the upper quantiles of their power
output is relevant for grid reliability assessment [5].
This topic has received considerable attention and
various approaches have been proposed in the liter-
ature. When utilizing stochastic models to capture
wind power generation, two choices must be made:
(i) whether to model the power output directly or
model the wind speed and employ a separate model



(e.g., a wind power curve (WPC)) to obtain the
power output from the wind speed; and (ii) whether
to model the aggregated wind farm output or model
the individual power output from the wind turbines
in the farm.

Regarding the first choice, there is a significant
body of literature, see, e.g., [8]–[14] and the refer-
ences therein, that use some statistical or stochastic
method to model the wind and map the wind speed
to the power output using the WPC. Such indirect
models do not effectively capture the stochasticity
of the power output for a given wind speed [15].
The direct modeling of power output is considered
in e.g., [16]. In that study, a limited autoregressive
integrated moving average (LARIMA) model is used
for the modeling of the individual wind turbine
power, and a multivariate-ARIMA model is used
for the modeling of the cross-correlations between
the produced power for different parts of the wind
farm. Furthermore, [17] and [18] use discrete-time
Markov chains (DTMCs) for the modeling of the
power output of an individual turbine.

Regarding the second choice, in order to model
the joint or the aggregated power output of a wind
farm, it is paramount to consider some stochastic
dependence structure between the power output of
the turbines, see, e.g., [19]–[21]. These approaches,
are oftentimes too complicated to be used for simula-
tions, or for theoretical studies concerning the design
and the planning of power grids. Another interesting
approach that can be deployed for the short-term
forecasting of the joint or the aggregated power
output is that of deep neural networks (DNNs). In
[22], DNNs are used to model wind speed and, in [23],
DNNs based on meta-regression are used for wind
power forecasting. DNNs require a trove of available
data for training and a concrete understanding of
the system at hand so as to carefully choose the
type of the neural network. Moreover, DNNs have a
very complicated structure which is not suitable for
theoretical analysis. This was also reported in [6],
in which the authors discuss the use of DTMCs to
model the wind speed.

For the above mentioned reasons, we propose, in
this study, a class of stochastic models called Hidden
Markov Models (HMMs) that are able to accurately
capture the distribution of the power output, and
are also simple enough to be amenable to analysis
and to Monte Carlo simulation. In particular, the
theoretical methods and techniques from the field
of Markov models and stochastic processes (often-
times appearing in the study of communication and

transportation networks) provide a rich set of tools
that can be employed for analyzing power systems,
[7]. Such simple stochastic models are particularly
useful for model-based risk and reliability studies.

To assess the accuracy of HMM’s in fitting the up-
per quantiles (90%, 95%, 99%) of the observed power
output of a wind farm, we use time series power
output measurements from six individual turbines
from an existing on-shore wind farm. One advantage
of inferring models directly from the measured power
output is that they then reflect various factors that
have an impact on the power generation: not only
the variability of the wind speed, but also e.g.,
curtailing of wind turbines, shut-down of turbines
for maintenance or for other operational purposes,
wear and tear of the equipment, etc.

We consider HMMs for both individual turbine
outputs as well as aggregated power outputs. We
refer to the former as the microscopic approach, in
which we model the individual wind turbine outputs,
while aiming to account for dependencies of the
output between different turbines. By appropriately
aggregating their outputs, we study the aggregated
power output and its upper quantiles. This approach
is flexible, as it is easy to implement when considering
the impact of adding more turbines to a farm or
shutting down turbines (e.g., for maintenance). By
contrast, with the macroscopic approach, we directly
model the aggregated wind power produced by mul-
tiple turbines (e.g., all turbines in the wind farm).
This approach lacks the flexibility of the microscopic
approach, however it results in a simpler model as
there is only a single quantity that is modeled (the
aggregated power output).

