
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Resource Augmentation in Load Balancing

Y. Azar, L. Epstein, R. van Stee

Software Engineering (SEN)

SEN-R9926 November 30, 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301642217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9926
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Resource Augmentation in Load Balancing

Yossi Azar∗

Dept. of Computer Science, Tel-Aviv University, Israel

azar@math.tau.ac.il

Leah Epstein†

Dept. of Computer Science, Tel-Aviv University, Israel

lea@math.tau.ac.il

Rob van Stee‡

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Rob.van.Stee@cwi.nl

ABSTRACT

We consider load-balancing in the following setting. The on-line algorithm is allowed to use n machines,

whereas the optimal off-line algorithm is limited to m machines, for some fixed m < n. We show that

while the greedy algorithm has a competitive ratio which decays linearly in the inverse of n/m, the best

on-line algorithm has a ratio which decays exponentially in n/m. Specifically, we give an algorithm with

competitive ratio of 1 + 2−
n
m (1−o(1)), and a lower bound of 1 + e−

n
m (1+o(1)) on the competitive ratio of

any randomized algorithm.

We also consider the preemptive case. We show an on-line algorithm with a competitive ratio of 1 +
e−

n
m (1+o(1)). We show that the algorithm is optimal by proving a matching lower bound.

We also consider the non-preemptive model with temporary tasks. We prove that for n = m + 1, the

greedy algorithm is optimal. (It is not optimal for permanent tasks.)

1991 Mathematics Subject Classification: 68M20, 90B35

1991 ACM Computing Classification System: F.2.2

Keywords and Phrases: on-line load balancing, resource augmentation, deterministic, preemptive, randomized,

permanent tasks, temporary tasks

Note: Work carried out under theme SEN4 “Evolutionary Computation and Applied Algorithmics”.

∗Research supported in part by the Israel Science Foundation and by the United States-Israel Binational
Science Foundation (BSF).
†Part of the research was done while this author was visiting the Centre for Mathematics and Computer

Science (CWI), supported by a grant from the Netherlands Organization for Scientific Research.
‡Research supported by the Netherlands Organization for Scientific Research (NWO), project number SION

612-30-002.

1. Introduction 2

1. Introduction

Competitive analysis has been criticized for being too pessimistic. This worst case analysis
sometimes fails to differentiate between algorithms whose performance is observed empirically
to be very different. A general method to circumvent these shortcomings was introduced
by Kalyanasundaram and Pruhs [13]: resource augmentation. For certain scheduling
problems with unbounded competitive ratio, they show that it is possible to attain a good
competitive ratio if the machines of the on-line algorithm are slightly faster than the machines
of the off-line algorithm.

Resource augmentation has been applied to a number of problems. It was already used in
the paper where the competitive ratio was introduced [20]: here the performance of some pag-
ing algorithms was studied, where the on-line algorithm has more memory than the optimal
off-line one.

In several machine scheduling and load balancing problems [4, 8, 13, 14, 16, 18], the effect
of adding more or faster machines has been studied.

We consider the following load balancing problem. Jobs arrive on-line, where job j has a
certain weight wj . The job has to be assigned immediately to a machine, adding wj to the
machine’s load. The on-line algorithm has n identical machines, and it is compared to an
optimal offline algorithm which has m < n identical machines.

For a job sequence σ we write An(σ) for the maximum load of A on n machines when it is
given this job sequence. Analogously, we write OPTm(σ). We denote the competitive ratio
of an online algorithm A with n machines relative to an optimal offline algorithm with m
machines by cm,n(A). Specifically,

cm,n(A) = max
σ

An(σ)
OPTm(σ)

.

