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1. INTRODUCTION 

It is an NP-complete problem to decide if in a given undirected graph 

G = (V,E), with given pairs of vertices (ports) {r 1 ,s 1~ , ... ,{rk,sk~' 

(1) there exist k pairwise edge-disjoint paths P 1 , .•. ,Pk, where Pi 

connects r. and s. (i=l, ... ,k) 
l l 

(Even, Itai and Shamir [1J ). There are however some special cases where 

good characterizations and polynomial-time algorithms have been found. 

The larger part of these good characterizations consist of the assertion 

that the following, obviously necessary, cut condition is also sufficent: 

(2) for each WfV: \6(w)I ?lcr(w)(. 

Here S(w) := {efEj \e(\wJ=l~ and CT(W) := fi[ l{ri,sJ(\wj=11. It is easy to 

see that, if G is connected, we may restrict W in (2) to subsets W for 

which both W and V\W induce a connected subgraph of G. 

Many of these results are restricted to the case where the following 

parity condition holds: 

(3) for each vertex v of G: J8<{v\l\+\o-<{v}l\ is even. 

In one stream of research the given ports are restricted to certain 

configurations. This stream has begun with the work of Menger [ b] and Hu 

[-3 J , and has culminated in the work of Papernov [9] and Seymour [11] 
Papernov showed that for any given set of pairs {r 1 ,s 1~, ... ,{rk,sk~ the 

following two statements are equivalent: 

r 7 
(4) foreachgraph G=(V,E) with V~l_r 1 ,s 1 , ... ,rk,SkJ' the cut condition 

(2) and the parity condition (3) imply (1). 

(5) the graph H := <{r 1 ,s1 , ... ,rk,sk~' {{r 1 ,s 1~, ... ,{rk,skH) has at 

most 4 vertices, or is a 5-circuit (possibly with multiple edges), 

or contains two vertices v',v" so that {ri,si} f\{v',v"~ :/-(/;for 

i=1, ... ,k. 

Condition (5) is equivalent to the graph H not having any of the following 

two graphs as a subgraph: 
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O·--~o 

0---<0 0----<0 

Papernov's theorem 

G=(V,E) is a graph with 
E 

implies that if {r 1 ,s 1~, ... ,{rk,skt satisfies 

v;;:{r 1 ,s 1 , ... ,rk,sk~' then for any 'capacity' 
k 

(5) and 

function 

c € z;: + and any 'demand' function d ~ZZ +, the following are equivalent: 

(6) 
1 tl 1 t2 tk j 

there exist paths P 1 , ... ,P 1 ,P2 , •.. ,P 2 , ... ,Pk (where each Pi 

connects r. and s., for i=l, ..• ,k,j=l, ..• ,t.) and rational numbers 
\1 \t l. 1 l., t \t l. 

A1 , ... , 1\ 1 , A2 , •.. , /\2 2 , ... ,J\k k 1: 0 so that: 

\lt· A. 
(i) lJ .1 1 ~ =d. 

J= l. l. 
( i= 1 f • • • / k) t 

2k ~t. . 
(ii) \ 6 l. \ l. ~ 

i=l j=1 !\j ·~ ce (e € E) • 

eEPj 
i 

('1.) for each w s:;:v: c ( 6(W)) ';t d (cr(W)) • 

(Here c(F) :=beEF ce for F £E and d(J) := Tijt::J dj for J ~{1, ... ,k}. It is 

not difficult to see that (6) always implies (7).) In fact, from Papernov's 

result follows that if (5) and (7) are satisfied, then we can tak~ each A~ 
J 

equal to ~ in (6) (as follows by replacing each edge e of G by 2c parallel 
e 

edges, and each port {r.,s.1 by 2d. parallel ports). 
l. 13 J. 

