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Sojourn Time Asymptotics in the M/G/1 Processor Sharing Queue

A.P. Zwart and O.J. Boxma
1
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P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We show for the M/G/1 processor sharing queue that the service time distribution is regularly varying of index ��,

� non-integer, i� the sojourn time distribution is regularly varying of index ��. This result is derived from a new

expression for the Laplace-Stieltjes transform of the sojourn time distribution. That expression also leads to other

new properties for the sojourn time distribution. We show how the moments of the sojourn time can be calculated

recursively and prove that the k-th moment of the sojourn time is �nite i� the k-th moment of the service time is

�nite. In addition, we give a short proof of a heavy tra�c theorem for the sojourn time distribution, prove a heavy

tra�c theorem for the moments of the sojourn time, and study the properties of the heavy tra�c limiting sojourn

time distribution when the service time distribution is regularly varying. Explicit formulas and multiterm expansions

are provided for the case that the service time has a Pareto distribution.

1991 Mathematics Subject Classi�cation: 60K25, 90B22.

Keywords & Phrases: M/G/1 queue, processor sharing service discipline, sojourn time distribution, heavy

tailed distributions, regular variation, heavy tra�c theory.

Note: The work is carried out under the project LRD in PNA2.1.

1. Introduction

In this paper, we investigate asymptotic properties of the sojourn time distribution in the
stable M/G/1 processor sharing (PS) queue. In the (egalitarian) processor sharing service
discipline every customer is being served with rate 1=X with X the number of customers in

the system. An extensive overview on processor sharing queues can be found in the surveys
[41, 42].
In particular, we are interested in the tail behaviour of the sojourn time distribution when

the service time distribution B(x) has a heavy tail, i.e.

1�B(x) � h�x
�� ; (1.1)

if x!1 (with f(x) � g(x) we mean f(x)=g(x)! 1), and 1 < � < 2. Queueing systems in

which the tail of the service time behaves like (1.1) have recently become important in the

performance modelling and analysis of communication tra�c. The main reason for this is

that extensive tra�c measurements for tra�c in Ethernet Local Area Networks [39], Wide
Area Networks [33], and VBR video [7], exhibit phenomena like self-similarity and long-range

1also: Tilburg University, Faculty of Economics, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
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dependence { phenomena that can be explained by the occurrence of service requirements

like in (1.1).

A convenient class of distribution functions that satis�es (1.1) and enables a tractable

asymptotic analysis is the class of distribution functions with regularly varying tails, see the

appendix.

The main result in this study is presented in Theorem 4.1, which states that the sojourn

time distribution of the M/G/1 processor sharing queue is regularly varying of index �� if

and only if the service time distribution is regularly varying of index ��, � not an integer.

More precisely, Theorem 4.1 provides explicit equivalents of the former in terms of the latter.

To the best of the authors' knowledge, this is the �rst asymptotic expansion for the sojourn

time distribution in the M/G/1 processor sharing queue { even the asymptotic behaviour of

the sojourn time distribution in the M/M/1 processor sharing queue seems to be unknown.

Theorem 4.1 reveals a crucial property of the processor sharing service discipline. For the

GI=G=1 queue in which the service discipline is �rst come �rst served (FCFS), Cohen [17]

has shown that the waiting time distribution is regularly varying of index 1�� i� the service

time distribution is regularly varying of index ��. This implies that if the latter is the case,

also the sojourn time is regularly varying of index 1 � �, which means that the tail of the

sojourn time distribution is even fatter than the tail of the service time distribution. This is

due to the FCFS discipline, in which long jobs are favoured, and short jobs can be held up
by long jobs. Theorem 4.1 implies that the processor sharing discipline is more e�ective in
handling heavy-tailed service times: In a processor sharing system, short jobs can overtake

long jobs, so the in
uence of long jobs on the sojourn time of short jobs is limited. This
consideration has formed the main motivation for the present study.
To establish Theorem 4.1, we will use the Tauberian theorem due to Bingham and Doney

[9] and the expression for the Laplace-Stieltjes transform (LST) of the sojourn time distri-
bution given by Ott [32]. This transform is derived by representing the sojourn time as a

functional on a branching process, cf. [40]. A more general relationship between branching
processes and processor sharing queues is investigated in [24]. For an overview on the con-
nections between regular variation and branching processes we refer to Chapter 8.12 of [11]

and more in particular to [9, 10].
In order to prove Theorem 4.1, we rewrite the expression for the LST of the sojourn time

distribution. Known expressions for the LST of the sojourn time, see [32, 36, 40], all contain

contour integrals which are inversion formulas of Laplace transforms. We show how to get
rid of these contour integrals and thus obtain a more explicit formula. Using this result, we

show how the moments of the sojourn time can be calculated recursively and prove that the
k�th moment of the sojourn time is �nite i� the k�th moment of the service time is �nite.
Apart from the tail behaviour of the sojourn time distribution, we study some properties

of the sojourn time in heavy tra�c, in particular when the service time distribution satis�es

(1.1). We give a new proof of a heavy tra�c theorem due to [37, 43] and prove a similar

statement for the moments of the sojourn time in heavy tra�c. When the service time has
a Pareto distribution, it is possible to give an explicit formula for the heavy tra�c limiting
distribution. More generally, we show that the heavy tra�c limiting distribution is regularly

varying of index �� if the service time distribution is regularly varying of index ��, � > 1.

The paper is organised as follows. Preliminary results are given in Section 2. In Section



2. Preliminaries 3

3, we derive a new expression for the Laplace-Stieltjes transform (LST) of the sojourn time

distribution and study the moments of the sojourn time. Section 4 establishes the link

between the tail behaviour of the service time and the sojourn time with Theorem 4.1, of

which the proof is given in Section 5. The heavy tra�c analysis is performed in Section

6. Section 7 contains conclusions and suggestions for further research. A short overview of

regular variation is given in the appendix.

2. Preliminaries

For later use, we give in this section a short review of the M/G/1 PS queue. Customers

arrive according to a Poisson process with rate � > 0. The service time B of a customer

has distribution B(t) with B(0+) = 0 and �rst moment 0 < �1 < 1. In this study, it is

assumed that the workload is less than one, i.e. � := ��1 < 1. The LST of the service time

distribution is given by �(s). If the k�th moment of the service time exists, it is denoted

by �k.

