
II

Cent rum
voor

Wiskunde
en

lnformatica ·
Centre for Mathematics and Computer Science

.
J.G. Rekers

Modular parser generation

Computer Science/Department of Software Technology Report CS-R8933 September

1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301642224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Erratum

This figure should have been at page 5 of CWI report no. CS-R8933: Modular Parser Generation by
J.G. Rekers.

BOOL ::=true
BOOL ::= false
BOOL ::= BOOL or BOOL
BOOL ::= BOOL and BOOL
ST ART ::= BOOL

Grammar of the Booleans

Parse stack

0 true 3
0 BOOL2
0 BOOL2 or6
0 BOOL 2 or 6 false 4
0 BOOL 2 or 6 BOOL
OBOOL2
0 START 1

in ut
true or false

or false$
or false$

false$
$
$
$
$

Steps of the parser on input "true or false"

$

+ accept

(D
~ART'::= • STAR~

I I
ST ART B true false

I~=~· J}$L1
true true false false

or/

Graph of itemsets for the Boo/eans

Centrum voor Wiskunde en lnformatica
Centr~ for Mathematics and Computer Science

J.G. Rakers

Modular parser generation

Computer Science/Department of Software Technology Report CS-R8933 September

- : - :,.-..

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Modular Parser Generation

J.G. Rakers
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
email: rekers@cwi.nl

We consider a parser generator MPG for grammars having a modular structure. Each grammar module
contains a partial or incomplete granmar, which has to be supplemented with the grammars defined by
the modules imported in It. MPG generates a parser for each module by generating a parser for the un
ion of a given set of modules In such a way that parsers for the individual modules can be selected from
it. This yields a separate parser for each module which Is as efficient as a conventionally generated one,
while the generation work Invested In it can be re-used for other modules. The generator works fully In

crementally, as a modification of the grarnrnar is propagated to all parsers whose generation depends on
it.

Key Words & Phrases: modular grammar definition, modular syntax composition, modular parser genera
tion, multiple parser generation, Incremental parser generation, LA parser generation.

1985 Mathematics Subject Classification: 69012 [Programming techniques]: Automatic programming;
69022 [Software engineering]: Tools and techniques; 69026 [Software engineering]: Programming en- .
vironments; 69041 [Programming languages]: Formal definitions and theory; 69044 [Programming
languages]: Processors.

1987 CR Categories: 0 .2.2, 0 .2.6, 0 .3.1, 0 .3.4.

Note:. Partial support received from the European Communities under ESPRIT project 348 (Generation of
Interactive Programming Environments - GIPE).

1. Introduction

1

Modularization is a well-known method in software engineering to split a large program or
specification into smaller components. Each module can to a large extend be developed and tested
separately, and, when correct, it can be combined with other modules. Modularization encourages
clearly structured solutions, and is beneficial to the re-usability of components.

1.1. Modular syntax definition

As grammars can grow quite large, and parts often can be borrowed from other grammars, modu
larization could be beneficial to the development of grammars as well. In view of the foregoing, we
propose a system for the interactive development of modular syntax definitions:

• As the syntax defined by a module will in general be used by many other modules, and as we
want to make an interactive system, the time needed to update each parser affected by a
modification should be proportional to the size of the modification and not to the size of the
grammar. We thus need a fast and incremental parser generator.

• The intended system allows a module to ex.press its semantics in terms of the syntax introduced
in the module itself and the modules imported by it. This means that not only a parser for the

Report CS-A8933
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

'top-module' of the definition must be generated, but that a separate parser must be generated
for each module of the definition. We thus need a modular parser generator.

• We do not want to restrict the modular composition capabilities of the system by requiring that
all rules for a non-terminal should appear in a single module, or limit the defined grammar to a
certain class, or force the import relation to have a tree structure. Although these restrictions
would simplify the implementation, they limit the range of possible modular definitions in an
unacceptable manner.

We developed a parser generation method that makes it possible to distinguish the parser for
each sub-module in the parser generated for the top-module. This means that during generation,
not one but many parsers are generated, while double generation work is avoided. If one module is
used in several contexts, only a single (part of the) parser is generated for it. We do not have to res
trict the modular composition capabilities to be able to do this.

Even if a modular syntax definition does not have a single top-module, we still let the parser
generator work on the union of all modules in the definition. It is true that this union defines a
language that is too large, but as we use a lazy generation scheme, we will never generate more than
is actually needed for the parsers of the modules in the specification. In addition to this, the gen
erator is incremental, which means that a deletion or addition of a grammar rule in one module is
propagated to all parsers that depend on it.