The classical case of n = m was considered in a series of papers [11, 12, 3, 15, 1]. The
best upper bound is 1.923 due to Albers [1] and the best lower bound is 1.853 [10] based
on [1]. The case n > m was introduced by Brehob et al [5]. They showed that no matter
how many machines the on-line algorithm has, it can never perform optimally: cm,n(A) > 1
for all n > m ≥ 2. However, one may expect that for reasonable algorithms cm,n(A) would
approach 1 when t = n/m increases. In fact, [5] showed that the greedy algorithm has a
competitive ratio which approaches 1 in a rate depending linearly on 1/t.

In contrast, while the greedy algorithm has a competitive ratio which approaches 1 in a
rate depending linearly on 1/t, we design a non-greedy algorithm whose competitive ratio
approaches 1 in a rate depending exponentially on t. More specifically, we give an algorithm
of competitive ratio 1 + 1

2t(1−o(1)) . Moreover, we show that the competitive ratio of any on-
line algorithm cannot decrease faster than exponentially in t by proving a lower bound of
1 + 1

et(1+o(1)) on the competitive ratio of any on-line algorithm. We also show for n = 2m a
lower bound of 5/4.

We also consider the preemptive case. Here we view load as time. Each job may be
assigned to one or more machines and time slots, where the time slots have to be disjoint.
The assignment has to be determined completely at the arrival of a job. Using similar
techniques as in [6, 7, 19] we prove a lower bound of 1/(1 − (m−1

m)n) = 1 + 1
et(1+o(1)) on the

competitive ratio of any randomized preemptive algorithm. We also show a matching upper
bound by adapting the optimal preemptive algorithm of [7] to our problem.

2. Permanent tasks 3

We can also view time as a separate axis and not as the load axis. Here jobs arrive and
depart at arbitrary times and the cost of an algorithm is the maximum load over time and
machines. This model is called the temporary tasks model (the case where jobs only arrive is
called the permanent tasks model). It was proved in [2] that for n = m the greedy algorithm,
which is 2 − 1/m competitive, is optimal for this model. We show that if n is just slightly
larger than m, i.e., n = m+1, then greedy which is 2−2/(m+1) competitive is also optimal.
Note that the results in [1] implies that the greedy algorithm is not optimal in general for
permanent tasks also for n > m.

2. Permanent tasks

In this section we check the growth of the competitive ratio as a function of t = n/m. We
start with the competitive ratio of the greedy algorithm. This algorithm was first given by
Graham [11], and assigns each new job to the least loaded machine. The following lemma
is shown in [5] using a similar analysis as in [11]:

Lemma 1 The competitive ratio of the greedy algorithm is 1 + m−1
n .

The above theorem implies a competitive ratio which is a linear function in 1/t. Surprisingly,
we can give an algorithm called Buckets which has a competitive ratio 1 + 2−t(1−o(1)).

2.1 Algorithm Buckets
For describing the algorithm Buckets we assume that t > 3. (If t ≤ 3 we use the greedy
algorithm.) Let 0 < ε < 1 some parameter to be fixed later. We partition all machines into
buckets: k = bt− 2

εc small buckets, each of which contains m machines, and one big bucket
that contains all other machines. Note that the big bucket contains at least 2m

ε machines.
Algorithm Buckets maintains a value λ. Denote by λi the value of λ after the arrival of i

jobs and by OPTi the optimal load after i jobs. The algorithm consists of phases. During a
phase j, the algorithm can use only the big bucket and the small bucket number j mod k.
We assign the first job to the first small bucket and initialize λ1 = w1. We modify λ only
when a new phase starts while keeping the following two invariants on λ:

• maxj≤iwj ≤ λi

• (2− ε)OPTi ≥ λi

On arrival of a job i (starting from i = 2), we do the following: If wi ≤ λi−1/2 assign i
greedily to the least loaded machine in the big bucket. If λi−1/2 < wi ≤ λi−1, and there
is a machine in the small bucket which was not used in the current phase, assign i to this
machine. Finally, if all m machines in the current small bucket were used in the current
phase, or if wi > λi−1, then a new phase begins: we define λi = max((2− ε)λi−1, wi) and the
job is assigned to a machine in the next small bucket.