In the analysis in the next sections, the integrated tail distribution (or excess distribution)

of the service time will be useful. The distribution function and LST of the excess service

time are respectively given by

eB(t) := 1

�1

Z t

0

(1�B(x))dx; t � 0;

e�(s) := Z 1

0

e�std eB(t) = 1� �(s)

�1s
; Re s � 0:

It is well known, due to Sakata et al. [35] (see also [26]), that the steady state distribution

(Pn)n�0 of the number of customers in the system is geometrically distributed and only
depends on the service time through its mean:

Pn = (1� �)�n:

Determination of the distribution of the sojourn time of a customer in steady state, de�ned
by the r.v. V , has turned out to be a more di�cult problem. De�ne the r.v. V (�) as the

sojourn time of a customer entering the system in steady state having a service time equal
to � . De�ne the LST of V (�) by

v(s; �) := E

�
e�sV (�)

�
:

Yashkov has derived an expression for v(s; �) by writing the sojourn time as a functional on
a branching process, see Yashkov [40]. Using the structure of the branching process, Yashkov

found (and solved) a system of di�erential equations determining v(s; �).

Similar results for v(s; �), each obtained by using a di�erent approach, are obtained in

[6, 36]. For our purposes, the expression for v(s; �) derived in [32] is the most suitable one.

It is given by (see also [32], p. 367{368)

v(s; �) =
1� �

(1� �)H1(s; �) + sH2(s; �)
; (2.1)
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where the functions H1 and H2 are given by,

1Z
0

e�x�dH1(s; �) =
x� �(1� �(x))

x� s� �(1� �(x))
; Re x > 0; (2.2)

1Z
0

e�x�dH2(s; �) =
�x� �(1� �(x))

x(x� s� �(1� �(x)))
; Re x > 0: (2.3)

De�ne the k�th moment of V (�) by vk(�): The �rst moment of V (�) is given by, cf. [27], p.

168:

v1(�) =
�

1� �
: (2.4)

Note that v1(�) is linear in �: An immediate consequence of (2.4) (or of the expression for

(Pn)n�0 and Little's formula) is that the �rst moment of the sojourn time E[V ] is �nite

and equals �1
1��

if �1 < 1: In Section 3, we will show that a similar result holds for higher
moments of the sojourn time. This property is contrasting with the FCFS service discipline,

where �niteness of E [V ] requires �2 < 1. We come back to this in Section 4, where we
study the tail behaviour of V: Closing the section, we de�ne the n�fold convolution F n� of
a distribution function F of a non-negative random variable by, for x � 0,

F 0�(x) = 1;

F n�(x) =

xZ
0

F (n�1)�(x� u)dF (u); n = 1; 2; ::: .

3. A new expression for the sojourn time distribution

The goal of this section is to provide a novel expression for v(s; �) that will be suitable
for analysing the tail behaviour of the sojourn time distribution in the next section. In

particular, we show that v(s; �)�1 can be written as a power series in s: It turns out that
the expression contains the LST of the waiting time distribution R(x) in the M/G/1 FCFS
queue, which is given by the Pollaczek-Khintchine formula, i.e.

!(s) :=

1Z
0

e�sxdR(x) =
1� �

1� �e�(s) : (3.1)

It can easily be shown by inversion of !(s)k that, for k � 1 and x � 0,

Rk�(x) = (1� �)k
1X
n=0

�
n + k � 1

k � 1

�
�n eBn�(x): (3.2)
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We introduce some de�nitions before the main result of this section is presented. De�ne the

coe�cients �k(�); with k � 0 and � � 0; by �0(�) := 1; �1(�) :=
�

1��
, and for k � 2;

�k(�) :=
k

(1� �)k

�Z
x=0

(� � x)k�1R(k�1)�(x)dx: (3.3)

Obviously we can write

�k(�) =

�
�

1� �

�k

� �k(�); (3.4)

with �0(�) = �1(�) := 0; and

�k(�) :=
k

(1� �)k

�Z
0

(� � x)k�1(1� R(k�1)�(x))dx; k = 2; 3; ::: . (3.5)

The next theorem expresses v(s; �)�1 as a power series in s with coe�cients �k(�)

k!
.

Theorem 3.1 For Re s � 0; � � 0 :

v(s; �) =

"
1X
k=0

sk

k!
�k(�)

#�1

: (3.6)

The theorem will be proven by analysing the LST of v(s; �)�1. It is also possible to prove

Theorem 3.1 without using transforms, starting from Formula (5.2) in [41]. However, this
proof is rather lengthy and therefore omitted. Instead, we give a short proof of Theorem 3.1

with the aid of the following lemma.

Lemma 3.1 For Re s � 0 and Re x > 0 :

1Z
0

e�x�dv(s; �)�1 = 1 +
1

1� �

s

x

1

1� 1

1��

s

x
!(x)

: (3.7)

Proof By (2.1){(2.3) and (3.1) we have for Re x > 0:

1Z
0

e�x�dv(s; �)�1 =
x� �(1� �(x))

x� s� �(1� �(x))
+

s

1� �

�x� �(1� �(x))

x(x� s� �(1� �(x)))

= 1 +
1

1� �

s� s�(1� �(x))=x

x� s� �(1� �(x))

= 1 +
1

1� �

s

x

1� �e�(x)
1� �e�(x)� s

x

= 1 +
1

1� �

s

x

1

1� 1

1��
s
x
!(x)

;
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which proves the lemma. �

Proof of Theorem 3.1 It is su�cient to show that the LST of the power series in the

denominator of the right hand side of (3:6) has the same LST as v(s; �)�1 for Re x > jsj+�.

It is not di�cult to show using the expression for !(s) that
��� s!(x)
(1��)x

��� < 1 if Re x > jsj + �.

Hence, we have by Lemma 3.1 that

1Z
0

e�x�dv(s; �)�1 = 1 +
1

1� �

s

x

1

1� 1

1��
s
x
!(x)

= 1 +

1X
k=1

�
1

1� �

s

x

�k

!(x)k�1: (3.8)

On the other hand, we have for k � 1, cf. (3.3):

1Z
0

e�x�d�k(�) =
1

xk
k!