In summary, the Modular Parser Generator MPG has the following properties:

• It generates a separately usable parser for each module.

• No double generation work is done.

• When a module is modified, MPG updates all parsers that depend on the modified module incre
mentally.

• MPG generates efficient parsers and allows general context-free grammars.

MPG is based on the lazy and incremental parser generation techniques introduced in
[HKR89]. This method is in turn based on LR parse table generation and parallel parsing.

1.2. Related work

The parsing system CIGALE [Voi86] allows interactive modification of grammars and import of
previously defined parsers. It is not entirely clear which class of grammars is accepted by the sys
tem. It solves the problem of ambiguous parses by returning the "first" parse of a sentence. The
parse time of CIGALE is acceptable only for small input sentences, as the parser works in exponen
tial time.

OBJ2 [FGJM85] also allows composition of modules defining their own syntax. It uses a
recursive descent parser with backtracking, but, as far as we know, the modular aspects of this
parser have not been described yet.

2. A fonnal definition of Modular Parser Generation

We will first define what (partial) grammars, parsers and modules are. Next, without going into
detail, the properties of MPG are given and our solution for modular parser generation is sketched.

2.1. Definitiom

A grammar is a tuple <Vn VN, R, START>, with terminaIS VT, non-terminals VN, VTn VN= 0,
start-symbol START~ VTU VN, and rules R c {VNUSTART} x (VTU VN)*. A rule is normally writ
ten as A : : = a.

The incremental parser generator [HKR89] consists of the following functions: IPG(G) gen
erates a parser for grammar G, ADD(P, r) extends parser P with ruler (if r is correctly typed), and
DELETE(P, r) removes ruler from parser P (if r was part of P).

A modular syntax definition consists of a set of modules {Mi, ... ,Mn}· Each module M; is
a triple <N, /, G> consisting of the name of the module N, a set of names of imported modules/,

3

and a partial grammar G. G need not be complete because rules in G may use terminals and non
terminals of the grammars imported in the module.

A modular syntax definition Sis called well-formed if (I) all imported modules are defined in
it, (2) the corresponding import graph is a-cyclic, (3) the partial grammars of all modules use the
same start-symbol, and (4) the full grammar grammar(M, S) of each module Min definition Sis a
correct grammar, with

grammar(<N, 0, G>, S) = G
grammar(<N, {Ni. ... ,Nn}, G>, S) =

G U grammar(<N 1' I 1' G 1 >, S) U · · · U grammar(<N n> In> Gn >, S).
The union of grammars is defined as

< Vn VN, R, START> U < Vr', VN', R', START> = <VrUV/, VNUVN'• RUR', START>
when (VT U Vr')n(VNU VN') = 0.

2.2. The Problem

The modular parser generator MPG has to generate a parser for module M in modular syntax
definition S. What are the possible ways to implement MPG?

We could of course use /PG (Section 2.1) to generate a parser P; for each module M; in the
specification: P; = IPG(grammar(M;, S)). To implement MPG in this way would be quite a waste,
because each module defines a separate language for which a separate parser has to be generated.
We can thus assume that for each module in the imports of M;, a parser has already been (or will
have to be) computed.

An intuitively better way would be to use /PG only to generate parsers for modules without
imports. The parser for a module with imports should then be composed of the parsers of the
imported modules plus its own syntax. However, composing two parsers Pa

1
and Pa

2
is non

trivial: the grammars G 1 and G2 can influence each other, and Pa1 and Pa2 have to be merged in a
more or less intricate way if a correct parser Pa 1 ua2 is to be obtained.

I PG uses global information about its input grammar. It has to know all rules that derive a
certain non-terminal and takes together rules with the same prefix. Because, in general, this infor
mation in G1 UG2 will differ from that in G 1 or G2, Pa1ua2 will not have much in common with
PG 1 or P a2 • So, with our parser generation technique, constructing the union of two parsers is
difficult, and will in most cases just consist in generating Pa1 ua2 by applying /PG to G1 U G2 •

2.3. The Solution

As it is difficult to combine two parsers without repeating the whole generation process, we go the
other way around. We only generate the combined parser and extract smaller parsers from it as is
shown in Fig. l.b.

