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A Holistic Approach to Forecasting Wholesale
Energy Market Prices

Ana Radovanovic, Tommaso Nesti, and Bokan Chen.

Abstract—Electricity market price predictions enable
energy market participants to shape their consumption or
supply while meeting their economic and environmental
objectives. By utilizing the basic properties of the supply-
demand matching process performed by grid operators, we
develop a method to recover energy market’s structure and
predict the resulting nodal prices as a function of gener-
ation mix and system load on the grid. Our methodology
uses the latest advancements in compressed sensing and
statistics to cope with the high-dimensional and sparse
power grid topologies, underlying physical laws, as well
as scarce, public market data. Rigorous validations using
Southwest Power Pool (SPP) market data demonstrate
significantly higher accuracy of the proposed approach
when compared to the state-of-the-art industry benchmark.

Index Terms—Locational Marginal Price (LMP), elec-
tricity price forecast, wholesale energy markets, statistical
learning, big data, compressed sensing.

I. INTRODUCTION

Development of distributed energy resource (DER)
technologies enabled the owners of controllable energy
assets to shape their wholesale market participation
responsively and in a coordinated manner [1], [2]. To
address the environmental and operational challenges,
besides making the clean energy generation available and
cheap, the question remains whether wholesale market
prices could be inferred from the supply/demand mix on
the grid and, then, used to create a feedback for ”shaping”
energy asset’s production or consumption. In this paper
we provide an affirmative response to this inquiry.

Power networks are defined by transmission lines that
transport power from generators to loads. Generators
and loads are connected to buses, which are commonly
referred to as nodes of a power network. Following [3],
many wholesale power markets in the US (CAISO,
MISO, SPP, PJM, ISO New England, NYISO) adopted
the concept of Locational Marginal Prices (LMPs) as
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electricity prices at network (grid) nodes. The LMP at a
specific node is defined as the marginal cost of supplying
the next increment of load at that node, consistent with
all power grid operating constraints. Even though the
energy marketplace is organized differently on different
continents, there is a global tendency to adopt the LMP
approach. Various forms of such markets already exist in
Singapore, New Zealand, Argentina (see a global market
overview in [4]). On the other hand, European markets are
zonal mainly due to the high connectivity of the European
grid, where the intra-zonal congestions are managed using
different, inefficient intra-zonal mechanisms, with a lot
of ongoing discussion to move to nodal marginal pricing
[5], [6]. In this paper, we introduce a methodology for
predicting LMPs.

LMP markets are divided into day-ahead (DA) and real-
time (RT, sometimes referred to as intra-day) markets. In
a DA market, participants submit bids/offers to buy/sell
energy. The Independent System Operator (ISO) then
runs the Optimal Power Flow (OPF, [7]) program to
derive DA LMPs for each grid’s node. The OPF is
an optimization problem that determines the generation
schedule that minimizes the total system generation cost
while satisfying demand/supply balance and network
physical constraints [8]. Since DA scheduled supply may
not meet real-time demand, ISOs also calculate RT LMPs
every five minutes.

Our methodology is based on statistical learning
techniques that take advantage of the sparsity properties
induced by the nature of real grid topologies, underlying
physical laws and the resulting OPF solution structure.
The emerging field of statistical learning with sparsity [9]
aims to utilize sparsity to help recover the underlying
signal in a large set of data. Successful applications of
sparse machine learning techniques include image/video
processing [10], [11], pattern classification [12], face
recognition [13], and customers preference learning [14].
In this paper, using the recent advancements in com-
pressed sensing [15] and convex optimization [16], we
utilize the OPF problem structure to infer the unknown
grid topology, transmission line congestion regimes, and
the resulting nodal prices as functions of grid-level
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generation mix and load.
Applying the proposed methodology on SPP market

data shows a significant improvement in prediction
accuracy when compared to the state-of-art industry
benchmark (Genscape [17]). Note that the proposed
methodology assumes a decentralized, market participant-
centric perspective, making it fully scalable. To the best
of our knowledge, this is the first study that holistically
incorporates the structural properties of the grid-level
supply-demand matching (OPF), statistical inference and
validation using the publicly available market data.