(1� �)k
!(x)k�1;

which implies (3.5). �

As a �rst application of Theorem 3.1 we show how the moments vk(�) can be found re-

cursively. Note that all vk(�) exist and are equal to (�1)k
�

@k

@sk
v
�
(0; �); since Theorem 3.1

implies that v(s; �) is analytic in s = 0: From (3.5) we obtain the identity

v(s; �)

1X
n=0

sn

n!
�n(�) = 1:

Di�erentiating both sides k times w.r.t. s and putting s = 0; we obtain the following result
(with v0(�) := 1).

Corollary 3.1 For k � 1 and � � 0,

vk(�) = �

kX
j=1

�
k

j

�
vk�j(�)�j(�)(�1)

j: (3.9)

In particular, the variance of V (�) is given by

Var(V (�)) = �2(�); � � 0: (3.10)

This result is also obtained in [40].

Remark 3.1 Apart from being a tool in the proof of Theorem 3.1, Lemma 3.1 is also useful
for the determination of a tractable expression for v(s; �). For example, if the service time
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is exponentially distributed with parameter �; it is possible to invert the right hand side of

(3.7) by partial fraction expansion, which yields the following expression for v(s; �):

v(s; �) =

�
s

1� �

�+ �� x1(s)

x1(s)x0(s)
ex1(s)� �

s

1� �

�+ �� x2(s)

x2(s)x0(s)
ex2(s)� �

2�

1� �

��1

;

with x0(s) = x1(s)� x2(s) and

x1(s) =
1

2

h
s+ �� �+

p
(s+ �� �)2 + 4�s

i
;

x2(s) =
1

2

h
s+ �� ��

p
(s+ �� �)2 + 4�s

i
:

Equivalence with the result in [16] can be established by noting that x1(s) = ��(s) � �,

where �(s) is the LST of the busy period distribution in the M/M/1 queue. We omit the

details.

More generally, the right hand side of (3.7) can be inverted when the LST of the service

time distribution is a rational function, since then also !(s) and the right hand side of (3.7)
are rational functions. �

Remark 3.2 A challenging task (and a topic for our further research) is to derive more

explicit expressions for the LST and the moments of V (�) when the service time distribution
has a heavy tail. Recently, an explicit expression for the waiting time distribution in the

standard M/G/1 queue with a particular class of heavy-tailed service time distributions has
been found by Boxma and Cohen [14], and has been extended by Abate and Whitt [4].
These results can be used to calculate exact expressions for the second moment of V (�) (cf.

(3.10) and (3.5) for k = 2) for a particular class of heavy-tailed service time distribution.
It might be possible to use the results in [4, 14] to obtain a tractable expression for v(s; �)
using Lemma 3.1.

When the LST of the service time distribution is a rational function, it is possible to obtain
an explicit expression for the waiting time distribution in the standard M/G/1 queue and

to invert the right hand side of (3.7). However, this class of distribution functions does not
satisfy (1.1). �

Remark 3.3 If �2 <1, we have the following two-term asymptotic expansion for vk(�):

vk(�) = vk1 (�) +
�2

2�1

�

1� �

k(k � 1)

(1� �)k
�k�1 + o(�k�1); � !1:

This result can be derived by analysing the behaviour of �k(�) for � ! 1 by means of its

LST and applying the classical Tauberian theorem (cf. [19], App. 4). Then, apply Corollary
3.1 and induction. We omit the details. The case k = 2 is similar to a result in [40]. �

Using Corollary 3.1, it is not di�cult to show that the k�th moment of the sojourn time is
�nite i� the k�th moment of the service time is �nite.
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Corollary 3.2 For integer k � 1,

E[V k] <1 , �k <1:

Proof Since V � B for any particular customer, `)' is trivial. To prove `(', �x k � 1 and

write

E[V k] =

1Z
0

vk(�)dB(�): (3.11)

Note that, cf. (3.3), for j � 1,

�j(�) �
� j

(1� �)j
:

From this and Corollary 3.1, it is easily shown that

vk(�) �
Ck

(1� �)k
�k; (3.12)

with C0 = 1 and

Ck =

k�1X
j=0

�
k

j

�
Cj; k � 1: (3.13)

The proof follows from (3.11){(3.13). �

Corollary 3.2 indicates that the tail behaviour of the service time distribution and the sojourn

time distribution are similar. In the next section, we will study this relation in the case that
the service time distribution or the sojourn time distribution has a regularly varying tail of
index ��.

4. Sojourn time asymptotics for a heavy tailed service time distribution

In this section we present Theorem 4.1, the main result in this study. Theorem 4.1 establishes

an equivalence between the tail behaviour of the service time distribution and the sojourn
time distribution. With L we denote a slowly varying function, cf. the appendix.

Theorem 4.1 Let � > 1, � not an integer. The following are equivalent.

(i) P(B > x) � x��L(x); x!1;

(ii) P(V > x) � (1� �)��x��L(x); x!1:
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The proof of Theorem 4.1 is based on Lemma 8.1 in the Appendix and Theorem 3.1 and will

be presented in the next section.

Taking Corollary 3.2 into account (see also Remark 4.2 below), we expect the result of

Theorem 4.1 to be true for all � > 1. A proof for integer � will bring extra di�culties, see

Chapter 3 and Theorem 8.1.6 of [11]. We refer to De Meyer and Teugels [30], where a similar

statement has been proven for the busy period in the M/G/1 queue. They give a proof for

general � > 0, including integer values. Note that 1 < � < 2, the heavy-tailed case, is the

most interesting one, see also Section 1.

Remark 4.1 For the GI/G/1 queue with FCFS service discipline, Cohen [17] has shown

that the tail of the waiting time is regularly varying of index 1 � � i� the service time is

regularly varying of index ��, � > 1. The same result holds for the sojourn time distribution.

Theorem 4.1 shows that, in the M/G/1 queue with processor sharing, the sojourn time is

as heavy as the tail of the service time. This reveals a crucial property of processor sharing:

Long jobs have a much smaller e�ect on the delay of other customers than in the case of

FCFS, where the heavy-tailed service time distribution gives rise to an even heavier tail of

the sojourn time distribution. �

Remark 4.2 Note that both (i) and (ii) in Theorem 4.1 imply

P(V > x) � P(B > (1� �)x); (4.1)

for x ! 1. It is possible to give an interpretation of the constant (1 � �) appearing in
(4.1). When a tagged customer is in the system for a long time, the distribution of the total

number of customers is approximately equal to the steady state distribution of the number
of customers in a processor sharing queue with one permanent customer. This model is a

special case of the M/G/1 generalised processor sharing queue, as studied by Cohen [18].
Using the results obtained in [18], it is possible to show that the mean service rate in steady
state for the tagged (permanent) customer equals 1 � �. Hence, if a tagged customer has

been in the system for x time periods, with x large, one would expect that the amount of
service attained is equal to x(1� �).
It must be emphasised that the above heuristics do not apply in general. For example,

(4.1) is not true if the service time is exponentially distributed, as can be shown from the
expression for P(V > x) in the M/M/1 PS queue given by Morrison [29]. An explanation for

this is that, when the service time distribution is exponential, the tagged customer does not
stay in the system long enough to reach the equilibrium situation sketched above. �

Remark 4.3 A result related to the observations in Remark 4.2 is the following. If �1 <1,

then

V (�)

�
!

