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we prove the following theorem. Let G=(V,E) be a planar bipartite 

graph, embedded in the euclidean plane. Let O and I be two of its faces. Then 

there exist pairwise edge-disjoint cuts c 1 , ... ,Ct so that for each two 

vertices v,w with v,wEO or v,wEI, the distance from v tow in G is equal 

to the number of cuts C. separating v and w. 
J 

This theorem is dual to a theorem of Okamura on,plane multicommodity 

flows, in the same way as a theorem of Karzanov is dual to one of Lomonosov. 
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1. INTRODUCTION. 

We prove the following theorem: 

THEOREM. Let G = (V,E) be a planar bipartite graph, embedded in the euclidean 

plane. Let O and I be two of the faces. Then there exist pairwise edge-disjoint 

cuts b(x1), ... ,~(Xt) so that for each two vertices v,w with v,wc;O or v,wEI, 

the distance of v to w in G is equal to the number of cuts ~(X.) separating 
J 

v and w. 

[Here, for X~V, ~(X) := { et:E/ le(\X[=1}, while b(X) separates v and w if 

[{v,w11'X/ =1 ~] 
Note that for any graph G, whatever collection of pairwise edge-disjoint 

cuts ~(X.) we take, for any two vertices v, w of G, the distance from v to w j_s 
J 

always at least as large as the number of these cuts separating v and w. The 

point in the theorem is that we can get equality, under the conditions given. 

This theorem is 'dual' to a theorem of Okamura [1983] on plane multi­

commodity flows, in the same way as the results of Karzanov [i 985] are dual 

to those of Lomonosov [l976,197'=D on multicommodity flows, as we shall explain 

in Section 2 below. The theorem extends a result of Hurkens, Schrijver and 

Tardos [i 986], dual to a theorem of Okamura and Seymour [i 981]; this result 

restricts v,w to belong to only one fixed face. 

The theorem cannot be generalized to the obvious extension with more 

than two faces, as is shown by the complete bipartite graph K213 • This graph 

also shows that we cannot allow in the theorem above pairs v, w with v G. 0 and 

w €I. 

2. RELATION TO MULTICOMMODITY FLOWS. 

In this section we discuss a relation of the theorem above with multi­

commodity flow problems. Let G=(V,E) be an undirected graph. Let {r1 ,s 11, 
... ,{rk,sk1 be pairs of vertices. Suppose we wish to decide if 

(1) there exist pairwise edge-disjoint paths P 1 , ... ,Pk so that Pi 

connects r. and s. (i=1, ... ,k). 
1. 1. 

Clearly, the following 'cut condition' is a necessary condition: 

(2) each cut ~(X) separates at most \~(x)l of the pairs r, JS, • 
1. 1. 



Now Lomonosov [1976,1979] (extending earlier work by Menger [}.927], Hu 

[1963], Rothschild and Whinston [1966], Papernov [l 976] , Seymour [1980]), 

Okamura [1983] (extending earlier work by Okamura and Seymour [198~); and 

Seymour [1981J showed the following three results, each of which uses the 

following 'parity condition': 

(3) for each vertex v, \o ({v}ll +!{i I vt{ri,siB( is even. 

Lomonosov's theorem: If 

(4) the graph H := ({r 1 ,s 1 , .•• ,rk,sk~'{{r 1 ,s 1~ , •.. ,{rk,s~H) has at 

most four vertices, or is isomorphic to c5 (the circuit with five 

vertices) , or contains two vertices v, w so that {v, w ~ f\ { r i, s i1 ;£0 
for all i=l, ... ,k, 

then the cut condition (2) and the parity condition (3) together imply (1). 

Okamura's theorem: If 

( 5) G is planar, so that there are two of its faces, 0 and I, with 

for each i=l, ... ,k: r.,s.fO or r.,s.GI, 
J. 1. 1. J. 

then the cut condition (2) and the parity condition (3) together imply (1). 

Seymour's theorem: If 

(6) 

then the cut condition (2) and the parity condition (3) together imply (1). 