The HMMs used in this study assume a discrete
(in particular finite) state space. Though wind power
output is a continuous variable, its measurements
are rounded. To this end, we define N discrete
levels (or states) to denote the possible values of
the power output. For simplicity and in order to
reduce the state space, we reduce the number of
levels by mapping a set of data values to a level (e.g.,
by assigning a measurement to its nearest discrete
level). We investigate the effect of this discretization
on the probability distribution of the aggregated
power output (by varying N), and in particular on
the upper quantiles of the distribution. The “visible”
part of the state-space of the HMM is either vector-
valued, keeping track of the output of each wind
turbine (in the microscopic approach), or single-
valued (in the macroscopic approach). In both cases,
we allow for an additional “hidden” component,
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whose dynamics cannot be directly observed from
the wind power output data.

The interpretation of the hidden process of an
HMM (e.g., in physical terms) depends on the
application. We hypothesize, for the case under
consideration, that the hidden process can include
meteorological conditions to which the wind turbines
are subjected (see [25], [26] for an example of HMMs
used in meteorology). These conditions are highly
dependent in both space and time, resulting in
dependencies between power output of turbines in
close geographic proximity (e.g., turbines in the same
wind farm) and high auto-correlation. To the best of
our knowledge, modeling multiple output processes
with a single hidden process has not been used before.
In [27], one of the implemented approaches uses the
Viterbi algorithm to estimate the parameters of a
simple HMM from pseudo-measurements (with de-
terministic wind power generation and load patterns)
and based on simulations the authors show that this
approach increases the prediction accuracy, and that
HMMs are more accurate than DTMCs.

The paper is organized as follows. In Section
II, we discuss the post processing of the original
data and the inherent dependency structure between
the wind power outputs generated by the various
turbines in the farm. In Section III, we describe
the discretization of the measurement data. In Sec-
tion IV, we present the results obtained using the
HMM model for the microscopic approach and we
compare them to the corresponding empirical results
(obtained directly from the measurement data). In
Section V, we present the results of the macroscopic
approach. We present some conclusions in Section
VI.

II. Description of the data
We have data from 6 wind turbines, (numbered 1

to 6) from an on-shore wind farm in the Netherlands
covering the period of April 1 to September 12,
2016. The wind turbines are of the type ETW
Directwind 900/52. The data is obtained through the
Supervisory Control and Data Acquisition (SCADA)
system of the wind turbines. For this wind farm, the
measurements are stored as 20-minute averages.

The data include several variables in addition to
the wind power (e.g., wind speed, wind direction,
etc), however, for the purpose of this study, we
only use the wind power data. Furthermore, since
we are interested in the aggregated power output
from all the turbines, we use only complete cases,
i.e. only the time instances for which we have

data from all six wind turbines. Let Pw
t be the

t-th (time-ordered) datum of the power output of
turbine w, w ∈ W = {1, . . . ,W}, W = 6, and let
Pw = [Pw

1 , . . . , Pw
T ] denote the complete time series

data for turbine w, with T = 8673. Note that T
represents the number of complete cases.

A. Analysis of complete data
It is expected that geographic proximity of the

turbines leads to dependency in the data. This
is validated in Table I, in which we present the
correlation coefficients for the power output between
turbine 6 and the other turbines. This is also vali-
dated in the produced scatter plots (see Section I of
supplementary material).

TABLE I: Correlation between P 6
t (power of turbine

6) and Pw
t , w = {1, . . . , 5} (power of turbines 1-5).

w 1 2 3 4 5
Correlation coefficient 0.886 0.909 0.929 0.916 0.954

III. discretization of data
We denote by Gt =

∑6
w=1 P

w
t the total (aggre-

gated) power produced by the six turbines together
at time t, t = 1, . . . , T . Let G = [G1, . . . , GT ] be the
complete time series of Gt, t = 1, . . . , T . The values
of G lie in the interval [−26.3, 5342.89] kW. Note that
the negative values of G correspond to consumption
of power by the wind turbines for performing internal
functions like blade-pitch control, sensors, hydraulic
breaks, etc.

In Section III-A, we discuss the discretization of
the support of Pw. In order to differentiate the
discretized variables (with the binned support) from
the original ones, all notation will be adapted to have
a tilde, e.g., we denote by P̃w

t the discretized t-th
measurement and with Pw

t the original t-th measure-
ment of the power output of the w-th turbine. In the
next section, we sketch the discretization procedure,
and, in Section III-B, we compare the distributions
as well as the 90%, 95% and 99% quantiles of the
original and the discretized data.