G, Gi
u

G1 UG2

versus !/PG
0

Pai Pa2 Pa1ua2

Fig. I.a: Construct the union of parsers, 1.b: Restrict a parser

We do not generate Pa 1 and Pa2 , but only generate Pa 1ua2. This parser can also be used as Pa.,
by only allowing it to generate trees according to G 1• Hence,

Pa i= G, D Pa1 ua2

Po2 = Gi 0 Pai ua2
where G 0 P is something like "observing P through a window G'' or "restricting P to G''. This res
triction yields exactly the desired parser, as the conditions for P to be a parser for G are:

4

• P should recognize all sentences in the language defined by G.
The sentences recognized by PG,uG2

are a superset of the sentences of G 1•

• P may only generate parse-trees based on rules of G (or: reduce according to rules in G).

This is just the restriction we impose on PG 1 u a2 with the 0 -operator.

Now we can implement MPG(Mi, S) in the following manner: when S = { <N 1, I 1, G 1 >, ... ,
<Nn, Im Gn>}, we generate a parser Punion = /PG(G1U · ·· UGn). Each parser Pi can now be

obtained by restricting P union to parse only according to the grammar of its module M;:

P; = grammar(Mi, S) DP union· ·

3. Incremental parser generation {/PG)

The implementation of the modular parser generator is based on the lazy and incremental parser

generator /PG described in [HKR89]. We refer to that article for a complete description. In this

paper we will only give the main algorithms in simplified fonn.

I PG consists of a parallel parser driven by incrementally generated LR(O) parse tables. The

parallel parsing technique used was originally developed by Tomita and is described in [Tom85]. As

this parser tries all possible parses in parallel, it is able to comply with arbitrary context-free gram
mars. The algorithm is quite efficient, as it joins parallel parsers whenever possible.

We will first describe the parser, the parse tables, and the ordinary LR(O) parser generation

technique. This LR(O) generator will then, via a lazy generation technique, be extended to the incre

mental parser generation technique of /PG. A good introduction to LR parsing in general can be

found in [ASU86, eh. 4.7].

3.1. The parser

To give an idea of how our parser works, we present a non-parallel parser. It maintains a parse

stack, which initially contains the start-state, and repeatedly asks its parse table for actions to be

performed in the current state on top of the stack and with the current input symbol. If there are

several possible actions, it chooses one of them. A parallel parser would in this situation split up in

multiple parsers, one for each possibility.

LR-PARSE(start-state, sentence):
Push the start-state on the parse-stack
while true do

The current state of the parser is the state on top of stack
The current input symbol is the first symbol of sentence
Choose an arbitrary action from those returned by ACTION
if there is no action then

Reject the sentence
else

fi
od

if it is a shift action to a state then
Push the current symbol and that state on the stack
Remove the current symbol from the head of sentence

elseif it is a reduce action of rule A : : = /J then
Replace /J on the stack by A
Call GOTO for a new state
Push that state on the stack

elseif it is an accept action then
Accept the sentence

fi

5

3.2. The parse table or graph of itemsets

The parser asks information from its parse table using the routines ACTION and GOTO. In fact,
the parse table is a graph of itemsets. The nodes of the graph are itemsets and the (labeled) edges
of the graph are formed by the transitions between itemsets. A state of the parser is an itemset in
this graph (an example of the graph generated for a small grammar is given in Fig. 2). The parser
moves through this graph: shift actions cause the parser to move forward along a transition labeled
with the current input symbol, while reduce actions first cause a move backward along the path
stored on the parse stack, and then a move forward along a transition labeled with the non-terminal
that was the result of the reduction.

ACTION(state, symbol):
result : = {reduce A : : = P I A : : = P E state.reductions} U

{shift state' I (symbol state') E state. transitions} U
{accept I (symbol accept) Estate.transitions}

return result

GOTO(state, symbol):
return state': (symbol state') Estate.transitions

Each itemset in the graph contains the fields kernel, transitions, reductions and type. The kernel of
an itemset is a set of dotted rules that can be recognized by the parser in this state/itemset; the dot
in such a rule indicates how far the parser has progressed in recognizing it. The transitions of an
itemset are the labeled edges of the graph from the itemset to other itemsets. The reductions of an
itemset are the rules that can be recognized completely by the parser in this state/itemset. The type
of an itemset can be initial or complete. When initial the transitions and reductions have not yet
been computed.