3 

A consequence of these results is that, if (4), (5) or (6) holds, and if 

moreover the cut condition (2) holds, then there exist paths Pi,Pi,···1 

P',P" sothatbothP'. andP'.' connectr. ands. (i=l, ... ,k), and so that 
k k 1. J. J. J. 

each edge of Gisin at most two of the paths Pi,P1, ... ,Pk,Pk. (This follows 

by duplicating each edge of G and each pair [ri,si1' after which (2) and 

(3) hold.) 
E 

Hence, if ( 4) , ( 5) or ( 6) holds, and if c € Q2+ (a 'capacity function' ) and 

d E 1)2k (a 'demand function') so that 
+ 
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(7) for each X ~V, Z(ce \ eE.S(x)) ~ Z<di I i=l, ... ,k; X separates ri and si), 

1 tl 1 t2 1 tk j 
then there exist paths P1, ... ,P1 ,P2, ... ,Pf , ... ,Pk, ... ,Pk (where each Pi 

connects ri aria si) and rationals A~, ... ,A1 1 ,~, ... ).:2 , ..• ,A~, ... ,A:k~O 
so that: 

(8) 
~k ~ti 
6i=1 j=1. 

eE.P~ 
i 

(e € E), 

(i=l, ... ,k) 

(a 'multicommodity flow'). (For (5) this is a result of Papernov [1976].) 

~is result follows from the result in the previous paragraph, by observing 

that we may take, without loss of generality, c and d to be integral, and 

hence we can replace each edge e of G by c parallel edges, and each pair 
e 

{ri,si} by di parallel pairs, after which we apply the previous result.) 

In polyhedral terms, this statement is equivalent to: if (4),(5) or (6) 

holds, then the cone of vectors (d;c) f q{ X 112E defined by the linear inequal­

ities: 

(9) (i) 

(ii) 

licce \ e~6(x)) ~h(di [ iG \(X)) 

d.~ 0 
i 

(X ~V) I 

(i=1, ... ,k), 

(e €E), (iii) c ~ 0 
e 

(where ~ (X) := {i=1, ... ,k \ X separates ri and si\), is equal to the cone 

generated by the following vectors: 

(10) (i) 

(ii) 

(Here S denotes the i-th 

b . t . E .'l)P . asis vec or in 112 ; ·l\. is 

e E. P and =O otherwise.) 

(i=l, .•• ,k;P r.-s.-path), 
i i 

(e f. E). 

unit basis vector in </).k; € denotes the e-th unit 
e 

th . 'd t f . E . p ( ) 1 . f e inci ence vec or o Pin 112 , i.e., ~ e = i 

By polarity, this last statement is equivalent to: if (4) ,(5) or (6) holds, 

then the cone of vectors (b;l) € 112k x_ <j)_E defined by the linear inequalities: 

( 11) (i) 

(ii) 

b.+L:: .e~o 
i eEP e 

-l ~ 0 e 

(i=l, ..• ,k;P r.-s.-path), 
i i 

(e ~ E), 

is equal to the cone generated by the following vectors: 



(12) (i) 

(ii) 

(- <\'.e(x); XS(x) l 

( €i;O) 

5 

(X CV) I 

(i=l, ... ,k), 

(e € E). 

Note that (ll)(i) just means that -b. is a lower bound for the distance 
l. 

from r . to s . , taking f as a length function. So the statement is equivalent 
l. l. 

tO : if ( 4 ) I ( 5 ) or (6) holds, then for any 'length function' L:E-7@, there 
+ 

exist subsets x1 , ... ,Xt of V and rationals ~1 , ... ,~t~O, so that 

(13) ( i) 

(ii) 

j = 1 , .•. , t; it: p(X.) ) ~ dist n (r. , s. ) 
\] j!..l.l. 