A. Equidistant power levels and thresholds
For the discretization of the Pw variable, we

define N levels, whose values are denoted by Bk,
k = {1, . . . , N}. In order to produce these values,
we first consider the entire power support [0, PR],
where PR is the rated power of the turbines (the
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Fig. 1: Comparing EDFs of the total power G and its discretized counterpart G̃, for different numbers of
levels N .

theoretical maximum power a turbine of this type
can produce). For the wind farm under consideration
PR = 900 kW. Secondly, we equidistantly divide
[0, PR] in N levels. More concretely, this procedure
produces N − 1 thresholds, say Bthres

k = Bk+Bk+1

2 ,
with Bk =

[
k−1
N−1

]
PR, k = {1, . . . , N}. Based on the

above procedure, the data are discretized according
to

P̃w
t =


B1, if Pw

t < Bthres
1 ,

Bk+1, if Bthres
k ≤ Pw

t ≤ Bthres
k+1 ,

for k = 1, . . . , N − 2, and
BN , if Pw

t > Bthres
N−1 ,

(1)

for t = 1, . . . , T and w ∈ W. We use the same {Bk}
and {Bthres

k } values for all turbines. We would like
to note that depending on the modeling objective
(here it is mainly to capture the tail distribution
of the wind power output), one could consider
other approaches for the discretization of the data
besides equal width, see [28] for a recent survey in
discretization techniques.

B. Comparing measurement power with discretized
measurement power

In this section, we analyze the effect of the dis-
cretization on the total power output distribution.
We do so by comparing the distribution and the
90%, 95% and 99% quantiles of the original and
discretized data (G and G̃, respectively) varying the
number of the levels, N .

1) Empirical distribution function (EDF) compar-
ison: For a vector of data Z = [Z1, . . . , ZT ], the EDF
is defined as F (z) = 1

T

∑T
t=1 1(Zt ≤ z). The EDFs

of G and G̃, for N = 2, 5, 100, are depicted in Fig.
1a–1c. Note that, for N = 5 (Fig. 1b), the right tails
match well. It should be noted that for N = 5 the
EDFs do not match for smaller values of the support.

However for large N , the EDFs match over the entire
support (see Fig. 1c).

2) Quantile comparison: To compare the
90%, 95% and 99% quantiles of G and G̃, we
first compute the corresponding threshold values
(denoted G∗) for the G data. We define

γP :=
1

T

T∑
t=1

1(Gt > G∗), (2)

where 1(·) is the indicator function, and compute the
value of G∗ given γP . In particular, γP = 0.1 (90%
quantile) yields G∗ = 2210.6 kW, γP = 0.05 (95%
quantile) yields G∗ = 2819.8 kW, and γP = 0.01
(99% quantile) yields G∗ = 4411.3.

Repeating the same analysis for the discretized
data G̃ for an increasing number of levels, N ,
produces as expected that γP = lim

N→∞
γ
(N)

P̃
, with

γ
(N)

P̃
= 1

T

∑T
t=1 1(G̃t > G∗). This is illustrated in

Fig. 2. Furthermore, we find that for N = 5 the
relative error RE =

|γP−γ
(N)

P̃
|

γP
× 100 (in %) equals

1.3%, 0.69% and 11%, for the 90%, 95% and 99%
quantiles, respectively. Hence, for the study of the
tail distribution (represented by the 90%, 95% and
99% quantiles) it is sufficient to choose N = 5,
however, if the objective is to fit the entire distribu-
tion N should be chosen larger or the discretization
approach implemented in Section III-A should be
appropriately changed.

IV. Hidden Markov Models for the microscopic
approach

In this section, we consider HMMs (for an intro-
ductory description of HMMs see Section II of the
supplementary material) and [29]. Under the HMMs
formalism, the individual wind turbine power output
is discrete and Markovian in nature, but it also
depends on the evolution of the hidden component of
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the Markov process. HMMs offer a flexible framework
that can integrate different layers of complexity (by
accounting for the joint state description of all the
turbines in the park) and of information for the
spatio-temporal dynamics (environmental and geo-
graphic conditions) captured in the hidden process,
surpassing the capabilities of copula modeling [19].