Fig. 2: An example

3.3. Parse table generation

The graph of itemsets is generated by an LR(O) parse table generator like the following routine PG:

PG(Grammar):
Grammar:= GrammarU {START'::= START}
Generate a start-itemset with as kernel {START'::= •START}
while there is an initial itemset do

Complete it using EXPAND
od

1

6

return the start-item.set

The real generation work is done by EXPAND, which computes the transition and reduction fields
of an itemset. It starts by using K-CLOSURE to generate a new set Closure of dotted rules (which
is an extension of the kernel) containing all rules that may become applicable in this state/itemset.
Closure is then partitioned in subsets of rules having the same symbol S after the dot. On shifting S
(or reducing to S), the parser will have advanced one step recognizing a rule in the subset associated
with S. For each S the associated subset is transformed into a new kernel by moving the dot over
the S. When an item.set with that kernel does not yet exist, it is generated as an initial one. A tran
sition, that indicates to go to that item.set when S has been recognized, is added to transitions, A
rule in the extended kernel having a dot at the end has been recognized completely. It depends on
the left-hand side of the rule whether this implies an accept or a reduce action.

K-CLOSURE(kemel):
Closure : = kernel
while there is a rule in Closure with its dot before an S do

Extend Closure with all rules that derive S
od
return Closure

EXP AN D(itemset):
Closure::= K-CLOSURE(kemel)
for each symbol S in Closure that is immediately preceded by a dot do

Generate a new kernel with the dot moved over that S
if there does not exist an item.set yet with that kernel then

Generate an initial item.set with that kernel
fi
Add to transitions a shift action under S to that itemset

od
for each rule in Closure with the dot at the end do

ifit is START'::= START• then
Add an accept action to transitions

else

fi
od

Add a reduce action of that rule to reductions

The itemset is now "complete"

3.4. Lazy parse table generation

The above parser generator can be made lazy by moving the completion of itemsets from the gen
eration phase to the parsing phase. The parser generator LPG just generates the start-item.set as ini
tial itemset, and routine ACTION tests if the incoming state/itemset is still initial; if so EXPAND is
called first.

LPG(Grammar):
Grammar:= GrammarU{START' ::=START}
Generate a start-itemset with as kernel {START'::= •START}
return the start-itemset

ACTION(state, symbol):
if state is an initial itemset then EXPAND(state) fi
result : = {reduce A : : = /J I A : : = fJ E state.reductions} U

{shift state' I (symbol state') Estate.transitions} U
{accept I (symbol accept) E state.transitions}

return result

7

3.5. Incremental parse table generation

Now that we have routine ACTION checking for initial itemsets, we can easily obtain the incremen
tal parse table generator /PG also. /PG itself is just LPG combined with ADD, the routine that
modifies an existing parse table when a rule is added to the grammar. The implementation is as fol
lows: ADD returns all itemsets affected by the modification in the grammar to their initial state.
When the parser needs them, they will be re-completed by EXPAND in accordance with the
modified grammar.

ADD(A : : = /l):
Add A : : = p to the Grammar
for each itemset with a transition on A do

Return the itemset to its state "initial"
od

Routine DELETE, used to delete a rule from a parser, works in a similar way. As said before, the
subtler design decisions concerning incremental parser generation are not discussed here; the reader
is referred to [HKR89] for a more elaborate explanation.

4. Modular parser generation as a generalization of incremental parser generation

Now that we have described /PG, we can continue our presentation of MPG. We first explain why
combining two parsers is not compatible with the generation techniques used in /PG, and then we
discuss our solution for modular parser generation in detail. Next, we present the algorithms for
MPG, and finally we give an example of a modular syntax definition and the parsers generated for
it.

4.1. Taking the union of parsers does not work

As stated in section 2.2, the main problem in modular parser generation is combining independently
generated parsers. More specifically, how can two graphs of itemsets be combined into the graph
corresponding to the union of the associated grammars'! It may happen that certain itemsets occur
in both graphs, while they should occur only once in the combination, that kernels of certain item
sets are to be merged, and that transitions are to be added from itemsets in one graph to itemsets in
the other. Only when the two defining grammars do not interfere in any manner, the resulting
graph will consist of two distinct subgraphs. In general, this will not be the case. The decision
which modifications to make is very similar to generating a parser for the combination of the gram
mars.

But even if we would know how to modify and join graphs of itemsets, there still is a prob
lem: how should the required modifications be recorded'! If we modify the graphs generated for the
sub-grammars directly, we cannot use them separately any more, but if we copy them first, we
obtain many graphs of itemsets generated for a single modular syntax definition. This multiplies the
time needed if the grammar is modified, as the necessary updates must then be propagated to all
graphs affected by the modification.