j=l, ... ,t; e<;~(X.))~e 
J e 

( i=l, • • •I k) I 

(e GE) • 

[ttere, dist~ denotes the distance, taking ~ as length function. Note that 

equality in (i) can be derived from (ii) J 
Now Karzanov [1985] showed that if (4) holds, and if l is integral, 

we can take the pj half-integral. In fact, he showed that if e is integral 

so that each circuit of G has an even length, we can take the ~j integral 

(thus extending work of Hu [i.973] and Seymour [1978]). Equivalently, if G 

is bipartite and (4) holds, then there exist pairwise edge-disjoint cuts 

S<x1 ), ... ,b(Xt) so that for each i=l, ... ,k, the distance from ri to si is 

equal to the number of cuts ~(X.) separating r. and s .. (The equivalence 
J l. l. 

follows in one way by taking ~ =1 for each edge e, and in the other way by 
e 

replacing each edge e of length e by a path consisting of l edges.) 
e e 

The theorem to be proved in this paper is similar, but now with respect 

to Okamura's condition (5), instead of Lomonosov's cobdition (4). Note that, 

in a similar way as above, a fractional version of Okamura's theorem can be 

derived from our theorem. 

3. PROOF OF THE THEOREM. 

(14) 

Suppose that the theorem is not true, and let G be a counterexample with 

L 2e (F) as small as possible, 
F#O,I 

where the sum ranges over all faces F#O,I, and where e(F) denotes the number 

of edges surrounding F. We may assume that 0 is the unbounded face. 

G has no multiple edges: otherwise, either the circuit C formed by them 

is a face, in which case we can delete one of the edges, thereby decreasing 

the sum (14) , or C contains edges both in its interior and in its exterior, 
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in which case the graph formed by C and its interior or the graph formed by 

c and its ex~erior yields a counterexample with smaller sum (14). 

We first show: 

Claim 1. Each face F 1 O,I forms a quadrangle (i.e., e(F)=4). 

Proof of Claim 1. Let F be some face forming a k-gon, with k#4. Since G is 

bipartite and has no parallel edges, k is even and k>,6. We make a counter­

example with smaller sum ( 14) as follows. Let v 1 , •.. , vk be the vertices 

surrounding F. Add, in the interior of F, new vertices w1 , ... ,w!k- 2 and 

new edges {v 1 ,w1\,{vk_ 1 ,w 1~, fwi,wi+l} (i=l, ... ,!k-3) and {w!k-2,vtk1· 

E.g., for k=10, 

vlO vlO 

v9 

v8 v2 VB wl 

(15) F becomes 

v7 v3 v7 v3 

v6 

vs vs 

Note that this modifaction does not change the distance from v to w, for 

any two vertices of the original graph. Therefore, after this modification 

we have again a counterexample to the theorem, with, however, smaller 

sum (14) (since 2k > 2k-2 +2k-2 +2 4), contradicting our assumption. 0 

Next we show: 

Claim 2. Let F be a face, with FiO,I, and let e 1={v1 ,v21, e 2={v2 ,v31, 
e 3={v 3, v 4"\, e 4= fv 4,v 11 be the four edges surrounding F. Then there exist 

vertices v,w, with v,w t:.O or v,w f. I, and a shortest path from v to w which 

uses both e 1 and e 2 . 

Proof of Claim 2. Suppose no such v,w exist. Identify v 1 and v 3 , e 1 and e 2 , 

and e 3 and e 4 . So 
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(16) becomes 

After this modification, all distances between vertices v,w on O and between 

vertices v,w on I, are unchanged. Hence, the new graph is again a counter­

example. However, the sum (14) has decreased, contradicting our assumption. l] 

Now we define dual paths Q1 , ... ,Qt' i.e., paths (including circuits) 

in the (planar) dual graph of G. These dual paths are determined by the 

following properties: each edge of the graph occurs exactly once in Q1 , ... , 

Qt; if F~o,r) is surrounded by the edges e 1 ,e 2 ,e3 ,e4 (in this order), then 

e 1 ,F,e 3 (or e 3 ,F,e1 ) will occur in exactly one of the Qj; the faces o and I 

only occur as beginning or end faces in Q1 , .•. ,Qt. 