A. Individual stochastic modeling (matrix) per tur-
bine

Let {Y w
t , t = 1, 2, . . .}, w ∈ W denote the

discretized wind power output of the individual
wind turbines at time t, with state-space N =
{B1, . . . , BN}. In the HMMs framework, we assume
that the stochastic processes {Y w

t } depend on a
sequence of hidden states, {Xt, t = 1, 2, . . .}, with
state space M = {1, . . . ,M}. More specifically,
the processes {Y w

t } are governed by the stochastic
matrices Lw,i =

(
Lw,i
µ,ν

)
µ,ν∈N whenever {Xt = i},

and the transition probabilities of {Xt, t = 1, 2, . . .}
are given by the stochastic matrix A = (Ai,j)i,j∈M,
i.e.,

Lw,i
µ,ν = P

(
Y w
t+1 = ν|Y w

t = µ,Xt+1 = i
)

Ai,j = P
(
Xt+1 = j|Xt = i

)
.

(3)

For t = 1, the initial distribution of X1 is given
by πi = P(X1 = i), and of Y w

1 by ρw,i
µ = P(Y w

1 =
µ|X1 = i). Note that M = 1 implies that there is
no hidden state and the model simplifies to a simple
DTMC, see [30].

Our goal is to estimate from the discretized
data, P̃w, the parameters of the above men-
tioned model: λ = (π, ρ,A, L), with π =

(πi)i∈M , A = (Aij)i,j∈M , ρ =
(
ρw,i
µ

)w∈W,i∈M
µ∈N and

L =
(
Lw,i
µν

)w∈W,i∈M
µ,ν∈N . For the estimation of the model

parameters, we use the Expectation-Maximization
(EM) algorithm for HMMs, see [31]–[37]. A detailed

explanation of the EM algorithm and the model
parameter estimation is provided in Section III of the
supplementary material. Also see Section V of the
supplementary material for complexity evaluation
and improvements of HMMs.

1) Quantile comparison: Given the discretized
data (P̃w) and given the number of hidden states
(M), we estimate the parameters of the HMM (see
Section III of the supplementary material). We gen-
erate surrogate wind power output measurements,
denoted by P̂w

HMM, based on the HMM, and let
ĜHMM

t :=
∑6

w=1 P̂
w
t,HMM be the total power surro-

gate time series. We calculate the fraction of time
ĜHMM

t is greater than the quantile thresholds, G∗

(see section III-B),

γ
(N,M)

P̂HMM
=

1

T

T∑
t=1

1(ĜHMM
t > G∗). (4)

The numerical procedure can be summarized as
follows: We first estimate the HMM parameters,
thereafter we generate 100 independent realizations
of P̂w

t,HMM, t = 1, . . . , T , T = 105, and we compute
the fraction γ

(N,M)

P̂HMM
for each of these realizations. The

mean and standard deviation of these 100 fractions
are denoted by γ̄

(N,M)

P̂HMM
and σ(γ

(N,M)

P̂HMM
), respectively.

In order to comment on the model best fitting the
given data set, we compare the Akaike Information
Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) statistic values. The AIC and the BIC
values, for a given model, are computed as follows

AIC = 2p− 2 log L̂,
BIC = p log T − 2 log L̂,

(5)

with p the number of free parameters in the model,
L̂ the maximized value of the likelihood function for
the parameter values λ̂ for the data set, and T the
number of observations in the data set, see [39].
We compared γ̄

(N,M)

P̂HMM
for different quantile thresh-

olds, G∗, with γP for N = 5 and different number
of hidden states M . We find that the relative error
of γ̄

(N,M)

P̂HMM
and γP , RE =

|γP−γ̄
(N,M)

P̂HMM
|

γP
× 100 (in %)

achieves its minimum (for all three quantiles) for
M = 9. We also find that the lowest value of − log L̂
and the AIC is achieved for M = 9. However, the
BIC value grows with M as the penalty term for the
BIC is higher than in the AIC. In Table II, we show
the results for N = 5,M = 9. For more results and
comparisons on different values of M , the interested
reader is referred to Table I of the supplementary
material.
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TABLE II: Results on the microscopic approach with individual stochastic matrices (cf. Section IV-A) for
N = 5.