In the following two subsections we outline the basics
of the power grid modeling, a version of the OPF
formulation with its solution structure, as well as the
key references in the domain.

A. Power grid model and the wholesale energy prices

The power grid is commonly modeled as a connected
graph G = G(N ,L), where the set of nodes N represents
n buses in the system and the set of edges L model m
transmission lines. We use g,d ∈ Rn to denote the
generation and demand vectors; use Ci(·) to denote the
cost function of generation at node i, which is typically
modeled as an increasing quadratic function; and use
g, ḡ ∈ Rn and f , f̄ ∈ Rm to denote the vectors of
generation and transmission capacity limits. Then the
OPF can be formulated as the following optimization
problem:

min
g

n∑
i=1

Ci(gi) (1)

s.t. 1T (g − d) = 0, : λ (2)

g ≤ g ≤ ḡ, : τ−, τ+ (3)

f ≤ T(g − d) ≤ f̄ , : µ−,µ+, (4)

where matrix T ∈ Rm×n, known as the Power Transfer
Distribution Factors matrix (PTDF), is used to map
nodal generation and demand to active power flows over
transmission lines under the widely used assumption of
the direct current approximation [18]. The operators ≤
and ≥ are understood entry-wise. Following the notation
and derivation in [19], the PTDF matrix can be written
as

T = [0 DAB−1], (5)

where matrices D,A,B describe topological and physical
properties of the grid. In particular, A ∈ Rm×(n−1) is
the sub-matrix of the edge-node incidence matrix Ã
of G obtained by deleting the first column, while B ∈
R(n−1)×(n−1) is the sub-matrix of the weighted Laplacian
matrix of G obtained by deleting the first row and the

first column. Finally, D ∈ Rm×m is a diagonal matrix
with D`` = x−1` , with x` > 0 denoting the reactance of
line ` ∈ L. The reduced dimension from n to n−1 stems
from the nullity of the connected grid graph, i.e. Ã1 = 0.
In order to ensure the uniqueness of the optimal solution,
without loss of generality, we remove from consideration
the node corresponding to the first column, which is
selected as the reference bus. In view of the definitions
above, matrix A is a full-column rank matrix, and B is
strictly positive definite with non-positive off-diagonal
entries. The scalar λ and the vectors τ+, τ−,µ+,µ− are
the Lagrange multipliers of the corresponding equations.
For more detailed derivation and discussion, an interested
reader is referred to [19].

Potential generalizations of the optimization formu-
lation above would involve additional operational con-
straints, such as ramping up/down constraints, power
factor constraints, as well as treatments of the reac-
tive power transfer and voltage variation bounds [20].
However, in this paper we show that, by utilizing the
basic approximation in (1), we are able to capture the
market structure and the dominant drivers of its dynamics.
In addition, the recent advancements in power system
technologies and changing regulations (e.g. [21]) will
make the impact of reactive power transfer and the related
voltage variations less exaggerated, and the DC-OPF
approximation even more accurate.

LMPs are the shadow prices of the real power balance
constraints of OPF [22]. More formally, they can be
represented as

LMP =
∂L
∂d

= λ1 + T>µ, (6)

where ∂L
∂d denotes the partial derivative of the Lagrangian

function of the OPF evaluated at the optimal solution,
and µ = µ− − µ+. The entries of µ corresponding to
uncongested lines (f

`
< f` < f̄`) are equal to zero,

while the components corresponding to congested lines
are different than zero (in particular, µ+

` > 0 iff f` =
f̄` and µ−` < 0 iff f` = f

`
). As a consequence, if

there are no congested lines, all LMPs are equal, i.e.
LMPi = λ, ∀i ∈ N , and the common value λ in (6)
is called the marginal energy component (MEC). The
energy component reflects the marginal cost of energy
at the reference bus. On the other hand, if some lines
are congested, we have µ 6= 0 and, thus, the LMPs
are different (see Figure 1); we call the second term
π̃ = T>µ in (6) the marginal congestion component
(MCC); in particular, π̃i reflects the marginal cost of
congestion at bus i relative to the reference bus.