4.2. Restricted Parsing

We propose an entirely different solution to the problem of taking the union of parsers, which we
call restricted parsing. We generate one big parser for the union of a given set of modules, but res
trict parsing in such a way that only the parts of the parser that correspond to the current module
are used. This can be done relatively easily: (I) all rules are tagged with the name of the module in
which they are defined, (2) the import graph of the module the parser works for is known. Only
rules of modules in that import graph may be used by the parser. Reductions according to rules
whose module is not in the import graph are inhibited, and all parsers that try such a reduction
should die. This has as effect that only parses consisting entirely of valid rules will succeed. In
addition to this, we also disallow transitions to itemsets that do not have rules in their kernel whose
module belongs to the current import graph, as we can be sure that parses encountering those item
sets will eventually be forbidden by the restrictions on reductions.

~--=- :'._ - :-·- _

8

Restricted parsing is a simple and cheap extension of the method used in /PG. It has the
advantage that the parser can switch to another current module with little overhead, and that all
lazy and incremental properties of /PG are inherited by the modular system. Removing or adding
an import in a module does not take any time at all.

A drawback of the method is that it may happen that part of the parser for a module is invali
dated by modifying a module which is not in its import graph. The required recomputation of the
graph has then no effect on the behaviour of the parser for the module itself, as all effects will be
filtered out again by the restrictions.

If we compare two parsers, one using a parse table specially generated for its source module,
and one obtained by the restrictions from a larger parse table, we see that the steps taken by them
are identical. Th.is means that our solution does not affect the number of steps taken by a parser.
However, the computation of the restrictions does affect the time needed for each step. To avoid
this we compute the restrictions only once during parsing, and record the trimmed versions of the
reductions and transitions in the itemset.

Next, it may of course be that the union of all modules defines parts of the parser that will
never be visited by any parser for a module. As we use a lazy parser generation technique, these
parts will then never be generated, however.

The 0 -operator of section 2.3 restricts a parser to a sub-grammar. We implement this opera
tor with routine SPECIALJZE which restricts the actions prescribed by ACTION and GOTO
according to a set of module names. As rules are tagged with the name of their module, SPECIAL·
IZE has the same information as the 0 -operator.

4.3. 1be implementation of MPG

The modifications needed to adapt /PG to modular parser generation and parsing are:

• Rules are tagged with their module and become of the form <M: A : : - P >, in the dotted case
<M: A : : = a• P >. M is the name of the module and the < > brackets are added for reada
bility.

• Before parsing, the module for which is parsed is communicated to the system with the call
PARSE·FOR-MODULE(M). This routine stores the set of imported modules of M, which is
needed to implement the n~strictions on the parser.

• Routine SPECIALIZE computes the actions which are valid for the currently usable modules.
Th.is information is stored in two new fields of itemsets specialized-transitions and specialized
reductions. We allow the type of an itemset to be specialized also. This new type denotes
whether the restrictions have already been computed for the itemset, and makes it possible to
compute the restrictions lazily at the first visit of the itemset by the parser.
SPECIALIZE restricts the allowed actions in the following manner:

• It only allows reductions according to rules which belong to a module contained in the set of
current modules.

• In order to stop parsers at the earliest possible moment, it only allows shift actions and goto
transitions to itemsets which contain at least one rule in their kernel that belongs to the set
of current modules. The kernel of an itemset is the set of rules possibly being recognized by
the parser; if the kernel does not contain any rule belonging to the set of current modules,
each of these possibilities will be forbidden when fully recognized. So we can already forbid
such a parse in this stage. The transition under START to the general accept itemset with ker
nel {<all: START'::= START•>} is always allowed.

• ACTION now has to check also for itemsets which are not yet specialized, and the actions it
returns are derived from the fields specialized-transitions and specialized-reductions.

To summarize, for a modular grammar definition { <N 1, 11, G1 >, ... , <Nn, In, Gn> }, we
generate one (too big) parser using IPG(G 1 U · · · UGn)· If we want to parse according to module
M;, we must first call PARSE-FOR-MODULE(M;). This routine computes the modules in the
import graph of M; using:

9

import-set(<N,{N., ... ,Nn}, G>) =
{N}Uimport-set(<N 1, I 1, G 1>)U · · · Uimport-set(<Nn> In, Gn>),

and stores this set in a global variable. Next, it makes itemsets that were specialized towards the

previous selection of type complete again. During parsing ACTION will be called. When this rou

tine encounters an itemset which is not yet specialized, it will use SPECIALIZE to restrict the possi

ble actions according to the set of current modules. Itemsets can now have as type initial, complete

and specialized. Fig. 3 shows how the various routines can modify the type of an itemset.