Theorem 1 The algorithm Buckets is 1 + 1
2t(1−o(1)) competitive for an appropriate choice of

ε.

2. Permanent tasks 4

Proof. We start by showing that both invariants hold after the arrival of a job (and thus hold
throughout the execution of Buckets). After the assignment of the first job, λ1 = OPT1 = w1,
and both invariants hold since ε < 1.

The first invariant always holds, since when a job which is larger than λ arrives, λ is
modified. To show that the second invariant holds, we show that λ is increased only when
the previous λ is smaller than the current OPT , and that λ is not increased too much. If
λ is increased since λi−1 < wi, then OPTi ≥ wi and since λi = max((2 − ε)λi−1, wi) then
λi ≤ (2−ε)wi ≤ (2−ε)OPTi. If λ is increased since all the machines in the small bucket were
used in the current phase, then there are at least m + 1 jobs of weight more than λi−1

2 and
hence the optimal schedule has to assign two of them on one machine, yielding OPTi > λi−1.
Thus λi ≤ (2− ε)OPTi.

Next we show that the maximum load in the big bucket never exceeds OPTi at step i
(after arrival of job i). It is easy to see that the maximum load of running greedy on αm

machines is at most OPTi
α + maxj≤iwj . Since wj ≤ λi−1

2 and λi−1/(2− ε) ≤ OPTi−1, the load
is bounded by (1

α + 2−ε
2)OPTi−1 ≤ (ε2 + 2−ε

2)OPTi = OPTi.
Last, we bound the maximum load on the small bucket machines. When a new phase

starts, the value of λ is multiplied by at least 2− ε. Each machine in a small bucket is used
at most once in each phase.

Consider a job which is assigned to a small bucket machine in the last time it is used.
Denote this job by i′, and let λ′ = λi′ . Then the previous job assigned to the same machine
is of weight at most λ′/(2 − ε)k. Moreover, a job that was assigned r ≥ 1 jobs before i′ to
the same machine is of weight at most λ′/(2− ε)rk. Thus the total weight of all jobs on this
machine, except i′, is at most 2λ′/(2−ε)k. Since OPT ≥ 1

(2−ε)λ
′ we get that the total weight

of jobs on this machine is at most

w(j′) +
4OPT

(2− ε)k ≤ (1 +
4

(2− ε)k)OPT ≤ (1 +
4

(2− ε)t−2/ε−1
)OPT.

Choosing an appropriate value of ε would give the required competitive ratio (for example
ε =

√
3/t is a suitable value). �

2.2 Lower bounds
We begin by giving a simple exponential lower bound:

Theorem 2 The competitive ratio of any deterministic on line algorithm is at least 1 +
2−2t+1.

Proof. We give a proof for even m and for integer t. It is easy to extend the proof for all
cases. The sequence consists of n+ m

2 jobs that arrive in 2t+ 1 phases. Phase 1 consists of m
2

unit jobs, and phase i for i > 1 consists of m
2 jobs of weight 2i−2. The sequence stops after a

phase in which the on-line schedules two jobs on one machine. (If the algorithm reaches the
last phase, there are more jobs than on-line machines, therefore the on-line has two jobs on
one machine). The optimal off-line load after every phase is the weight of the last job. If the
on-line has two jobs on one machine, its load it at least 1 + x where x is the weight of the
last job. The minimum value of 1+x

x would be 1 + 1
2i−2 where i = 2t+ 1, hence 1 + 2−2t+1 is

a lower bound on the competitive ratio. �

2. Permanent tasks 5

We can give a slightly better lower bound, this bound holds for deterministic and ran-
domized algorithms. In fact, we show a lower bound on preemptive algorithms versus a
non-preemptive optimal algorithm. Hence our lower bound holds both for the preemptive
and non-preemptive models. The lower bound builds on the lower bounds given by Sgall

[19] and independently by Chen, van Vliet and Woeginger [6, 7].
The main idea here is to use small jobs and a sequence of n big jobs Ji for 1 ≤ i ≤ n of

increasing weight so that the optimal off-line load after job Ji, which we denote by OPTi,
is exactly equal to the weight of Ji. Hence, the weight of each big job is equal to the total
weight of all previous jobs divided by m− 1. Specifically, the sequence begins by very small
jobs of total weight m − 1 followed by the sequence of the n big jobs. The weight of Ji for
1 ≤ i ≤ n is µi−1 where µ = m

m−1 .