1

1� �
; � !1;

where the convergence is in probability. This follows immediately from Var(V (�)) = o(� 2),

� !1, and Chebyshev's inequality (the �rst argument can be derived from (3.10) and the
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fact that R(x) is a proper distribution function). We conjecture that the convergence also

holds with probability one. �

Remark 4.4 The asymptotics for vk(�) given in Remark 3.3 are not valid if 1 � B(x) =

x��L(x), 1 < � < 2. However, it is still possible to obtain a two-term expansion for vk(�) in

this case. We mention the result for k = 2.

v2(�)� v21(�) = Var(V (�)) = �2(�) �
B(2; 2� �)

(1� �)3
2�

� � 1
� 3��L(�); � !1; (4.2)

where B(:; :) is the Beta-function. This result can be derived from Karamata's theorem (see

(8.3) in the appendix) and the asymptotics for 1�R(x) given by Cohen [17]. A similar result

holds for vk(�)� vk1(�), k > 2, which can be derived from Corollary 3.1 and asymptotics for

1� R(k�1)�(x) (cf. (8.6)). We omit the details. �

Remark 4.5 De�ne the delay time W of a customer entering the system in steady state as

the sojourn time minus the length of the service request. The conditional delay time W (�)

is given by, cf. [41],

W (�) = V (�)� �: (4.3)

The LST's of W and W (�) are denoted by w(s) and w(s; �). Note that

E[W (�)] =
��

1� �
; (4.4)

w(s; �) = es�v(s; �): (4.5)

One can show that the k�th moment of W is �nite i� the k�th moment of the service time

is �nite. If the latter is the case, this follows from Corollary 3.2 and the fact that W � V

for any particular customer. If the former holds, use Jensen's inequality and � > 0:

1 > E[W k ] =

1Z
0

E[W (�)k ]dB(�) �

�
�

1� �

�k
1Z
0

�kdB(�) =

�
�

1� �

�k

�k:

If the service time distribution is regularly varying of index ��, 1 < � < 2, it is possible to

show from (4.3){(4.5), following a similar analysis as in the proof of Theorem 4.1 in the next

section, that for x!1,

P(W > x) � P

�
�

1� �
B > x

�
:

�
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5. Proof of Theorem 4.1

First, we will give a proof for the case 1 < � < 2. The proof for the case � > 2 is somewhat

di�erent. In both cases, we will use the relation

v(s) =

1Z
0

v(s; �)dB(�);

and the expression for v(s; �) given by Theorem 3.1. Also, the Tauberian theorem of Bingham

and Doney [9] (see Lemma 8.1 in the Appendix) is applied in both cases.

It turns out that the asymptotic analysis of v(s) for s ! 0 is rather intricate. In several

cases we need to write v(s) � �
�

s

1��

�
and related quantities (like the residual term of a

Taylor expansion of v(s)� �
�

s
1��

�
in the case � > 2) as

v(s)� �

�
s

1� �

�
=

h(s)Z
0

h
v(s; �)� e�

s�
1��

i
dB(�) +

1Z
h(s)

h
v(s; �)� e�

s�
1��

i
dB(�);

for some function h(s) like h(s) = 1

s
. This decomposition turns out to be convenient. In

most cases, we only need a trivial upper bound for the last integrand, and a non-trivial upper
bound for the �rst integrand, using the inequality � � h(s).

Case I: 1 < � < 2
By the Tauberian theorem of Bingham and Doney [9] (see Lemma 8.1 in the appendix) and
the fact that E(V ) = �1

1��
, it su�ces to show that

v(s)� �

�
s

1� �

�
= o(s�L(1=s)) (5.1)

for s # 0 and s real. First, note that v(s)��
�

s

1��

�
� 0 for real s by Jensen's inequality and

(2.2) (or by using �k(�) � 0 and Theorem 3.1):

v(s) =

1Z
0

v(s; �)dB(�) =

1Z
0

E

�
e�sV (�)

�
dB(�)

�

1Z
0

e�sE[V (�)]dB(�) =

1Z
0

e�
s�
1��dB(�) = �

�
s

1� �

�
:

The following representation for v(s)� �
�

s

1��

�
is crucial in the remainder of the proof. By
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our representation in Theorem 3.1 for v(s; �) and (3.4) we have:

v(s)� �

�
s

1� �

�

=

1Z
0

�
v(s; �)� e�

s�
1��

�
dB(�)

=

1Z
0

 
1

e
s�
1�� �

P
1

k=2
sk

k!
�k(�)

� e�
s�
1��

!
dB(�)

=

1Z
0

e�
2s�
1��
P

1

k=2
sk

k!
�k(�)

1� e�
s�
1��
P

1

k=2
sk

k!
�k(�)

dB(�):

De�ne

f(s; �) :=
e�

2s�
1��
P

1

k=2
sk

k!
�k(�)

1� e�
s�
1��
P

1

k=2
sk

k!
�k(�)

:

We assume that statement (i) of Theorem 4.1 holds with equality and prove statement (ii).