More precisely, Q1 , ... ,Qt are all sequences of form 

satisfying: (i) for i=l, ... ,k: e. is an edge separating the faces F. 1 and F.; 
l i- l 

(ii) for i=1, ... ,k-1: F.&{o,r1 and e. and e. 1 are opposite edges of F,; (iii) 
l~ J l i+ l 

either F0=Fk~{o,r} and e 1 and ek are opposite edges of F0 , or F0 ,Fk€{o,r1. 

If F0 =F f{o,r\, we identify all possible sequences obtained from (17) by cy-
k 1 

clically shifting it or by reversing it. If F0 ,Fkff0,IJ, we identify (17) 

with its reverse. Clearly, in this way the edges of G are partitioned into 

dual paths and circuits. 

Consider now some fixed Q , represented by ( 17) . Let for each i=1, ... , k, 
g 

and w. be vertices so that e.={v. ,w.7 and so that if we would orient the V. 
l l l l i1 

edges surrounding F. clockwise, then e. is oriented from v. tow .. Then also 
l l l l 

f . : = {v . , v . 11 and g . : = lw. , w. 1~ are 
l l i+ J l l' l i+ 

edges of G (i=1, ..• ,k-1). So 

is the path along Qg 'on the right side', and 

is the path along Q 'on the left side'. 
g 

Claim 3. For all i,j E.{1, ... ,k}: dist(vi,vj) 

distance. 

dist(w. ,w.), where dist denotes 
l J 
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Proof of Claim 3. Suppose to the contrary that dist(v.,v.) ~ dist(w.,w.) for 
]. J ]. J 

some i,j. Choose such i,j so that i<j and \j-ij is as small as possible. 

By symmetry, we may assume that dist(v.,v.)<dist(w. ,w,). As G is bipartite, 
l. J l. J 

j-i ~ dist (w. , w.) ~ dist (v. , v.) +2 ';,: 2. 
1 J l J 

Let 

( 20) (v. , <T, v . ) 
]. J 

be a shortest v. -v. -path, for some string <J. Since dist (w. , w.) ~ dist (v. , v.) +2, 
l.] J.] l.J 

it follows that 

(21) (w,,e,,v.,cr,v.,e.,w.) 
]. l. l. J J J 

is a shortest w.-w.-path. Consider the circuit 
l. J 

( 22) c.- (v.,cr,v.,f. 1 ,v. 1 , ... ,f. 1 ,v. 1 ,f.,v.). 
l. J J- J- 1+ 1+ l. ]. 

W, 2 g ' 2 W, 1 g . 1 W . J- J- -- J- J 

V. 
l. 

- - - - - - - - - - ~1')-~~~c-~..:;._~~ 

~----

e. 2 J- F. 2 J-

Fj-1 

j-1 j 

V, 2 f . 2 f , l V . 
J- J- J- J 

vj-1 I 
/ 

C is a simple circuit, i.e., no vertex occurs twice in (22), except for the 

beginning and end vertex. Indeed, all vertices in (20) are distinct, as it 

is a shortest path. Moreover, all vertices v. ,v. 1 , ... ,v. are distinct, 
l. 1 + J 

except possibly v. =v. : if v =v with i ~ P< q ~j , then dist (v / v ) =0 < 
l.J pq pq 

dist(w ,w) (since G has no parallel edges), and hence, by the minimality p q 
of j-i, q-p )-j-i; that is p=i and q=j. Suppose finally, <T = (er' ,v ,(T") for 

q 
some stringscr',cr" and i+l~q~·j-1. Then dist(v.,v )+dist(v ,v.) = 

l q q J 
dist(v,,v,) (as v is on the shortest v.-v.-path (20) ), and hence, dist(v.,v) 

l] q lJ iq 
+dist(v ,v.) = dist(v. ,v.) < dist(w,,w,) ~ dist(w.,w )+dist(w ,w.). Therefore, 

q] l.J l.J iq q] 
dist(v.,v )<'dist(w,,w) or dist(v ,v.l<dist(w ,w.), contradicting the iq· iq q] q] 
minimality of j-i. 