EXPAND SPECIALIZE

initial complete specialized

ADD, DELETE

Fig. 3: The routines that modify the type of an itemset

4.4. The algoritluns for MPG

The parser generator of MPG is the same as that of I PG, and will be called with the union of the

grammars of all given modules.

MPG(Grammar):
Grammar: = GrammarU {<all: START' ::= START>}}

start-itemset : = new(itemset)
start-itemset.kernel, start-itemset.type : = {<all: START' : : = •START>}, initial
Itemsets : = {start-itemset}
return start-itemset

Routines EXPAND and K-CLOSURE now use the new format of rules.

K-CLOSURE(kernel):
Closure : = kernel
while 3A, B, a, /J, y, M, M': <M:A ::= aeB/J> E Closure/\

<M':B ::= y> E Grammar/\
<M':B :: = •r> fe Closure do

Closure:= ClosureU{<M':B ::= •r>}
od
return Closure

EXPAND(itemset):
Closure : = K-CLOSURE(itemset.kernel)
itemset.transitions, itemset.reductions : = 0, 0
for\fSE{S I <M:A ::=aeS/J>EClosure}do

kemer := {<M:A ::= aS·b> I <M:A ::= aeS/J> EClosure}
if 3itemset' E Itemsets: itemset' .kernel = kernef then

itemset.transitions : =- itemset.transitions U { (S itemset')}
else

itemset' : =- new(itemset)

od

itemset'.type, itemset' .kernel : - initial, kernef
Jtenzsets : = Itemsets U { itemset'}
itenzset.transitions : =- itemset.transitions U { (S itemset')}

fi

for V <M: A : : = fJ • > E Closure do
if A = START' then

itenzset.transitions : = itemset.transitions U { ($ accept)}
else

10

--= .,. = "~~ = i:": !-_-~-·-- - .. : -

itemset.reductions : = itemset.reductions U { <M: A :: = fJ >}
fi

od
itemset.type : = complete

ADD has to use the new format as well:
ADD(<M:A ::= /J >):

Grammar:= GrammarU{<M:A ::= /J >}
for 'Vitemset E Jtemsets: itemset.type +. initial A

(A itemset') E itemset.transitions do
itemset.type : = initial

od

Routine PARSE-FOR-MODULE stores the set of modules in the import-graph in a global variable
current-modules and makes all itemsets which where specialized towards the previous module com
plete again.

PARSE-FOR-MODULE(M):
current-modules : = IMPORT-SET(M)
for 't/itemset E Itemsets: itemset.type = specialized do

itemset.type : = complete
od

ACTION now checks for itemsets with type not equal to specialized, and uses the fields specialized
transitions and specialized-reductions to derive its actions from.

ACTION(state, symbol):
if state.~ype +. specialized then

if state.type = initial then EXPAND(state) fi
SP EC IALIZE(state)

fi
result : = {reduce A : : = fJ I A : : = fJ E state. specialized-reductions} U

{shift state' I (symbol state') E state. specialized-transitions} U
{accept I (symbol accept) E state.transitions}

return result

GOTO(state, symbol):
return state': (symbol state') Estate.specialized-transitions

SPECIALIZE(state):
state.specialized-reductions : =

{A ::= /J I <M:A ::= /J> Estate.reductions AM E current-modules}
state.specialized-transitions : =

{(symbol state') I (symbol state') E state.transitions A

state.type : = specialized

(3M E current-modules: <M:A :: = a•fl> Estate' .kernel V
state' .kernel = {<all: START'::= START•>})}

Note that it may now happen that GOTO does not return a state, as the needed transition may have
been removed by the restrictions. The parsing algorithm should be ready for this situation.

4.5. An example

We use the modular grammar definition of Fig. 4 as an example:

It consists of three modules Expressions, Statements and Stacks, and both Statements and Stacks
import module Expressions. Fig. 5.a shows the graph of itemsets generated for the union of the
three modules. If we, for instance, want to parse according for module Expressions, this graph is
restricted, using the method described above, to that of Fig. 5.b. Note that this graph is not the

module Expressions:

START::= Exp
Exp::= Id
Exp :: =Exp + Exp

module Statements:

START : : = Stm
Stm : : =- if Exp then Stm
Stm :: = Id:= Exp

module Stacks:
START::= Stack
Stack : : = empty

11

Stack : : = push Exp on Stack
Exp : : = top Stack

Fig. 4: A grammar with three modules

same as the graph that would have been generated for module Expressions on its own, as the kernels

of itemset 0 is too large; this makes no difference for the parser however, which will perform exactly

the same actions.