When ISOs calculate LMPs, they also include the loss
component, which is related to the heat dissipated on
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transmission lines, and is typically negligible compared
to the other price components [23]. For this reason, we
omit it from consideration in this paper, and end up with
the marginal energy LMP component (same across all
grid nodes) and marginal congestion LMP component as
defined in the previous paragraph and expression (6).

If we recall the definition in (5), the marginal conges-
tion price vector (excluding the reference bus) can be
presented as

π = B−1ATDµ = B−1s ∈ Rn−1, (7)

with s = ATDµ. s contains the information on the con-
gested lines since s =

∑m
`=1 µ`x

−1
` a`, where a` ∈ Rn−1

is the `-th column of AT . Thus, by stacking historical
π, s for T different time intervals as columns of the
matrices Π,S ∈ R(n−1)×T , we can rewrite (7) in matrix
form as

Π = B−1S. (8)

In Section IV, we use the previous relationship and
the properties of matrices B and S to recover diverse
congestion regimes that occur in a grid.

Fig. 1: Real-time market price for randomly selected SPP
nodes.

B. Related literature

The previously published work in the same domain
can be split based on whether it takes an operator-
centric or a participant-centric point of view. In the
former case, the full knowledge of supply bids, grid
topology, and physical properties of the network allow
for the explicit computation of nodal LMPs as dual
variables of the corresponding OPF optimization. The
relevant papers mostly study the impact of uncertainty
in total grid load or renewable generation on the re-
sulting prices, while relying on the fact that changes
in LMP regimes happen at the so called critical load

levels [24]–[28], whose number exponentially grows
with the size of a grid, making the proposed approaches
intractable for use in practice. The market participant-
centric point of view has been much less addressed in
the existing literature. [29] utilizes the structure of the
OPF formulation to infer states of transmission lines
using only the zonal load levels (no generation saturation
is considered). Through the so called System Pattern
Regions (SPR), zonal prices are obtained by learning
the map between the zonal load and the corresponding
zonal price, which introduces a large forecasting error.
On the other hand, [30] presents a data-driven approach
that exploits structural characteristics by learning nodal
prices as a function of nodal loads using support vector
machines (SVMs), for a synthetically generated, small
grid example. In [31], the authors proposed an inverse
optimization approach to estimate the parameters in the
OPF, by assuming full knowledge of supply bids, nodal
generation and prices, and then obtain price prediction
by solving the OPF with new supply and demand data.
Compared to the aforementioned approaches, our methods
are more scalable. By adding consideration of generation
mix, which strongly influences the market price, we are
also able to produce nodal price forecasts that are more
accurate than the industry benchmark, while only using
publicly available data.

II. ENERGY MARKET STRUCTURE

As Subsection I-A suggests, the nodal wholesale prices
are functions of nodal demand and generation. Here,
we state the key results from [29], [30], [32] which
formalize the market structure using pricing regimes,
represented via a vector of flags which indicate the
marginal status of generators and congestion status of
transmission lines at optimality. Our approach, discussed
in Section IV, utilizes these theoretical concepts and
parametrizes pricing regimes by a vector of publicly
available grid-level generation mix and regional load
(called system load) data.

For convenience, we reformulate the OPF problem
defined by equations (1) - (4) as:

min
g

JT1 g +
1

2
gTJ2g s.t. Ag ≤ b + Eθ, (9)

where g are the optimization variables denoting the nodal
generation, θ = [d ḡ]T is a vector of nodal loads and
generation capacities, and J1 ∈ Rn,J2 ∈ Rn×n define
the linear and quadratic costs of generation, respectively.
Similarly as in [32], here, we consider generation that has
variable and fixed costs of production, but faces no startup,
shutdown, no-load costs, or ramping constraints. Note
that the linear and quadratic cost functions, as well as
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the corresponding generation production range, constitute
generators’ bids. We assume that J2 is diagonal positive
definite. The matrices A,E and the vector b are given
below:

A =


1T

−1T

T
−T

I
−I

 , b =


0
0
f̄
f
0
−g

 , E =


1T 0T

−1T 0T

T 0
−T 0

0 I
0 0

 ,

θ =

[
d
ḡ.