By Claim 2, there exist vertices v and w, either both on O or both on 

I, and a shortest v-w-path P with: 



(23) p (v,[),w.,e.,v.,f.,v. 1 ,1:,w), 
\ l. l. l. l. J.+ 

where~ and "'['are strings. Hence, also the path 

(24) p• := (v,o,w.,g.,w. 1 ,e. 1 ,v, 1 ,T:,w) 
~ l. l. i+ J.+ J.+ 

is a shortest v-w-path. Since o,r~{Fi, ..• ,Fj-l} (as l~i<j~k), we are 

in one of the following three cases. 

case 1. (v,o) and (v. ,<T,v.) have a vertex in common, say u: 
\ l. J 

(25) (v,~) = ( '<.' ' U ' ~II ) ' 

(v. ,rr,v.) = (c-' ,u,o-11 ), 
l. J 

for (possibly empty) strings ~·, (,er', d'. Then 

(26) (p',u,(o-')- 1 ,e.,w.,g.,w. 1 ,e. 1 ,v. 1 ,T,w) 
\ l. l. l. J.+ J.+ J.+ 

also would be a shortest v-w-path, since (w.,e.,~',u) is a shortest w.-u-
J. l. l. 

path (as it is part of (21)). But then 

( 27) Co',u,((r')-1,e. l'v. 1,T',w) 
\ i+ i+ 

would be an even shorter v-w-path, which is a contradiction. 

Case 2. tr, w) and (v. , CJ, v . ) have a vertex in common, say u: 
l J 

(28) (T,w) ("t' ,u,T"), 

(v. ,(J',v.) = Co-' ,u,cr'), 
l. J 

for (possibly empty) strings r', T", er' ,er". So 

is not longer than 

(30) (w.,e,,(J",u) 
l. l. 

(since (29) is part of the shortest path P'). Hence, substituting (30) by 

9 
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( 2 9 ) in ( 2 1 ) I 

( 31) (w.,g,,w. 1 ,e, 1 ,v, 1 ,-r•,u,~',v.,e.,w.) l l i+ l+ l+ J J J 

is a shortest w.-w.-path. In particular, dist(v. 1 ,v.)<(dist(w. 1 ,w.), l J l+ J l+ J 
contradicting the minimality of j-i. 

Case 3. ("t',w) = (-r',v ,e ,w ,T") for some p with i+l~p ~j-1, and certain p p p 
(possibly empty) strings T', T''. Substitution in P gives: 

(32) P = (v,p,w,,g,,w, 1 ,e. 1 ,v. 1 ,T',v ,e ,w ,T"). 
\ l l l+ i+ i+ p p p 

Since P is a shortest v-w-path, it follows that dist(v. 1 ,v )<dist(w. 1 ,w ) , l+ p l+ p 
contradicting the minimality of j-i. ..[] 

A consequence of Claim 3 is that Q will have no self-intersections: 
g 

if F.=F. with if.j, then v.=v. 1 ,w.f.w. 1 , or v. 1=v.,w. 1f.w., as one easily l J l J+ l J+ i+ J l+ J 
checks. This contradicts Claim 3. 

Next we show: 

Claim 4. Each Q connects O and I. 
g 

Proof of Claim 4. Suppose Q does not connect O and I, for some g=l, ... ,t. 
g 

Then either Q connects O with O, or connects I with I, or is a circuit. 
g 

That is, the edges in G form a cut b (X), for some X ~ V. 