To prove (ii), we have to bound f(s; �). It turns out that we only need a non-trivial upper
bound for f(s; �) if � � T1

s
for some �nite constant T1. Therefore, we write for 0 < T1 <1:

1Z
0

f(s; �)dB(�) =

T1
sZ

0

f(s; �)dB(�) +

1Z
T1
s

f(s; �)dB(�): (5.2)

Bounding the �rst term in the right hand side of (5.2) will be our main task. The second
term can be bounded by using f(s; �) � v(s; �) � 1:

1Z
T1
s

f(s; �)dB(�) � L(T1=s)

�
T1

s

���
:

Since T1 can be chosen arbitrarily large, (5.1) and the �rst part of Theorem 4.1 follow once

we have proven that

T1
sZ

0

f(s; �)dB(�) = o(s�L(1=s)): (5.3)

Proof of (5.3) Since �k(�) �
�

�

1��

�k
; it follows that

e�
s�
1��

1� e�
s�
1��
P

1

k=2
sk

k!
�k(�)

�
e�

s�
1��

1� e�
s�
1��

�
e

s�
1�� � s�

1��
� 1
� =

1

1 + s�

1��

:
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Hence,

f(s; �) �
1

1 + s�

1��

e�
s�
1��

1X
k=2

sk

k!
�k(�) � e�

s�
1��

1X
k=2

sk

k!
�k(�): (5.4)

Obtaining an upper bound �k(�) will be crucial in the proof of (5.3). In view of (3.5), we

need an upper bound for 1 � R(k�1)�(x). By a result of Cohen [17], we have that 1� R(x)

is regularly varying of index 1 � �. Hence, for each " > 0 there exists an M such that, for

x � 0,

1�R(x) � M(x + 1)1��+": (5.5)

Let (Wi)i�1 be a sequence of i.i.d. random variables (de�ned on the same probability space)

with distribution function R(x). Then, we have

1�R(k�1)�(x) = P(W1 + � � �+Wk�1 > x) � P([k�1
i=1 fWi >

x

k � 1
g)

� (k � 1)P(W1 >
x

k � 1
):

Hence, by 1 < � < 2 and (5.5) we get for k � 2:

1�R(k�1)�(x) � (k � 1)M

�
x

k � 1
+ 1

�1��+"

� (k � 1)2M(x + 1)1��+": (5.6)

In the sequel, we choose " �xed such that 0 < 2" < � � 1. By (3.5) and (5.6), we have for
some �nite constant M 0 and k � 2:

�k(�) �
Mk(k � 1)2�k�1

(1� �)k

�Z
0

(x + 1)1��+"dx �M 0(k � 1)2k
�k+1��+"

(1� �)k
: (5.7)

De�ne

M 00 :=
M 0

(1� �)2

�
1 +

T1

1� �

�
:

Since � � T1
s
, it follows from (5.7) after some simple calculations that

f(s; �) � e�
s�
1��

1X
k=2

sk

k!
M 0(k � 1)2k

�k+1��+"

(1� �)k

=M 0� 1��+"e�
s�
1��

�
s�

1� �

�2 1X
k=0

k + 1

k!

�
s�

1� �

�k
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�M 0� 1��+"

"�
s�

1� �

�2

+

�
s�

1� �

�3
#
�M 0� 1��+"

�
s�

1� �

�2 �
1 +

T1

1� �

�

=M 00s2� 3��+" �M 00s�+"� 1+2"T 2��+"
1 : (5.8)

Since 1 + 2" < �, the right hand side of (5.8) is B(�){integrable. This proves (5.3), since

L(1=s) = o(s�), s! 0, for all � > 0, cf. (8.2) in the appendix.

Now, suppose that statement (ii) of Theorem 4.1 holds with equality. Again, it su�ces to

prove (5.1). A simple, but important observation is that for all x � 0,

P(B > x) � P(V > x): (5.9)

First, we show that (5.9) and (ii) together imply (5.5). Fix 0 < " < 1

2
(� � 1). (ii) implies

that E[V �� 1

2
"] <1. Hence, by (5.9), also E [B�� 1

2
"] <1. It follows that for s! 0, cf. Lo�eve

[28] p. 199,

�(s) = 1� �1s+O(jsj��
1

2
");

and by (3.1), for s! 0,

!(s) = 1 + O(jsj��1� 1

2
") = 1 + o(s��1�"):

Finally, by Lemma 2.2 in [13] (see also Lemma 8.1 with C = 0 in the appendix), we have for

x!1:

1�R(x) = o(x1��+");

which implies (5.5). Following the arguments made in the �rst part of the proof, we obtain

(5.8), which in turn implies (5.3). A second application of (5.9) to the second term in (5.2),
together with (5.3), yields (5.1).

Case II: � > 2
The proof in this case is di�erent from case I, because we need the property �2 <1 (which
follows from both (i) and (ii) if � > 2). Again, we will apply Lemma 8.1. Suppose that (i)

holds with equality for n < � < n+ 1. Write for real s � 0,

v(s)� �

�
s

1� �

�
�

nX
k=0

(�s)k

k!

�
E[V k]�

�k

(1� �)k

�
=

1Z
0

Rn(s; �)dB(�);

with Rn(s; �) being the residual term of the n�term Taylor expansion of f(s; �) in s = 0,

i.e.

Rn(s; �) = f(s; �)�

nX
k=0

sk

k!
f (k)(0; �); (5.10)
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with

f (k)(0; �) :=
@k

@sk
f(0; �):

Since f(s; �) is analytic in s = 0, we can apply Taylor's theorem, which gives, for s in a

neighbourhood of 0,

jRn(s; �)j =

������
sZ

0

(s� u)n

n!
f (n+1)(u; �)du

������ � sn
sZ

0

��f (n+1)(u; �)
��du: (5.11)

Note that Taylor's theorem cannot be applied to the n�term Taylor expansion of v(s) �

�
�

s

1��

�
, since the latter function is not n+1 times di�erentiable in s = 0, because �n+1 =1.

Hence, one cannot interchange the limit s! 0 and the integration w.r.t. � (in that case, the

proof would be �nished since the residual term is O(sn+1) due to the mean value theorem).