]
(10)

As discussed in [32], the feasible region of the
optimization problem in (9) is convex, compact and
polyhedral, thus a polytope. Its facets correspond to the
so called pricing regimes uniquely defined by the set of
marginal generators and congested transmission lines. To
that end, if J denote the index set of constraints of (9),
we define

B(θ) = {i ∈ J |Aig∗ = b + Eiθ}
B{(θ) = {i ∈ J |Aig∗ < b + Eiθ}

The set B corresponds to binding (active) constraints,
while B{ correspond to non-binding constraints. Clearly,
B ∩ B{ = ∅ and B ∪ B{ = J . We identify the pricing
regime with the corresponding set of binding constraints
B. Following [29] (Proposition 1), and the derivation in
Section III of [32], we have the following results, which
constitute the theoretical foundations of the methodology
presented in this paper:

Theorem II.1. Assume that the OPF problem (9) is non-
degenerate 1. Then:

1) Its feasible region can be uniquely partitioned into
disjoint open convex polytopes uniquely defined by
B;

2) Within each pricing regime B, the optimal gener-
ation g∗ and the associated vector of LMPs, (6),
are uniquely defined affine functions of d and g∗.
Overall, the vector of LMPs over the whole feasible
region is a continuous, piecewise affine function of
nodal demand d and optimal generation vectors
g∗.

III. INPUT MARKET DATA

The publicly available market data depends on the
specific market and commonly includes historical grid-
level generation mix, regional (system) load, and nodal

1See section 4.1.1 in [33] for the definition

LMPs. In case of the SPP market, historical generation
mix is recorded at 5 minute time granularity and equals
to the total average power produced across different types
of generation (coal, natural gas, wind, solar, nuclear, etc.).
System load mix comprises of regionally aggregated av-
erage demand values recorded at hourly time granularity,
with 16 different load zones (see Figure 2).

Fig. 2: Grid level supply and demand: system load (top),
generation mix (bottom).

In addition to the grid level mix and the regional load
data, operators release the corresponding real-time nodal
prices at 5 min time granularity. For the purpose of
training and validation, in this paper we use six months
of SPP data, from June to November of 2017, with 929
nodes, where we exclude a few new nodal connections
with limited price history. To facilitate the analysis, we
scale the available generation and load data, and refer to
the scaled data as M-vectors defined as follows.

Definition III.1. At any real-time interval t, M(t)
refers to the vector of concatenated normalized
generation mix, normalized system load, and scaled
total demand, i.e., where the normalized generation
of type γ equals to

∑
i∈Sγ gi(t)/

∑
γ

∑
i∈Sγ gi(t)

(Sγ being equal to the set of generators of type
γ), system load λ’s normalized demand equals to∑
i∈Sλ di(t)/

∑
λ

∑
i∈Sλ di(t) (Sλ being equal to the

set of load nodes belonging to the system load λ), and
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the scaled total load entry of the M(t) vector equals
to

∑
λ

∑
i∈Sλ di(t)/Averaget∈I [

∑
λ

∑
i∈Sλ di(t)]

(Averaget∈I is used to denote the sample average of
the total, grid level, demand across all available time
instances I).

Even though M-vectors are time-indexed, for the
reasons of simplicity, in the rest of the paper we omit
time index when referring to M(t).

IV. NEW PRICE PREDICTION METHODOLOGY

In this section we propose our price prediction
methodology that assumes no information on generators’
placement, capacities and pricing curves, as well as grid
topology, line capacities and load distribution across its
nodes. We reconstruct the pricing regimes (defined in
Section II) by first recovering its structure (Subsections
IV-A, IV-B, and IV-C) and, then, utilizing the assumption
that system loads and generators of the same type
change synchronously within the same M-regime (see
Subsection IV-D). A summary of the methodology is in
Figure 3.