Lemma 2 The optimal off-line load for the above sequence is µk−1 after the arrival of the
job Jk, for 1 ≤ k ≤ n.

Proof. We consider an algorithm which assigns all jobs on off-line machines, and show that
the resulting load is µk−1.

The algorithm assigns jobs to the off-line machines greedily, in non-increasing order (sorted
according to weight). This is equivalent to using the LPT rule. We show that no big job is
assigned in a way that some load exceeds µk−1. Note that the total weight of all small jobs
and first j big jobs is µj(m− 1) = µj−1m.

Assume that the assignment of job j causes the maximum load to exceed µk−1. This means
that all other machines are loaded by more than µk−1 − µj−1. Since the total weight of jobs
smaller or equal to Jj is µj−1m, we get that the total weight of jobs is more than µk−1m
which is a contradiction. Hence, the assignment of the small job results in balanced machines,
each with load of µk−1. �

The following lemma, adapted from [19, 9], is the key of lower bounding the competitive
ratio.

Lemma 3 For any deterministic or randomized, preemptive or non preemptive algorithms
for the sequence above the following holds: r ≥ W∑n

i=1OPTi
, where r is the competitive ratio

and W is the total weight of the jobs.

Proof. Denote by A(Ji) the maximum load of the on-line algorithm A after the assignment
of the job Ji. Then ∑n

i=1E(A(Ji))∑n
i=1OPTi

≤
∑n

i=1 r ·OPTi∑n
i=1OPTi

= r.

Hence it is enough to show that
∑n

i=1E(A(Ji)) ≥W .
Assume that A is deterministic. For 1 ≤ l ≤ n let Tl be the load on the l’th machine at the
end of the sequence after sorting the machines by non-increasing load. Removing any l − 1
jobs still leaves a machine with load at least Tl and thus A(Jl) ≥ Tn−l+1. Since W =

∑n
k=1 Tk

we conclude that
n∑
i=1

A(Ji) ≥
n∑
i=1

Tn−l+1 = W

2. Permanent tasks 6

as needed. If A is randomized, we average over the deterministic algorithms and conclude
that

n∑
i=1

E(A(Ji)) ≥W .

�

Theorem 3 The competitive ratio of an on-line algorithm, deterministic or randomized,
preemptive or non-preemptive, is at least 1/(1 − (m−1

m)n) = 1 + e−
n
m

(1+o(1)).

Proof. We use the above job sequence and apply Lemma 3. We have

W = µn(m− 1) ,

n∑
i=1

OPTi =
n∑
i=1

µi−1 =
µn − 1
µ− 1

and

r ≥ µn(m− 1)
(µn − 1)

(µ− 1) =
µn

µn − 1
=

1
1− 1

µn
=

1
1− (m−1

m)n

as needed. �
We can improve the bound for the special case t = 2 for the non-preemptive deterministic

case.

Claim 1 The competitive ratio of any on-line algorithm for n = 2m, where m ≥ 8, is at
least 5

4 .

Proof. We use a job sequence consisting of four phases:

• m jobs of weight 1

• bm2 c jobs of weight 3/2

• bm3 c+ 1 jobs of weight 3

• bm+1
6 c+ 1 jobs of weight 4.