The assertion: 

(8) 

is equivalent to the assertion that the cone C f.JRk x JRE generated by the 

vectors: 

(9) 

(where £. 
l. 

vector of 

(i=1, ... ,k; P r.-s.-path), 
l. 1 

(e cE) 

denotes the i-th unit basis vector in JRk, xp denotes the incidence 
E . E) . P in JR and [ denotes the e-th unit basis vector in JR , is 

e 
determined by the following system of linear inequalities in the vector 

variable (c;d) € JRk)<JRE: 
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(10) d.~ 0 
1 

ce ~ 0 

c ( 8(W) ) -d (o-(W))) 0 

( i= 1 I • • • I k) I 

(e e E), 

(W ~V). 

Hence, by polarity (interchanging the roles of generators and constraints) , 

assertion (8) is equivalent to the assertion that the cone generated by the 

vectors: 

(11) (- f(W); x~(W)) 
(f.; 0) 

1 

(O; €' ) 
e 

(W ~V) I 

( i= 1 I • • • I k) I 

(e € E) , 

is determined by the following system of linear inequalities in the vector 

variable (m;.f.) €:1Rk "f. :IRE: 

(12) m. + ~ £ ~o 
1 eEP e 

t ~o e 

(i=l, ••. ,k; P r.-s.-path), 
1 1 

(e t:E). 

Hence (8) is equivalent to: 

(13) for any 'length' function l:E~2Z+ there exist w1 , ••• ,wt ~v and 

r 1 I • • • I ~t ~ 0 SO that: 

(i) 

(ii) 

for each i=l, ••. ,k: the minimum length of any 

at. most 2(~j I j=l, .•• ,t; i€<:r(Wj)); 

for each e € E: ·l ~ ~ ( IJ. I j = 1 , .•• , t; e E. 6 ( W . ) ) 
e IJ J 

r.-s.-path is 
i 1 

(this can be seen by taking m. :=-(minimum length of any r.-s.-path) in (12)). 
1 i i 

Karzanov [Lt] showed that if (5) holds, then we can take all f i equal 

to~ in (11). In fact, he showed that (5) is equivalent to: 

(14) if G=(V,E) is bipartite and V.2 fr 1 ,s 1 , ... ,rk,sk·\, then there exist 

w1, ..• ,wt ~v so that: 

(i) for each i=l, ••• ,k: the minimum number of edges in any r.-s.-
1 i 

path is at most l{j=l, ••. ,t \ i€0-(Wj)11; 

(ii) the cuts ~(W 1 ) , ... ,d(Wt) are pairwise edge-disjoint. 

(13) now follows by replacing each edge e by a path of length 2~ • Bipartite­
e 

ness in (14) is 'dual' to the parity condition (3). 
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A second stream of research restricts G to planar graphs. First, Okamura 

and Seymour [8] showed that the cut condition (2) and the parity condition 

(3) imply (1) if: 

(15) G is planar, and all r 1 ,s 1 , ..• ,rk,sk are vertices on the boundary 

of G. 

Okamura[~] extended this result by relaxing (15) to: 

(16) G is planar, and there exist faces I and O (= outer face, without 

loss of generality) so that for each i=l, ... ,k: r. , s. ~I or 
l. l. 

(17) 

r.,s.£0. 
l. l. 

Seymour [12] showed that (2) and (3) imply (1) if: 

is planar. 

In Oberwolfach the following extension of the Okamura-Seymour theorem, 

due to Van Hoesel and Schrijver [.:6] , conjectured by Kurt Mehlhorn, was 

presented: 

(18) Let G=(V,E) be a planar graph. Let O and I be the outer and some 

other fixed face. Let c1 , ••• ,Ck be curves in JR2 \(Iv O), with 

end points being vertices on I vo, so that for each vertex v of G 

the degree of v in G has the same parity as the number of curves 

Ci beginning or ending in v (counting a curve beginning and ending 

in v for two). Then there exist pairwise edge-disjoint paths P1 , 

... ,Pk in G so that Pi is homotopic to Ci in the space JR2 "'\ (Iv' 0) 

for i==l, ... ,k, if and only if for each path Qin the dual graph 

of G from I or 0 to I or O, the number of edges in Q is not smaller 

than the number of times Q necessarily intersects the curves c .. 
l. 