The following conjectures are validated using the
historical SPP data.

Conjecture IV.1. (i) M-vectors can be classified into a
small number of regimes (4 in the case of SPP market),
to be referred to as M-regimes (Subsection IV-A). (ii)
Blind matrix recovery consistently (in time) reveals the
same grid topology and congestion regimes, where each
M-regime commonly corresponds to a single dominant
congestion regime (Subsections IV-B and IV-C).

The discussion in Section II provides theoretical
concepts for piecewise linear relationships between LMPs
and pricing regimes that are uniquely defined by nodal
demands and dispatched generation. In order to relate
nodal generation and load to the corresponding grid and
region level quantities within each M-regime, we make
the following assumption.

Assumption IV.1. Within eachM-regime, all generators
of the same type (e.g., wind, natural gas, etc.) preserve
their production fraction with respect to the total grid
level generation of the same type. Similarly, all load
within the same geographic region preserves the same
consumption ratio when compared to the total load in
the region.

Intuitively, Assumption IV.1 treats a grid-level increase
in, for example, wind supply, proportionally equal across
all wind plants on the specific grid. Note that the constant
ratio, in general, changes from one M-regime to another
within a day. This assumption enables us to extend the

piecewise affinity in Theorem II.1, and parametrize the
pricing regimes using M-vectors. Note that it cannot be
validated given that the local, nodal, load and generation
data is not available. However, it enables us to utilize the
piecewise affinity and continuity across disjoint convex
polytopes to efficiently fit the Multivariate Adaptive
Regression Splines (MARS) models [34], [35] and
recover nodal LMP vector as a function of M-vectors.

Assign MIX 
“regime”

R = R(MIX)

Fit piecewise 
linear model 
using MARS

MIX R
Predicted 

prices

PCA-based
MIX 

classification

Blind topology
and 

congestion 
recovery 

 

Congestion 
prediction  

 

Topology 
recovery  

 

Fig. 3: Price prediction pipeline.

Next, we separately describe each of the modeling
components and our approach in validating them.

A. Clustering into M regimes

We classify M-vectors by first applying Principal
Component Analysis (PCA, [36]) using the time indexed
M-vectors as defined earlier. Then, we perform k-means
clustering [37] using the obtained lower dimensional M
representations, where, by applying the fairly standard
elbow method, we end up with 4 M-regimes. The PCA
revealed that only 4 dominant principal components
explain 98% of its variance (see Figure 4). Interestingly,
the same property is preserved across different time
horizons.

B. Topology recovery

Using the structural properties discussed in Subsection
I-A, we perform the blind matrix factorization to recover
the congestion matrix S. B and S enjoy the following
structural properties: (i) B is a positive definite M-matrix
and is sparse, and (ii) S is sparse and low-rank. The
sparsity of B follows from the fact that the graph
underlying a power grid is usually weakly connected
(mainly holds for grids in the USA, [38]). The fact the
S is sparse and low-rank follows from its definition (7)
and the fact that almost always only a very small subset
of transmission lines gets congested.
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Fig. 4: Generation mix corresponding to the centroids
of the PCA-based clusters (top), and explained ratio by
the first four principal components (bottom). NG in the
legend (top) is used to refer to Natural Gas.

We use the approach in [19] where matrices B and S
are obtained by solving the following convex relaxation

min
B,S

‖S‖1 + κ1tr(PB)− κ2 log |B|

s.t. BΠ = S, B ∈ C,
(11)

with P = I−11T , C := {B : B � 0, B ≤ I}, κ1, κ2 ≥
0, and B � 0 denoting a positive semidefinite matrix.
The ≤ operator is understood entry-wise. Given that the
previous semidefinite program is hard to solve for large
grids (order of ∼ 1000x nodes), we utilize the Alternating
Direction Methods of Multipliers (ADMM, [39]) to
solve the program iteratively. Following [19], we first
replace B with three copies B(1),B(2),B(3), yielding
an equivalent formulation of (11), and then define the
matrices M12,M13,M to be the Lagrange multipliers
corresponding to the equality constraints of this new
formulation.