The sequence stops after a phase in which the on-line schedules two jobs on one machine.
Note that the sequence contains more than 2m jobs.

m mod 6 0 1 2 3 4 5
Amount of jobs 2m+ 2 2m+ 1 2m+ 1 2m+ 1 2m+ 1 2m+ 1

We show that the optimal load in phase i is i. This is clear for phases 1 and 2. In phase
3, if the machines are packed to a maximum load of 3, at most 2.5 of space can be lost: 2 if
a job of weight 1 has to be assigned to its own machine, and 0.5 if there is an odd number
of jobs of weight 1.5. The total weight is at most m+ 3m

4 + (m+ 3) = 11m
4 + 3, which is at

2. Permanent tasks 7

most 3m − 2.5 for m ≥ 22. This implies that the machines can be packed with a maximum
load of 3 for m ≥ 22. By inspection, the machines can be packed for 8 ≤ m ≤ 21 too.

In phase 4, the total weight is at most 11m
4 + 3 + 4m

6 + 14
3 . In the optimal packing, at

most 3.5 of space is lost. We have 41
12m+ 23

3 ≤ 4m− 3.5 which holds for m ≥ 20. Therefore
the optimal algorithm can maintain a load of 4 in phase 4, if m ≥ 20. By inspection, the
machines can be packed for 8 ≤ m ≤ 19 as well.

As an example, we give the optimal schedules for phases 3 and 4 when m = 8 and m = 9
(see Figure 1).

phase 3

phase 4

m=8 m=9

phase 4

phase 3

Figure 1: The last phases for m = 8, 9

Depending on the phase in which the on-line algorithm puts two jobs on the same machine,
we find competitive ratios of 2, 5

4 ,
4
3 and 5

4 . Hence the competitive ratio is at least 5/4. �

2.3 An optimal preemptive algorithm
The last part of this section presents an optimal preemptive on-line algorithm. The algorithm
is similar to the algorithm in [7].

Let r = 1/(1 − 1
µn). We denote the load on machine i at time T by LTi . The algorithm

maintains three invariants, which hold at any step T :

• LT1 ≤ LT2 ≤ · · · ≤ LTn .

• LTn ≤ r ·OPT T .

• For 1 ≤ k ≤ n,

k∑
i=1

LTi ≤
µk − 1
µn − 1

W T ,

3. Temporary tasks 8

where W T is the total weight of jobs which arrived till time T .

Similarly to the algorithm in [7], we try to maintain a ratio of m
m−1 between machine loads.

We show how to assign a new job j with weight wj , arriving at time T + 1, to n machines.
First the new optimal load is computed by max(W T+1/m, max1≤i≤T+1 wi) [17], and then
the following intervals are reserved for j: for 1 ≤ l ≤ n − 1, we reserve [LTl , L

T
l+1], and for

l = n, reserve [LTn , r · OPT T]. Note that these intervals are disjoint. Next, for j = n down
to 1, assign a portion out of wj of size equal to the size of the reserved interval. We do that
until we run out of wj. (The last portion assigned might be smaller than the interval.)

It is easy to follow the proof in [7], replacing the number of machines used by the on-
line algorithm from m to n. The proof shows that each job is completely distributed to
the machines and that the invariants hold. By that we conclude that the algorithm is r-
competitive as required.

3. Temporary tasks

Recall that for n = m the greedy algorithm is (2− 1/m)-competitive for permanent tasks as
well as for temporary tasks. Greedy is not optimal for permanent tasks, but is optimal for
temporary tasks. Also for n > m, it is easy to see that greedy has the same competitive ratio
for temporary tasks as for permanent tasks, which is 1 + (m− 1)/n. However, in contrast to
the case n = m, greedy is not optimal for temporary tasks, since algorithm Buckets (defined
on temporary tasks) achieves a better competitive ratio for large n. Specifically, it is easy to
see that the same analysis of the competitive ratio of algorithm Buckets for permanent tasks
also holds for temporary tasks. However, we show that if the online algorithm has one more
machine than the optimal offline algorithm then the greedy is still optimal.

Theorem 4 Greedy is optimal for temporary tasks for n = m+ 1.