It su�ces to show that

1Z
0

jRn(s; �)jdB(�) = o(s�L(1=s)); s # 0: (5.12)

To prove (5.12), we will construct an upper bound for jf (n+1)(s; �)j. Using the probabilistic
interpretation of f(s; �) we get for some �nite constant M ,

��f (n+1)(s; �)
�� =

�����E [V n+1(�)e�sV (�)]�

�
�

1� �

�n+1

e�
s�
1��

�����
�
��E [V n+1(�)e�sV (�)]� E [V n+1(�)]E [e�sV (�)]

��+
�����E[V n+1(�)]E [e�sV (�)]�

�
�

1� �

�n+1

E[e�sV (�)]

�����+
�����
�

�

1� �

�n+1

E [e�sV (�)]�

�
�

1� �

�n+1

e�
s�
1��

�����

�
��C ov[V n+1(�); e�sV (�)]

�� + vn+1(�)�

�
�

1� �

�n+1

+

�
�

1� �

�n+1

f(s; �)

�M�n+
1

2 e�s� + vn+1(�)�

�
�

1� �

�n+1

+

�
�

1� �

�n+1

f(s; �):
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The last inequality follows from the inequality of Cauchy-Schwarz,
p

Var[e�sV (�)] � e�s�

(V (�) � �), and, cf. Remark 3.3, since �2 <1,

Var[V n+1(�)] = v2n+2(�)� v2n+1(�) = O(� 2n+1); � !1:

Hence, from (5.11) it follows that

1Z
0

jRn(s; �)jdB(�) �Msn
1Z
0

�n+
1

2

sZ
0

e�u�dudB(�) +

sn+1

1Z
0

"
vn+1(�)�

�
�

1� �

�n+1
#
dB(�) +

(1� �)�(n+1)sn
1Z
0

�n+1

sZ
0

f(u; �)dudB(�):

The second term is integrable, since �2 <1, cf. Remark 3.3. To bound the other terms, it

turns out that it is convenient to split the integrals up in two parts. It su�ces to show that

sn
s�1Z
0

�n+
1

2

sZ
0

e�u�dudB(�) = o(s�L(1=s)); s # 0; (5.13)

sn
1Z

s�1

�n+
1

2

sZ
0

e�u�dudB(�) = o(s�L(1=s)); s # 0: (5.14)

sn
s��Z
0

�n+1

sZ
0

f(u; �)dudB(�) = o(s�L(1=s)); s # 0; (5.15)

sn
1Z

s��

�n+1

sZ
0

f(u; �)dudB(�) = o(s�L(1=s)); s # 0: (5.16)

In (5.15) and (5.16) � > 1 is chosen such that n + 1 � 1

�
< �. We prove only (5.15) and

(5.16) because the proofs of (5.13) and (5.14) are similar and somewhat easier.

Proof of (5.15) An important observation is that both (i) and (ii) imply that �2 <1, since
� > 2. Using the Pollaczek-Khintchine formula for the mean waiting time in the M/G/1

FCFS queue (see e.g. [17], p. 256), we obtain the result

�k(�) �
k�k�1

(1� �)k

1Z
0

(1� R(k�1)�(x))dx =
�k�1

(1� �)k
k(k � 1)

�2

2�1

�

1� �
: (5.17)
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It follows easily from the �rst inequality in (5.4) and (5.17) that, with

K :=
�2

2�1

�

1� �
;

f(s; �) �
s2�

1 + s�

K

(1� �)2
�

K

(1� �)2
s: (5.18)

The proof of (5.15) follows easily from (5.18). Since s�
1

� � 1 if � � s��, it follows that

sn
s��Z
0

�n+1

sZ
0

f(u; �)dudB(�) �
1

2

K

(1� �)2
sn+2

s��Z
0

�n+1� 1

� �
1

�dB(�)

�
sn+1

2

K

(1� �)2

s��Z
0

�n+1� 1

�dB(�) �
sn+1

2

K

(1� �)2
E [Bn+1� 1

� ] = o(s�L(1=s)); s # 0:

To prove (5.13), use the inequality e�u� � 1 and a similar technique as in the last part of
the proof of (5.15).

Proof of (5.16) Since V (�) � � , we have

f(s; �) � v(s; �) = E [e�sV (�)] � e�s� :

It follows for s � 0,

sZ
0

f(u; �)du �

sZ
0

e�u�du =
1

�
(1� e�s�) �

1

�
:

This gives,

sn
1Z

s��

�n+1

sZ
0

f(u; �)dudB(�) � sn
1Z

s��

�ndB(�): (5.19)

De�ne � := � � n > 0. Fix " > 0 such that �" < (�� 1)�. For s small enough we have that

L(�) � � " if � � s��. Using partial integration, we get

sn
1Z

s��

�ndB(�) � �sn
1Z

s��

�nd(1�B(�))

= sn(1��)(1�B(s��)) + snn

1Z
s��

(1� B(�))�n�1d�
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� sn+����" + nsn
1Z

s��

��1��+"d� = sn+����" +
n

� � "
sn+����" = o(s�L(1=s)); s # 0;

since n+ �� � �" > �. This proves (5.16). The proof of (5.14) is similar to that of (5.16).

We conclude that (5.12) holds, which implies (ii). The proof of the implication (ii) ) (i)

follows by the same arguments and (5.9). �

Remark 6.1 In the proof for the case � < 2, we constructed an upper bound for 1 �

R(k�1)�(x). In the part (i) ) (ii), it is su�cient to use the upper bound provided by (8.7)

in the appendix, which is valid for subexponential distribution functions. However, in the

converse direction, it is not possible to apply (8.7), since in that case 1� R(x) need not be

subexponential. �

6. Heavy traffic and heavy tails

In this section we give a new proof of a heavy tra�c theorem, due to [37, 43], based on

Theorem 3.1. We will show that the `contracted' moments of the sojourn times converge
to the moments of the limiting distribution. Finally, we give both explicit and asymptotic

results for the sojourn time distribution in heavy tra�c when the service time distribution
has a regularly varying tail.

6.1 General results

We present a new proof for the following result, see [37, 43].

Theorem 6.1 If �1 <1, then

lim
�!1

v(s(1� �); �) =
1

1 + s�
; Re s � 0; � � 0; (6.1)

lim
�!1

P((1� �)V (�) � x) = 1� e�
x
� ; x � 0; � � 0: (6.2)

A heavy tra�c theorem for the GI/G/1 PS queue is also known, see Grishechkin [25]. Note
that it is only required that the �rst moment of the service time distribution is �nite, which

is not the case in the FCFS service discipline, cf. [12, 19].

Proof Note that (6.1) and (6.2) are equivalent. Since

v(s(1� �); �) =

"
1 + s� +

1X
k=2

sk

k!
(1� �)k�k(�)

#�1

;

it su�ces to show that, for k � 2,

lim
�!1

(1� �)k�k(�) = 0: (6.3)
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This follows immediately from (3.3) and the fact that lim�!1R(x) = 0 for x � 0. Indeed,

when �2 < 1 this follows from the heavy tra�c limit in [19], p. 597. If �2 = 1, then it

must hold that eB(x) < 1. Hence, since eBn�(x) � eBn(x),

R(x) = (1� �)

1X
n=0

�n eBn�(x) �
1� �

1� � eB(x) ! 0;

when �! 1. �

Since v(s(1� �); �) � 1 we have by dominated convergence and Theorem 6.1 the following

heavy tra�c limit for the unconditional sojourn time distribution.