Every iteration of the ADMM consists of three steps,
during which the variables and Lagrange multipliers are
updated by solving appropriate optimization problems,
which are expressed in terms of the solutions computed at
the previous steps and iterations. Leveraging the existence
of closed form solutions for these optimization problems,
the ith iteration of the ADMM reads:

B(1),i+1 = (B(2),i −Mi
12 + B(3),i −Mi

13+

(S−M)ΠT − κ1
ρ

P)(2I + ΠΠT )−1,

B(2),i+1 = min(B(1),i+1 + Mi
12, I),

B(3),i+1 = U diag
({1

2

(
sk +

√
s2k + 4

κ2
ρ

)
)})

UT ,

Si+1 = (B(1),i+1Π + Mi)� Y (i+1),

Mi+1
12 = Mi

12 + ρ(B(1),i+1 −B(2),i+1),

Mi+1
13 = Mi

13 + ρ(B(1),i+1 −B(3),i+1),

Mi+1 = Mi + ρ(B(1),i+1Π− Si+1); (12)

where B(1),0 = B(2),0 = B(3),0 = I, S0 = B(1),0Π,
M0

12 = M0
13 = 0, M0 = 0, s,U are the eigenvalues and

eigenvectors obtained through eigen decomposition of
0.5 · (B(1),i+1 + Mi

13)(B(1),i+1 + Mi
13)T , and Y (i+1)

is defined entry-wise as (Y (i+1))kh = max
(

0, 1 −
κ2

ρ|(Bi+1
1 Π+Mi)kh|

)
. The symbol � denotes the Hadamard,

or entry-wise, product, and the minimum operator is
understood entry-wise.

In practice, nodal connections slowly change due
to sporadic repairs and new nodes and, therefore, we
expect B to be approximately constant. We validate this
hypothesis by taking 7 consecutive weeks of real time
market prices and, for each of them, we run the matrix
recovery algorithm to infer Bw,1,Bw,2,Bw,3, . . . ,Bw,7.
To evaluate the difference in the recovered links, we first
perform entry-wise normalization of all the recovered
matrices by dividing each entry with the entry-wise
maximum absolute value to obtain scaled matrices
B̂w,1, B̂w,2, B̂w,3, . . . , B̂w,7. Then, we count the identi-
fied links by counting off-diagonal entries with absolute
values exceeding some given threshold value.

The result of counting the identified grid links for a
given threshold across all recovered matrices exhibit a
surprising proximity (see Figure 5), despite the variable
impact of the numerical precision criteria of the blind
recovery algorithm, as well as changing link reactances
due to weather conditions and variations in heating
induced by the energy transfer. In Table I, we use
p(Bw,i−1,Bw,i) to express the percent of links identified
from week ith matrix Bw,i, that are not recovered by
week (i− 1)th matrix Bw,i−1.
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Fig. 5: Number of identified transmission lines corre-
sponding to the dominant B̂-entry values.

TABLE I: Differences in recovered links.

Percent
p(Bw,1,Bw,2) 6%
p(Bw,2,Bw,3) 6%
p(Bw,3,Bw,4) 6%
p(Bw,4,Bw,5) 4%
p(Bw,5,Bw,6) 6%
p(Bw,6,Bw,7) 3%

C. Congestion regime recovery

Apart from the topology matrix B, the blind matrix
recovery algorithm recovers the congestion matrix S
(see Figure 6). In contrast to [19], in the present work
we are mostly interested in recovery of the congestion
regimes (i.e. collections of congested lines) within each
M-regime obtained by the previously discussed PCA
and clustering. Surprisingly, by clustering columns of the
recovered matrices S, each M-regime ends up having
one dominant congestion regime. By using multinomial
logistic regression classification, we map the deviation
from a typical M-vector within each M-regime to a
congestion cluster. Misclassification happens in less than
4% of instances across all M-regimes and, commonly,
corresponds to extremely large price spikes (bursts)
in real time price, which possibly is a result of the
limited information used in this approach (only grid level
generation and system load).