Proof. We need to show a lower bound of 2m
m+1 on the competitive ratio of any on-line

algorithm. The proof consists of two parts: one for odd m and one for even m. In the proof
we mention the value of the optimal load only when the value increases.

Case A. m is odd. We start the sequence by (m−1)m2 unit-weight jobs. The optimal load
is m(m− 1). We distinguish between two cases:

Case A1. The online algorithm places at least m(m− 1) jobs on one machine, say machine
x.

In this case, all the jobs leave except m(m− 1) jobs on x. Then, m(m− 1) jobs of weight
m−1 arrive. Since the optimal load is again m(m−1),at most m−2 of them can be assigned
to x. Otherwise the load would be (2m − 1)(m − 1) on x, and (2m − 1)/m > 2m/(m + 1).
So (m − 1)2 + 1 of these jobs must be assigned to the m empty machines. We distinguish
between two sub-cases:

Case A1a. One machine (not x) has at least m jobs of weight m− 1.
All jobs of weight m − 1 leave except m job of weight m − 1 on one machine, and m − 1

jobs of weight m(m− 1) arrive. The new optimal load is (m+ 1)(m− 1). Therefore all these
jobs must be assigned to different machines. Finally, a job of weight m(m+ 1) arrives. This

3. Temporary tasks 9

completes the proof since the online load is 2m2, while the optimal load is m(m + 1): the
last job has it own machine, the other machines have one job of weight m(m− 1), one or two
jobs of weight m− 1 and some jobs of weight 1, so that the load is precisely m(m+ 1).

Case A1b. All machines (except machine x) have at least one job of weight m− 1.
All jobs of weight m−1 leave except m jobs, one such job is on each machine except machine

x. Next, m2−2m−1
2 jobs of weight 2(m − 1) arrive. The optimal load is again m(m − 1). At

most m−3
2 are assigned to machine x, otherwise the load there is too large. There are m−3

2 + 1
m

jobs on average on the other machines, so there is at least one machine (not x) with at least
m−1

2 jobs of this weight and a load of at least m(m− 1), say machine y. All jobs leave except
the unit jobs on x and jobs of total weight precisely m(m− 1) on machine y.

Finally, m− 1 jobs of weight m(m− 1) arrive and one job of weight m(m+ 1). Clearly, the
online algorithm must assign each job of weight m(m − 1) to an empty machine and hence
its final load is 2m2. The optimal algorithm can balance its jobs to a load of m(m+ 1) since
there are at least 2(m− 1) jobs of weight 1, which completes the proof.

Case A2. All machines now have load at least m− 1.
All jobs leave except m − 1 jobs on each machine, and m2 −m − 1 jobs of weight m − 1

arrive. The average number of jobs of weight m − 1 on the machines is m − 2 + 1
m+1 , and

hence there is a machine with m − 1 jobs of weight m − 1 and a load of m(m − 1). The
loads are now the same as in Case A1b just before the arrival of the jobs of weight 2(m− 1).
Hence, we can continue as in that case.

Case B. m is even. We start the sequence by (m − 1)m2 unit jobs. The optimal load is
m(m− 1). We distinguish between two cases:

Case B1. One machine, say x, has at least m(m− 1) jobs. All jobs leave except m(m− 1)
jobs on x, and (m − 1)2 jobs of weight m arrive. The optimal load is again m(m − 1). At
most m− 2 jobs can be assigned to x. We distinguish between two sub-cases:

Case B1a. Another machine (not x) has load at least m(m− 1). Then all jobs of weight m
leave except m−1 jobs on one machine, and m−1 jobs of weight m(m−1) arrive followed by
a job of weight m(m+ 1). Clearly, the online load is 2m2, while the optimal load is m(m+ 1)
which completes the proof.