Corollary 6.1 For Re s � 0,

lim
�!1

v(s(1� �)) =

1Z
0

1

1 + s�
dB(�); (6.4)

and

lim
�!1

v(s(1� �)) =

1Z
0

e�x�(sx)dx: (6.5)

Proof (6.4) follows from Theorem 6.1 and Lebesgue's dominated convergence theorem
(v(s(1� �); �) � 1). (6.5) follows easily from (6.4) since

1Z
0

1

1 + s�
dB(�) =

1Z
0

1Z
0

e�x�s�xdxdB(�) =

1Z
0

e�x�(sx)dx:

�

This result has also been obtained by Sengupta [37]. Note that (6.5) is the LST of a random
variable Y := XB, where B is equal to the service time and X is exponentially distributed
with mean 1 and independent of B. A similar interpretation is given in [37], where it serves

as a basis for approximations for the sojourn time distribution in the GI/G/1-PS queue.

We now turn to convergence of the moments of the sojourn time in heavy tra�c. It will

be shown that the moments of the contracted sojourn times converge to the corresponding
moments of the heavy tra�c limiting distribution. Instead of using arguments concerning

uniform integrability, cf. [8] p. 338, after which Theorem 6.2 below readily follows from (6.2),

we follow another approach by using Corollary 3.1.

Theorem 6.2 If �1 <1, then

lim
�!1

E [((1 � �)V (�))k] = k!�k; � � 0; k � 1:
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Proof We apply induction on k. Fix � � 0. By (2.4), the result holds for k = 1. Suppose

the result is true for n � k � 1. By Corollary 3.1 we have

E[((1 � �)V (�))k] = (1� �)kvk(�) = �

kX
j=1

�
k

j

�
(1� �)k�jvk�j(�)(1� �)j�j(�)(�1)

j:

(6.6)

The result follows after some simple calculations for n = k by the induction hypothesis,

(6.3), and (1� �)�1(�) � � . �

A similar result holds for the unconditional moments of the sojourn time, whenever they

exist.

Corollary 6.2 If �k <1, k � 1, then

lim
�!1

E [((1 � �)V )k] = k!�k:

Proof. The same idea as in the proof of Corollary 3.2 is used. Write

E[((1 � �)V )k] =

1Z
0

(1� �)kvk(�)dB(�):

Note that, cf. (3.3),

(1� �)k�k(�) � �k: (6.7)

From (6.6), (6.7) and by induction on k, it is trivially seen that (1� �)kvk(�) � Ck�
k, with

C0 = 1 and

Ck =

k�1X
j=0

�
k

j

�
Cj; k � 1:

The result follows by dominated convergence and Theorem 6.2. �

Both Theorem 6.2 and Corollary 6.2 can be used for the approximation of higher moments
for the sojourn time distribution. Note that Corollary 6.2 provides a certain robustness, since
the heavy tra�c behaviour of the k-th moment of the sojourn time is completely determined

by the k�th moment of the service time. Van den Berg [6], Chapter 4, has proven Theorem
6.2 and Corollary 6.2 in the case k = 2. Numerical results in [6] indicate that the heavy

tra�c approximation for the second moment of the sojourn time performs well.

Remark 6.1 Abate and Whitt [3] perform a heavy tra�c analysis for the waiting time
in the M/G/1 LIFO system. They prove a heavy tra�c theorem for the moments of the

waiting time under additional assumptions to meet uniform integrability conditions. The
latter concept can also be applied in our case without making any additional assumptions.

Note that in our case the k�th moment of the heavy tra�c limiting distribution is equal to

k!�k if �k <1. �
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6.2 An explicit expression for the limiting distribution

Let VHT be a rv with a distribution equal to the heavy tra�c limit, i.e.

P(VHT � x) := lim
�!1

P((1� �)V � x):

If the service time has a Pareto-distribution, given by

1�B(�) =

�
r � 1

r

�r

��r; � �
r � 1

r
; (6.8)

(B(�) = 0 otherwise) an explicit expression for P(VHT � x) can be found if r is integer-

valued and a multiterm asymptotic expansion is available for P(VHT � x) if r is non-integer.

A similar result holds if we consider �nite mixtures of (6.8).

To show this, we exploit results of Abate and Whitt [1]. They de�ne the class of Pareto

Mixtures of Exponentials (PME) as follows. A distribution function F is a PME if

1� F (x) =

Z
1

0

e�
x
� dB(�); x � 0; (6.9)

with B(:) given by (6.8). From this de�nition and (6.2) we can conclude that the heavy-
tra�c limiting distribution is a PME if the service time distribution is Pareto. We get, cf.

[1],

P(VHT > x) =

Z
1

0

e�
x
ydB(y)

=

Z
1

r�1
r

e�
x
y r

�
r � 1

r

�r

y�r�1dy

= r

�
r � 1

r

�r Z r
r�1

0

e�yxyr�1dy:

This expression is (up to a multiplicative constant) equal to the incomplete gamma function.

Applications of well known results for the incomplete gamma function (see Abramovitz and
Stegun [5], (4.2.55) and x6.5)) give the following results. For r � 2 integer we have,

P(VHT > x) =

�
r � 1

r

�r
r!

xr

"
1� e�

rx
r�1

r�1X
k=0

1

(r � 1� k)!

�
xr

r � 1

�r�1�k
#
: (6.10)

And, for non-integer r > 1:

P(VHT > x) =

�
r � 1

r

�r
r

xr

"
�(r)�

�
rx

r � 1

�r�1

e�
rx
r�1

"
1 +

r � 1
rx
r�1

+
(r � 1)(r � 2)�

rx
r�1

�2 + � � �

##
: (6.11)
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It is not di�cult to obtain an explicit expression for P(VHT > x) when the service time

distribution is a mixture of (6.8). In that case, the distribution of VHT is a mixture of

PME's, which implies that P(VHT > x) is given by a mixture of (6.10) and (6.11).