M Quantile γ̄
(5,M)

P̂HMM
± σ(γ

(5,M)

P̂HMM
) RE (%) − log L̂ × 10−4 AIC ×10−4 BIC ×10−4 p

90% 0.1011 ± 0.0032 1.1512
9 95% 0.0517 ± 0.0020 3.2605 2.4011 5.0776 6.0500 1376

99% 0.0114 ± 0.0060 13.127

By comparing the quantile values, the − log L̂, and
the AIC test, we can conclude that for N = 5,
the optimal number of hidden states is M = 9.
For further experimentation, we also compare the
EDFs of the total power from the original data G,
the discretized data, G̃, and the HMMs time series,
ĜHMM, for N = 5 and M = 9. As expected, the
HMM is able to reproduce the right tail of the EDF.
For more results and comparisons on different values
of M , the interested reader is referred to Fig. 3 of
the supplementary material). We would like to note
that if the objective were to fit the entire distribution
without drastically increasing the values of N and M ,
then we would propose to use a moment matching
based fitting method, see, e.g., [38] and the references
therein.

B. Same stochastic modeling (matrix) per turbine
In (3), we define separate stochastic matrices for

each wind turbine (indexed by w). For this model
setup, the number of parameters is p = M2 +
MWN2 −MN − 1. For example, for N = 5,M = 9
and W = 6, the number of parameters to be
estimated is p = 1376. In order to reduce the
number of estimated parameters, in this section, we
investigate a model setup in which the same (set
of) stochastic matrices is used for each of the wind
turbines. Thus, the transition probability matrix of
each power output process {Yt

w} depends on the
hidden state, but not on the turbine index w, i.e.,
the matrix Lw,i in (3) is now independent of w.
This reduces the number of parameters of the model.
The details of the parameter estimation are given
in Section VI of the supplementary material. We
study the trade-off between reducing the number
of parameters of the model by calculating anew the
− log L̂, AIC and BIC values, and by comparing them
with the values reported in Table II.

The number of parameters to be estimated for this
model are p = M2+MN2−M−1. We follow the same
procedure as in Section IV-A1 for the estimation of
the quantile fractions, denoted by γ

′(N,M)

P̂HMM
for this

model. Similarly, to the previous section, the best

results are obtained for N = 5, M = 9. In Table III,
we present the results for N = 5, M = 9, for the case
of the same stochastic matrix for all the turbines. For
more results and comparisons on the different values
of M , the interested reader is referred to Table II of
supplementary material.

Comparing the values of − log L̂, AIC and BIC in
Table II and Table III, it is evident that − log L̂ is
slightly lower for the former. This implies that having
different stochastic matrices (as in Section IV-A) for
different wind turbines fits the given data better than
having the same stochastic matrices (as in Section
IV-B). Of course, one needs to also take into account
the number of unknown parameters that need to be
estimated. For the first approach these amount to
1376 parameters. For the second approach there are
296 parameters in case N = 5,M = 9. Furthermore,
we find that the AIC and the BIC values are higher
for the first approach, but the difference is small.

V. Results of the Macroscopic approach

In the microscopic approach studied in Section
IV, we modeled the individual wind turbine power
output with HMMs, with the aim to model the
high quantiles of the distribution of the total power
produced by all turbines together (G). As discussed
in the introduction, a different approach is to model
G directly. In this section, the measurement data of
G are discretized (cf. Section III), and modeled with
a HMM (similar to the procedure of Section IV).

We recall from Section III-B2 that the thresholds
for the 90%, 95% and 99% quantiles of G are 2210.6,
2819.8 and 4411.3 kW, respectively. Discretizing G
directly, we find that with 15 levels (N = 15) the
relative errors are 0.92%, 5.8% and 4.6%, for the
90%, 95% and 99% quantiles, respectively. One could
further reduce the relative error by increasing N , but
we consider this to be out of the scope of the paper,
and for this reason restrict our analysis to N = 15, as
this seems to adequately capture the high quantiles
of the distribution of G.
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TABLE III: Results on the microscopic approach with the same stochastic matrices (cf. Section IV-B) for
N = 5.