With this last number we mean z~==l (min{\D(\Q\\o homotopic to cJ). Mehlhorn's 

conjecture was motivated by work on grid graphs (cf. [5]), related to the 

problem of the automatic design of integrated circuits. It is not difficult 

to see that (18) implies the Okamura-Seymour theorem. 

In this contribution to the Proceedings, we discuss some problems, 

observations and results related to the above, which were inspired by 

discussions we had in Oberwolfach. 
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2. DISTANCE FUNCTIONS IN PLANAR GRAPHS. 

Similarly as ·(13) (under the condition (5)) follows from Papernov's 

theorem, by considering cones one can derive the following from the Okamura­

Seymour theorem: Let G=(V,E) be a planar graph, and let /:E-~'ZZ, be a 'length' 
+ 

function. Then there exist subsets w1, ... ,Wt of V and fi•···rft ~O so that: 

( 19) (i) 

(ii) 

for each pair v' ,v" of vertices on the boundary of G the 

minimum length of any v'-v"-path is at most LJ(rj jj=1, ..• ,t; 

j{v' ,v"j /\W.( =1); 
J " for each e EE: ~ (e) ~l( rj 

In fact, we can take each ~j equal to ~, as follows from the following theoren 

Theorem 1. Let G=(V,E) b~ a planar bipartite graph. Then there exist subsets 

w1 , ••• ,Wt of V so that for each pair v' ,v" of vertices on the boundary of G, 

the minimum number of edges in any v'-v"-path is equal to the number of 

j=l, ... ,t with !{v' ,v"1 t'\Wj \=1 and so that the cuts b(wj) are pairwise 

edge-disjoint. 

We show how this theorem can be derived from the Okamura-Seymour theorem. 

First, let C=(V,E) be a circuit with k vertices and k edges: 

(20) V = {v1, ... ,vk~' 

E = fe1={vo,v1\, ... ,ek={vk-l'vk~·1, 

where v0=vk. Let (~) and (~) denote the set of undirected pairs of elements 
V E 

from V and E, respectively. Let M be the (2 ) X (2 ) matrix given by: 

(21) M{ 1 { } = 1 if {vi. ,vJ.~ and {eg,eh~ "cross"; 
vi,vjj' eg,eh 

0 otherwise, 

where {vi,vj1 

components of 
E V with ( 2 ) 'f.. ( 2 ) 

(22) 

and {eg,eh1 are said to cross if 

the graph C '-{ eg,eh~· The matrix 

inverse N given by: 

v. and v. belong to different 
l J 

M can be shown to be nonsingula 

= +~ if {vi,vjl={vg,vh~ or {vi,vj}={vg-l 'vh_1}, 

=-~if {vi,vj·~={vg,vh-l~ or fvi,vj1=£vg_ 1 ,v~1· 
= 0 otherwise. 
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Proposition. N 
-1 = M • 

( 23) 

If {g,h} = f a,b} then it is easy to see that this last expression is equal 

to 1. If fg,h~ ~ [a,b}, then without loss of generality g~{a,b}. Then 

(24) and 

which implies that (23) is a. [] 

~t can be shown that JdetM\ 

(k-1) 

2 2 • J 
Proof of Theorem 1. Without loss of generality, G is 2-connected. Let v 1 , ... ,vk 

be the vertices on the boundary of G, and let e 1={v0 ,v11, ... ,ek={~k-l'vk\ be 

the edges on the boundary of G (where v 0 := vk) . Let M and N be the matrices as 

above with respect to the circuit (W:={v1 , ..• ,vk~'F:={e 1 , •.. ,ek~). Let 

m: (~) ~ ?l+ be defined by: m<{vi,vj}> := minimum number of edges in any vi-vj­

path. Let d:=Nm. Since G is planar and bipartite, Nm is a nonnegative integer 

vector. In fact, for each g=l, .•• ,k: 

(25) m{ -~ = 1, v 1·,v 
g- g 

as easily follows from the definition of N (or from Md=m). 