Case B1b. Each machine except x has one job of weight m. All jobs of weight m leave
except m jobs, one on each machine except on machine x. Next m2−3m

2 jobs of weight 2m
arrive. At most m−2

2 can be assigned to machine x. Hence, the average number of jobs of
weight 2m on machines different than x is m

2 − 2 + 1
m . Thus, one machine must have m

2 − 1
jobs of weight 2m and a load of at least m(m − 1). All jobs leave except the unit jobs on
x and jobs of total weight m(m − 1) on the other machine. Finally, m − 1 jobs of weight
m(m− 1) arrive and one job of weight m(m+ 1). Clearly, the online load is 2m2, while the
optimal load is m(m+ 1) which completes the proof.

Case B2. There are at least m jobs on each machine. (This can happen only for m ≥ 4).

4. Conclusions 10

All jobs leave except m jobs on each machine. Next, m2(m−2)−m
2 jobs of weight 2 arrive. If

there is a machine with load at least m(m− 1), we continue as in Case B1. Otherwise, each
machine has load at least 2m. Then, some jobs of weight 2 leave in such a way that the load
on each machine is 2(m − 1). Next, m2 − 2m − 2 jobs of weight m − 1 arrive. Then, one
machine will have a load of at least m(m− 1). Jobs of weight m− 1 on that machine leave
such that the load becomes m(m − 1). All non-unit jobs on the other machines leave. We
continue as in Case B1b. �

4. Conclusions

We have examined the effects of resource augmentation for several load balancing problems.
For the problem of scheduling jobs on identical machine, we have shown an algorithm with a
competitive ratio which decreases exponentially in n/m, while greedy has a competitive ratio
that is linear in n/m.

An open question is whether it is possible to close the gap between the lower bound and
the upper bound on identical machines. Both bounds are decreasing exponentially, and we
conjecture that the true value of the competitive ratio is closer to the lower bound.

5. Acknowledgments

The authors wish to thank Han La Poutré for helpful discussions.

11

References

1. S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on Theory of
Computing, pages 130–139, 1997.

2. Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical machines.
In 5th Israeli Symp. on Theory of Computing and Systems, pages 119–125, 1997.

3. Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling
problem. In Proc. 24th ACM Symposium on Theory of Algorithms, pages 51–58, 1992.
To appear in Journal of Computer and System Sciences.

4. P. Berman and C. Coulston. Speed is more powerful than clairvoyance. In Scandinavian
Workshop on Algorithms and Theory, pages 255–263, 1998.

5. M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to load
balancing. Manuscript, 1999.

6. B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online
scheduling. Information Processing Letters, 51:219–222, 1994.

7. B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line
scheduling. Operations Research Letters, 18:127–131, 1995.

8. J. Edmonds. Scheduling in the dark. In Proceedings of the 31st ACM Symposium on
Theory of Computing, pages 179–188, 1999.

9. L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related
machines. to appear in Oper. Res. Lett., 1999.

10. T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-
answer games. In Proc. 11th ACM-SIAM Symp. on Discrete Algorithms, 2000.

11. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical Jour-
nal, 45:1563–1581, 1966.

12. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math, 17:263–
269, 1969.

References 12

13. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In Proceedings
of 36th IEEE Symposium on Foundations of Computer Science, pages 214–221, 1995.

14. Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. In European
Symposium on Algorithms, pages 235–246, 1998.

15. D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling
problem. In Proc. of the 5th ACM-SIAM Symposium on Discrete Algorithms, pages
132–140, 1994.

16. Tak Wah Lam and Kar Keung To. Trade-offs between speed and processor in hard-
deadline scheduling. In ACM/SIAM Symposium on Discrete Algorithms, pages 623–632,
1999.

17. R. McNaughton. Scheduling with deadlines and loss functions. Management Sci., 6:1–12,
1959.

18. Cynthia A. Philips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical schedul-
ing via resource augmentation. In Proceedings of the 29th ACM Symposium on Theory
of Computing, pages 140–149, 1997.

19. J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Inf. Process.
Lett., 63(1):51–55, 1997.

20. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Com-
munications of the ACM, 28:202–208, 1985.