M Quantile γ̄′(5,M)

P̂HMM
± σ(γ

′(5,M)

P̂HMM
) RE (%) − log L̂ × 10−4 AIC ×10−4 BIC ×10−4 p

90% 0.0987 ± 0.0032 1.243
9 95% 0.0517 ± 0.0020 3.391 2.4724 5.0040 5.2132 296

99% 0.0108 ± 0.0060 8.116

A. Quantile fraction comparison
Similar to the analysis of the previous sections, we

generate 100 realizations, and compare the quantile
values γ

(N,M)

Ḡ
, and their respective relative errors

while varying the number of hidden states M . Fur-
thermore, we compute the corresponding − log L̂,
AIC and BIC values. Based on this procedure, we
find that with M = 1, the quantile fractions are
very well captured, however the values of − log L̂,
AIC and BIC are much higher compared to the
M ≥ 2 cases. The lowest value of − log L̂ is obtained
with M = 5. Note that the AIC and the BIC
values increase in M (for M ≥ 2) and there does
not seem to exist a minimum in the AIC value, in
contrast to the microscopic approach. We depict the
results for M = 5 in Table IV. For more results and
comparisons for different M values see Table III of
the supplementary material.

We point out that in this case the number of
parameters (p = 1144) exceeds the number in the
microscopic approach for the same matrix (p = 296),
see Section IV-B. This is related to the higher
number of levels (N) needed in the macroscopic
approach. In the microscopic approach, with W tur-
bines and N levels for each turbine output, the total
(i.e., aggregated) discretized power output has WN
possible states (e.g., in the case under consideration
W = 6 and N = 5). By contrast, in the macroscopic
approach the discretized total output has N states,
therefore N must be larger so as to capture the tail
of the distribution with the level of accuracy.

Furthermore, we note that one cannot directly
compare the − log L̂, AIC and BIC values of the
model in Table IV with the models in Table II and
Table III as the former uses the observation data
set Ĝ (directly discretizing G) and the later two use
P̃w (obtained from discretizing the individual wind
turbine power output).

VI. Conclusions
In this paper, we studied the performance of

HMMs for modeling the power output of a wind farm.
Such models have a rather simple structure, making

them suitable for theoretical analysis. Despite their
simplicity, they are able to accurately reproduce
the distribution of the wind farm power output,
as demonstrated in this study. In particular, these
models are well able to capture the tail of the
distribution.

We considered two approaches: in the microscopic
approach, the power output of individual turbines
were modeled with Markov chains dependent on a
single hidden process, and subsequently aggregated
to obtain the total power output. With the HMM
we were able to account for the dependence structure
among the wind turbines, resulting in a precise repro-
duction of the upper quantiles. With the macroscopic
approach, we directly modeled the aggregated output
of all turbines.

To assess the quality of the estimated models, we
computed their log-likelihoods, as well as the Akaike
and Bayesian information criteria (AIC and BIC).
With AIC, one can take into account the number
of model parameters, whereas the BIC accounts for
both the number of parameters and the amount
of data used for estimation. In the microscopic
approach, the HMMs in which all turbines had the
same set of stochastic matrices (discussed in section
IV-B) performed most favorable in terms of AIC
and BIC. This is due to the smaller number of
parameters needed in these models, compared to the
HMMs with different sets of stochastic matrices for
the different turbines (section IV-A). The HMMs
from the macroscopic approach also required more
parameters than the HMM from the microscopic
approach with the same set of stochastic matrices
(as discussed in section V).

In this study we have shown that simple discrete
HMMs are able to reproduce the distribution of
wind farm power output, in particular its upper
quantiles. Due to their simple structure, these models
are amenable to theoretical analysis using methods
from e.g., the field of queuing theory. We will report
on such analysis in a follow-up study.
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TABLE IV: Results on the macroscopic approach for N = 15,M = 5

M Quantile γ̄
(15,M)

Ḡ
± σ(γ

(15,M)

Ḡ
) RE (%) − log L̂ × 10−4 AIC ×10−5 BIC ×10−5 p

90% 0.0988 ± 0.0102 1.154
5 95% 0.0475 ± 0.0057 5.095 0.9761 0.2181 0.2989 1144

99% 0.0101 ± 0.0022 0.507
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