Now let G°* be the (planar) dual graph of G. Put a new vertex w on every 
g 

edge e* of G* corresponding to edge e of G, and next delete the vertex of G~ 
g g 

corresponding to the unbounded face, together with all edges incident with it. 

Call the graph thus obtained H. 

By (25), the collection {[wg,wh~ld{eg,eh1 =1} 

these pairs be the ports for H. Since each w has 
g 

condition (3) is satisfied. Also the cut condition 

partitions {w1 , •.. ,wk~· Let 

degree 1 ~n H, the parity 

(2) is satisfied. Indeed, 

let z be a subset of the vertex set Y of H so that both Z and Y\Z induce a 
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connected subgraph of H. We may assume that there exist g and h so that 

wg+l'wh(:SZ and wg,wh+l f:z. Then 

(26) 

So the cut condition is satisfied. 

Hence, by the Okamura-Seymour theorem, there exist pairwise edge-disjoint 

paths Q1 , ... ,Q~k in H connecting the ports. In G this gives pairwise edge­

disjoint cuts 6'(W 1), ... ,o\W~k) so that for any g,h, ifdfeg,eh\ =1, then 

e , eh (:; 6 (W.) for some j. Hence for all i, j: 
g J 

(27) 

The above reasoning also implies that for any planar bipartite graph G 

there is a unique partitioning of the edges on the boundary C into pairs 

111 , ... ;1\k of edges so that for any two vertices v' , v" on the boundary of G, 

the distance from v' to v" in G is equal to the number of pairs lT. which 
J 

cross (i.e. separate) v' and v" on C. 

Another application of the Proposition above as follows. Let C=(V,E) 

satisfying ( 19) be a circuit. Call a function m: (~) ~JR+ realizable as a 

distance function of a planar graph with boundary C, or briefly realizable, 

if there exists a planar graph G=(V',E'), with V'.::::>V, E'..2E and with boundary 

C, and a length function f. :E ~JR+ so that for all v' ,v" € V, m ({ v' ,v'}) is 

equal to the minimum length of any v'-v"-path in G. 

Theorem 2. A function m: (~)~JR+ is realizable, if and only if for all 

i,j=l, ... ,k we have m({vi,vj~)+m({vi-l'vj-l·~) ~ m({vi,vj_ 1}l+m<{vi-l'vj}) 

(taking m<{v J) :=m ({ v j}) :=O). 

Proof. Necessity being trivial, we show sufficiency. We construct a graph 

Gas follows. Let w1 , ... ,wk=w0 be points on the unit circle (in the cyclic 

order given). Add all line-segments wgwh (g,h=1, ... ,k;gfh). Let W be the 

set of points which are on two or more of these line-segments. Clearly, the 

figure now forms a planar graph H, with vertex set W. Let H*be the dual 

graph. Put a new point v. on the edge of H* corresponding to edge w.w. 1 l l i+ 
of H (i=O, ... ,k-1), delete the vertex of H* corresponding to the outer face 

of H, and delete all edges incident to it. Moreover, add edges e 1={v0 ,v11, 
... ,ek={vk-l'vks (where vk:=v0). This makes the graph G=(V' ,E'). 
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The condition in the theorem states that d := Nm~O. For each edge 

e of G define 1-Ce) := d({e ,eh~) if e corresponds to an edge in H which is 
-- g 

on the line-segment wgwh, while ..€,(e) := Oo (or big enough, or m({vi_1 ,vJ)) 

if e=e.=fv. 1 ,v.1- for some i. 
l. 1.- l.~ 

It is easy to see (using the fact that Md=m) that this gives a realization 

as required. 0 

3. TWO COUNTEREXAMPLES. 

In Okamura's theorem (cf. (16)) we generally cannot accept 'mixed' ports, 

i.e. ports { r i, s il with r i € 0 and s i €I, as is shown by the following example 

of Okamura: 

3,4 

In this example (denoting r. and s. just by i), the cut condition (2) and the 
l. l. 

parity condition (3) are satisfied, but there are no paths as required, 

since each r.-s.-path has at least two edges, while there are six edges in 
l. l. 

total. 