Both (6.10) and (6.11) indicate that a one-term asymptotic expansion for the heavy tra�c

limiting distribution will behave quite accurately since the residual terms decrease exponen-

tially fast if x ! 1 (cf. the observation in [1] p. 321). Another interesting observation is

that the one-term expansion for P(VHT > x) behaves like �(r + 1)P(B > x), x!1. In the

next section, we will show that this property still holds if we only assume that the service

time distribution is regularly varying.

6.3 Tail behaviour

In this subsection we study the behaviour of P(VHT > x) for x large in the case that the

service time distribution is regularly varying. In particular, it will be shown that the heavy

tra�c approximation

P(V > x) � P(VHT > (1� �)x)

for the sojourn time overestimates the true sojourn time distribution for large x:

Theorem 6.3 If 1� B(x) = x��L(x) with � > 1, then

P(VHT > x) � �(� + 1)P(B > x)

if x!1:

Proof Since VHT
d
= Y B, with Y exponentially distributed with mean 1 and B the service

time independent of Y (cf. the remark below Corollary 5.1), Theorem 6.3 immediately follows
from Proposition 3 in [15], which is stated only for 0 < � < 1, but can easily be extended to

� > 0 (see also [20, 21, 34]). �

Remark 6.2 It is possible to get more re�ned asymptotics for P(VHT > x). Suppose 1�B(x)

is given by

1�B(x) =

NX
i=1

pix
��i + o(x��N ); x!1; (6.12)

with 1 < �1 < � � � < �N , and pi > 0. Applying (6.10), (6.11), and Theorem 6.3, we get

P(VHT > x) =

NX
i=1

pi�(�i + 1)x��i + o(x��N ); x!1: (6.13)

This result is useful for numerical purposes. �

Remark 6.3 By Theorem 6.3 and Theorem 4.1, we have the following interesting result:

lim
x!1

lim
�!1

P((1� �)V > x)

P(B > x)
= �(� + 1) > 1 = lim

�!1
lim
x!1

P((1� �)V > x)

P(B > x)
: (6.14)
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Hence, the heavy tra�c approximation for P(V > x) overestimates the true value when x is

large. This indicates that the approximations for the waiting time distribution induced by

Theorem 4.1 and Theorem 6.3 will behave di�erently. We postpone a numerical investigation

of this phenomenon to a later study. �

7. Conclusion

In this study, we have investigated asymptotic properties of the sojourn time distribution

in the M/G/1 processor sharing queue. Our main result (Theorem 4.1) is that the sojourn

time distribution is regularly varying of index �� i� the service time distribution is regularly

varying of index ��, with � not an integer. More precisely, in the case of regular variation,

we have P(V > x) � P(B > (1� �)x) for x!1.

A generalisation of Theorem 4.1 to integer � seems di�cult. However, it might be possible

to apply the techniques used in [30, 31] for a particular class of regularly varying functions.

Another extension of Theorem 4.1 is to assume only subexponentiality (cf. the appendix)

instead of regular variation. However, proving such an extension seems to be a hard problem,

since no characterisation of a subexponential distribution function by its LST is available.

In a future study, we intend to extend Theorem 4.1 in a di�erent way, namely to the

M/G/1 processor sharing queue with di�erent types of customers. For this system we intend

to show that the sojourn time distribution of a tagged customer is regularly varying of index
�� i� the service time distribution of the tagged customer is regularly varying of index ��,
even if the tail of the service time distribution of another class of customers is heavier.

Theorem 4.1 is derived from a new expression (Theorem 3.1) for the LST of the sojourn
time distribution. That expression has also led us to several other explicit and asymptotic
results for the sojourn time distribution. It seems worthwhile to investigate the potential of

these results for approximating various characteristics of the sojourn time distribution.

8. Appendix: Regular Variation and Subexponentiality

In this appendix, we give a short overview of regular variation, and show some basic results
that are used in this paper. Regular variation is an important concept in probability theory

and various other �elds. The main reference is the book [11], see also p. 275{284 in [23].
For a more general introduction to (applications of) heavy tailed distributions, the reader is

referred to [22]. All the material discussed in this appendix can be found in these books.
A measurable positive function f is called regularly varying with index # if, for all x > 0,

lim
t!1

f(xt)

f(t)
= x#; (8.1)

(cf. [11], p. 18). The class of regularly varying functions with index # is calledR#. A random

variable, or its distribution function F , is said to be regularly varying if 1� F is a regularly

varying function. When L 2 R0, we call L a slowly varying function. In this paper, a slowly
varying function is denoted by L. The following basic property for slowly varying functions

is often used without mention. Let L be a slowly varying function. Then, for all " > 0, there
exists a T such that, if x > T ,

x�" � L(x) � x": (8.2)
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see e.g. Feller [23], p. 271. The next result is part of Karamata's theorem ([11], p. 26) and

is useful to determine the tail behaviour of excess distributions, cf. Section 2. Let # > �1,

let T � 0 and let L be locally bounded in fx : x � Tg. Then for, t!1,

1

t#+1L(t)

Z t

T

L(x)x#dx!
1

# + 1
: (8.3)

An important result due to Bingham and Doney [9] (see also Theorem 8.1.6 in [11]) char-

acterises the tail behaviour of a regularly varying distribution function uniquely by the be-

haviour around the origin of its LST. Let X be a random variable with distribution function

F; LST �(s); and �nite �rst n moments �1; :::; �n (and �0 = 1). De�ne

�n(s) := (�1)n+1

"
�(s)�

nX
j=0

�j
(�s)j

j!

#
:

We have the following lemma from [9, 13].

Lemma 8.1 Let n < � < n + 1; C � 0: The following are equivalent.

�n(s) � (C + o(1))s�L(1=s); s # 0; s real, (8.4)

1� F (t) � (C + o(1))
(�1)n

�(1� �)
t��L(t); t!1: (8.5)

The case C > 0 is due to [9]. The case C = 0 is treated in [13], Lemma 2.2. For the more
complicated case if � is integer, we refer to Theorem 8.1.6 and Chapter 3 of [11].

If a distribution function F is regularly varying, then (see e.g. [23])

lim
x!1

1� F 2�(x)

1� F (x)
= 2: (8.6)

A random variable of which the distribution function F satis�es (8.6) is called subexponential.

The following property for subexponential distributions is often useful, see also Remark 4.1.
Let F satisfy (8.6). Then, for all " > 0 there exists a K(") <1 such that for all n � 1 and
all x � 0;

1� F n�(x)

1� F (x)
� K(")(1 + ")n: (8.7)
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