It is interesting that, while the restrictions on reductions are a basic feature of MPG, in this
example reductions are never restricted. The parser just cannot reach itemsets with such restricted
reductions, as the extra restrictions on transitions prevent this. In general. the parser will only reach

itemsets with disallowed reductions, when it already had to be there in order to parse according to

allowed rules.

5. Measurements

5.1. Time consumption inside MPG

To give an idea of the relative time consumption of the parser itself, the parser generator and rou

tine SPECIALIZE, we did some measurements on the grammar of Fig. 6, which is in fact an

extended version of the grammar of Fig. 4. In this grammar both module Stacks and module State

ments import module Expressions.

module Expressions: module Statements:

~'TART ::= Exp START::= StmProg
Exp::= (Exp) START::= Stm
Exp : : = - Exp StmProg : : = begin Deel Stms end
Exp ::= Id Deel::= decl Ids;
Exp: := lnt Deel::=
Exp :: = Exp• Exp Ids:: = Id
Exp :: = Exp + Exp Ids::= Ids, Id
Exp: := Exp - Exp Stms :: - Stm

Stms : : - Stms ; Stm
Stm ::=Id := Exp
Stm : : = begin Stms end
Stm : : = if Boo/Exp then Stm
Stm : : = repeat Stm until Boo/Exp
Stm : : =- while Boo/Exp do Stm
Sim : : ... case Id of CaseStms
CaseStms : : = CaseStm
CaseStms : : = CaseStms ; CaseStm
CaseStm : : = Exp : Stm
Boo/Exp : : = not Boo/Exp
Boo/Exp ::-= Exp< Exp
Boo/Exp : : = Exp = Exp

module Stacks:

START : : = StackProg
START : : - Stack
StackProg : : = begin StackExps end
StackExps : : = StackExp
StackExps : : = StackExps ; StackExp
StackExp :: = Id:= Stack
Stack: := Id ·
Stack : : = empty
Stack : : - pop Stack
Stack : : = push Exp on Stack
Exp : : ... length Stack
Exp : : - top Stack

Fig. 6: Grammar used in the measurements

We performed the following measurements in succession:

I Assemble: Assemble all rules in a grammar structure.
2 Statements: Parse a sentence (of 110 tokens) according to module Statements.
3 Statements: Parse the same sentence once more.
4 Stacks: Parse a sentence (of 60 tokens) according to module Stacks.

12

0 START' ::- •START 0 START'::= aSTART

t 1)_ST_A_R_T _' :_: =_ST_A_R_T • ___ __,I [I) START' : : = START•

F,_'_Ex_p_==-_'°_P_·_S_ta_ck ___ __.~

[5) Sun : : - Id • : • Exp
C:. Exp · · - Id • F son " - • • Exp "- Stm

[?Sun:: - Id. : - Exp
Exp· ·- Id.

P7 Ex
± ,,tiffi10 PL7-!!:: ~~:: !!l:!:::L-~----11 ± Jiffi10 Exp ::=Exp.+ p ~\.:/ p:: - P•+ p ~

_ START . " - Exp • _ START •· = Exp •

~==~======::!
[8) SIA!IT : • = Stack •

(9) START·· = Stm •

E ,__O_Ex_p_==_- _Ex_p_+_._Ex_p __ _,~ E Exp ,,_ Exp + • Exp

Q9 Exp:: = Id•

..1Jroo ~1 _.____.___....___.I + '"O Exp::= &p + Ex,p •
_Exp::= Exp. ±Exp

[?O~ Stack · · = push Exp on Stack • I
Fig. 5.a: The complete graph, 5.b: The graph restricted to Expressions

5 Stacks:
6 Statements:
7 Assemble:
8 Stacks:

Parse the same sentence again.
Re-parse the Statements sentence according to module Statements.
Re-assemble all rules in a new grammar structure.
Parse the Stacks sentence again.

13

The results of these measurements given in Fig. 7 are the average of 30 repeated executions of
them.

.25

.20

Parse time .15
(in seconds) .10

.05
2 3 4 6 8 0.00 -1...==----1...-...J.._....L-__;L-.L---1...--L-....l-_.J....-.l.-..c:==.---L--l....

Stacks Stacks Statmwnts Assemble Stacks Assemble Statmients Statmients

Fig. 7: Eight successive measurements on MPG

These results show the following:

• The difference in parse time used between measurement 2 and 3 shows how much time was
spend to generate the needed parts of the parser for Statements.