This last argument shows that there exists not even a 'fractional' 

solution, in the .sense of (6) (taking c = 1, d = 1). Andras Frank asked 

whether the existence of such a fractional solution might imply the existence 

of paths as required. A negative answer is provided by the following example: 

1.5 1',5' 2',6" 2,6 
o---_.;.------o:~-----------o 

3,6 2" ,6 1 1", 5" 3 I ,4 1 

1' 
6' 

3 I ,4 11 3" ,4' 

2 I ,8 1 
/ 3" ,4" 

---'-----....c:J 1 I 7 11 

4,7 I , 

2,8 1 11 I 7 I 1,7 
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Note that the parity condition is satisfied. For each i=l, ... ,8, the two 

paths indicated by i' and i" are i-i-paths. Each edge is in exactly two of 

these paths. So this yields a fractional solution in the sense of (7) (with 

all A~ equal to~). However, there is no integer solution, i.e., (1) is 
J 

not fulfilled. For suppose P 1 , ... ,P8 are pairwise edge-disjoint paths, with 

P. connecting r. and s. (i=l, ... ,8). Clearly, IP·l·~4 for i=l,2, and j1 P ... ~2 
l l l l l' 

for i=3, ... ,8. Moreover, (P 1( + ... +\P8 \~20, since there are 20 edges. Hence 

jP3 j=\P4 \=2. But there is obviously no pair of edge-disjoint r 3-s 3-path and 

r 4-s4-path both of length 2. 

Also the second example answers a question of Andras Frank, concerning 

a directed analogue of Seymour's theorem (cf. (17)). Consider the following 

directed graph: 

' / 

5" 
--~--

4' ,6' 

It is easy to see that there are no pairwise arc-disjoint directed paths P 1 , 

... ,P6 so that P. is an r.-s.-path (i=l, ... ,6). Note that in each vertex v, 
l J_ l 

indegree(v)+({i [ si=v}\ = outdegree(v)+I {i 1 ri=v}j (the analogue of the 

parity condition). There exists a 'fractional' solution: for i=1, ... ,6, the 

paths indicated by i' and i" form two r.-s.-paths, while each arc is in 
J_ l 

exactly two of these paths (it follows that the directed analogue of the 

cut condition is satisfied). 

4. SOME FURTHER NOTES 

We mention some questions. Is there a common gene~alization of the 

Okamura and the Van Hoesel-Schrijver theorem (cf. (16) and (18))? Or can one 
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derived from the other? Note that in order to derive the Okamura theorem 

from (18) it suffices to show that, given the input of the Okamura theorem, 

one can specify curves connecting r. and s. (i=l, •.. ,k) in JR2 '\. (I UO) so 
l. 1 

that the condition mentioned in (18) is satisfied. We do not see a direct 

way (i.e., one not using the Okamura theorem itself) to derive this. 

Can Theorem 1 be extended to the case where we also allow that both 

v' and v" belong to some other fixed face I? This would correspond to the 

Okamura theorem, in the same way as Theorem 1 corresponds to the Okamura­

Seymour theorem. A similar question can be asked with respect to Seymour's 

theorem ( cf. ( 1 7)) . 

The Van Hoesel-Schrijver theorem (18) cannot be extended in the obvious 

way to the case where there are more 'holes', as is shown by the following 

example: 

1 1 r 2 I 

Here the "dual curve condition" given in (18) is satisfied, but there are 

no edge-disjoint paths P1 and P2 , where Pi is homotopic to Ci in the space 
2 

JR (OvI 1uI 2). However, there is a 'fractional' solution, by taking each of 

the paths 1' ,1",2' ,2" with multiplicity~. In Oberwolfach, Professor Crispin 

Nash-Williams asked whether the dual curve condition implies the existence 

of a fractional solution (in any planar graph with any number of holes). This 

question can be answered affirmatively, as will be shown in a forthcoming 

paper [10]. 

Acknowledgements. We thank Andras Frank and Bert Gerards for very helpful 
discussions. 
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