I. We first show: for each v,w <;.V: for each v-w-path P there exists 

a v-w-path P' so that: 

(33) length (P') - int (P' ,Q ) ~·length (P) - int (P ,0 ) , and 
g -g 

int (P' ,Q )~ 1, 
g 

where (int( .. ,Q) denotes the number of edges in 
g in common with Q . 

g 
This is shown by induction on length(P). If int (P ,Q ) ~ 2, there exist 

g 
i,j so that P = (o,v.,e.,w,,c:r,w.,e.,v.,T) for strings o,a-,T', where <T does 

\ l l l J J J \ 
not have any edge in common with Q (we use the notation introduced before 

g 
Claim 3; maybe v,,v. and w.,w. are interchanged). Since by Claim 3, 

l] lJ <"" "' 

dist (w. , w. ) = dist (v. , v. ) , there exists a path P with length (P) ~length (P) -2 
l J l J 

N N 
and int (P, Q ) ~ int (P, Q ) -2. Applying the induction hypothesis to P, implies g g 
the statement above. 



II. Now contract all edges occurring in Q . This gives a smaller 
g 

graph G'. For the new distance function dist' in G' we have: 

(34) dist' (v,w)=dist(v,w)-1, 

dist' (v, w) =dist (v, w) > 

if X separates v and w, 

otherwise. 

To see this, it suffices to show that dist' (v,w) ~dist(v,w)-1 for all v,w 

(by the bipartiteness of G and G'). LetlT be a shortest v-w-path in G'. 

It corresponds to a v-w-path P in G with length (P) -int (P ,Q ) = length (li) • 
g 

Hence, by I above, there exists a v-w-path P' in G so that length(P') -

int(P',Q )-s;'.length(Tf) and int(P',Q) ~1. Hence, dist(v,w) ~length(P') ~ g g 
~length cm +1 = dist I (VI W) +1 • 

By induction, in G' there exist cuts ~(x 1 ) , ... ,b(Xtl) so that for 

all pairs of vertices v,w, both on O or both on I: 

(35) dist' (v,w) = \{i=l, . .. ,e j xi separates v and w}I. 

So by (34), taking X 1 1 :=X, in G we have for all such v,w: 
t+ 

(36) dist(v,w) =l{i=l, ... ,t'+1 I Xi separates v and w}l. 

As bcx1 ), ... , ~ (Xt'+l) are pairwise disjoint, G is not a counterexample to 

the theorem, contradicting our assumption. 

Our final claim will finish off the counterexample: 

Claim 5. No two distinct Q. and Q. have a face FIO,I in common. 
]._ J 

Proof of Claim 5. Suppose to the contrary 

( 3 7) Qi ( 0 I 0-, FI~) I 

Qj = co,i:·,F,r), 

l] 

for strings cr,~,T,'tand face FIO,I (i~j). We may assume that (<r,F) and 

(T,F) do not have any other face in common than F (by taking (37) so that 

<J and r have minimal length) . 

Consider the face F: e 
v 3 v 3 

(38) e:oe2 
v v 
1 e 1 2 

11 
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We may assume that e 1 is the last symbol of (T, and that e 2 is the last 

symbol of "T. By Claim 2, there exist vertices v,w, both on O or both on I, 

and a shortest v-w-path P using e 2 and e 3 : 

(39) p 

As P is a shortest v-w-path, with v,wf O or v,w eI, P has at most one 

edge in common which each of the Q (g=l, ... ,k) (by Claim 3). Since P crosses 
g 

both Qi and Qj at F, while the vertex v 2 is contained in the set of vertices 

contained in the circuit (O,c7,F,T-1 ,o), P should have also its beginning 

vertex v inside of this circuit. So v is on O, and hence also w is on O. 

Since P has exactly one edge in common with Q., it follows that P is 
1. 

homotopic (in the space obtained from the euclidean plane by deleting the 

interiors of O and I) to the v-w-path P 1 which follows the boundary of O 

and which contains the first edge of Q .. Similarly, P is homotopic to the 
l. 

v-w-path P 11 which follows the boundary of O and which contains the first 

edge of Qj. Since vis inside of the circuit (O,ff,F,"'C"-l ,O), while w is 

outside of it, P' is not homotopic to P", a contradiction. 

Claim 5 implies that there are no faces other than o and I (any other 

face would belong to two different Q. and Q.). So G is a simple circuit, 

0 

1 J 

ODO for which the theorem trivially holds. 
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