• The difference in time consumed between measurement 3 and 6 for Statements, shows that re
specializing the already generated parser from Stacks to Statements takes little time.

• The time needed to parse for Stacks differs between measurement 4 and 8. This shows that dur
ing the generation for Statements in 2, parts of the parser for Expressions have been generated,
which were of use for Stacks also.

S.2. MPG versus /PG

The generation work performed by MPG can always be simulated by just using an ordinary parser
generator to generate a separate parser for the full grammar of each module. In this section we will
compare the efficiency of MPG against such a simulation.

As a test grammar we take the grammar of Pascal, divided into three modules: One module
exp that describes the syntax of Pascal expressions, one for its statements stm and one for complete
Pascal programs prog. The import relations are that stm imports exp and prog imports stm (and
thus also exp). We want to parse sentences according to each of these modules. When we normal
ize this modular grammar definition, we obtain for each module an ordinary grammar definition.
We use /PG to generate a parser for each of these grammars, and MPG to generate a parser for the
original modular grammar definition.

The measurements we performed are the following: take three input sentences, one for each
module, and let them parse in succession by the three /PG parsers and by the MPG parser special
ized towards the appropriate module. These sentences are chosen such that they cover their gram
mars reasonably well, and large part of the parser has to be generated to parse them. The genera
tion time needed by the two parser generators is shown in Fig. 8.

The generation time used by /PG increases with the size of the grammar. In MPG however,
the generation work done for exp is re-used while generating for stm, which work is used again in
prog. MPG clearly uses less generation time for stm and prog as /PG needs to do, however the
larger generation time of exp is the price paid. It is larger because the parser for exp is generated by
MPG in an environment of other rules (those of stm and prog). These rules are (partly) taken into
account while generating the parser for exp.

In these measurements we have, to make the comparisons fair, taken /PG as non-modular
parser generator, as MPG and /PG only differ in their modular behaviour. In [HK.R89] we have

14

1.25

1.00

Generation time 0.75
(in seconds)

0.50

0.25

IPG MPG

o____.._._~_._..____.~~~~~ ~_.__._~ ...
exp stm prog exp prog

Fig. 8: Generation times of /PG and MPG on Pascal

compared the efficiency of /PG with that of Yacc, and showed that /PG generates its parsers about
twenty times faster than Yacc does, while the generated parsers are about twice as slow.

6. Conclusion and future work

We have now solved the basic problems of modular. parser generation, but modularization does not
consist of imports alone. There are some other features that have to be implemented, like hidden
sections of modules (i. e. hidden syntax rules may not be used outside the defining module), compo
sition of lexical syntax rules in modules, parameterized modules and imports with renamings.

The modular parser generation technique described in this paper fulfills all requirements given
in the introduction. The solution presented (generate one parser for the union of all modules, and
restrict that parser according to the set of current modules) results in a separate parser for each
module that works as efficient as conventional parsers, while all generation work is re-usable for
other modules. The modular parser generator MPG is built on top of /PG, re-using all implementa
tion work, giving that MPG is as 6exible as /PG.

Aclmowledgments

I would like to thank Paul Klint. He entered my room one morning with the remark: "All these
troubles you are having with taking the union of two parsers, why don't you just generate the parser
for that union, but restrict the reductions of it to allowed rules?". This method, with some fine
tuning, did the trick. Paul Klint himself applied the idea to a modular generator of lexical scanners
[Kli89]. Next, I am very grateful to Jan Heering for his careful proofreading of this paper.

References

(ASU86) A.V. Aho, R. Sethi, and J.D. Ullman, Compilers. Principles, Techniques and Tools,
Addison-Wesley (1986).

(FGJM85) K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer, "Principles of OBJ2,"
pp. 52-66 in Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, ACM (1985).

[HKR89] J. Heering, P. Klint, and J. Rekers, "Incremental generation of parsers," pp. 179-191 in
Proceedings of the SJGPLAN'89 Conference on Programming Language Design and
Implementation, SIGPLAN Notices 24(7), ACM Press (1989).

[Kli89} P. Klint, "Scanner generation for modular regular grammars," pp. 291-305 in Liber
Amicorum, J. W. de Bakker, 25 jaar Semantiek, Centre for Mathematics and Computer
Science, Amsterdam (1989).

(Tom85] M. Tomita, Efficient Parsing for Natural Languages, Kluwer Academic Publishers
(1985).

[Voi86] F. Voisin, "CIGALE: a tool for interactive grammar construction and expression pars
ing," Science of Computer Programming 7, pp. 61-86 (1986).