D. Performance analysis

We analyze the performance of the proposed method-
ology in case of two SPP nodes: SPPNORTH and
SPPSOUTH hub (note that the proposed approach allows
us to predict the price at any node on the grid). The

Fig. 6: Heatmap of a segment of the congestion matrix.

training dataset spans only 7 weeks, from June 12th to
July 30th 2017, while the testing period lasts for the
following 2 weeks, from July 31st to August 13th 2017.
Our validation process consists of:

1) Initial clustering intoM-regimes using the training
period’s data, which then is applied to classify the
M-vectors from the next 2 weeks of the testing
period;

2) Blind matrix recovery using only a week of the
historical price data, from July 24th 2017 to July
30th 2017. The recovered congestion matrix is used
to identify congestion regimes.

3) Day-ahead prediction of the RT market prices for
a given node using the MARS models trained for
each congestion regime 2 separately, where the
training data consists of the M-vectors and the
corresponding RT prices from all days prior to the
test day.

The predictive performance in the testing period is
evaluated using the Median of the Absolute Percent
Error (median is used to eliminate the impact of the
extremely large price spikes in the real time prices that
commonly happen due to unpredictable infrastructure
failures/changes). The-state-of-the-art baseline predictions
for the observed nodes are purchased from Genscape [17],
which is commonly referred to as the industry benchmark.

We evaluate the predictive performance of the new,

2As discussed in Subsection IV-C, we infer a single, dominant
congestion (sub)regime within each M-regime and, thus, we end up
training MARS models for each M-regime as a whole.
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proposed, approach for the following two scenarios: (i)
with perfect knowledge of M, (ii) using day-ahead
M forecasts obtained from the day-ahead forecasts
for generation mix and system load purchased from
Tomorrow [40]. The performance comparisons are sum-
marized in Table II. Our validations show that the
new methodology significantly outperforms the industry
benchmark, where the performance gap can be controlled
by the forecasting accuracy of the grid level M.

TABLE II: Median absolute percent error on the test set.

Approach SPPSOUTH Hub SPPNORTH Hub
Benchmark 30% 32%

New (actual M) 16% 20%
New (M forecast) 25% 24%

Fig. 7: Intraday comparison between the actual and
forecasted RT hourly prices, actual M scenario.

A typical intraday samples of the day ahead RT price
predictions and the corresponding actuals are captured

Fig. 8: A case of the predicted spike (top) and unpredicted
spike (bottom) in RT price, actual M scenario.

in Figure 7. Even though the new approach tends to
capture the somewhat spiky behavior of the RT prices,
in some cases of large spikes, it fails to do so (see the
bottom figure in Figure 8). The most probable reason
might be a sudden infrastructure failure or repair, the
conclusion being that not all the spikes are predictable
from changes in the generation and system load mix.
Furthermore, our approach utilizes only a simple version
of the DC-OPF formulation, without taking into account
reserves and ramping constraints, which can be a possible
cause of the market price spikes. Since the process of
supply-demand matching for DA energy market involves
solving the same optimization, the models trained for the
RT price prediction can be used to infer DA prices, while
the inputs in this case would correspond to the day-ahead
cleared generation and system load, and is typically less
variable (i.e., we can expect smaller prediction errors).

Finally, the distribution of the absolute percent errors
at different instances in time is presented in Figure 9.
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Fig. 9: Histogram of the Absolute Percent Errors at the
test instances.

V. CONCLUSIONS AND FUTURE WORK

In this paper we show that the wholesale energy market
structure can be inferred using very limited, publicly
available, historical market data (grid level generation
type mix, system load mix, and nodal prices). By
utilizing the basic underlying physical model that captures
generation-load matching on the grid, we present a day
ahead nodal price prediction methodology that, under a
rigorous validation framework, significantly outperforms
the industry benchmark (Genscape [17]).

The proposed methodology can be enhanced with
additional data. For example, the statistical models
in this paper did not capture seasonality patterns in
generation and load, as well as the impact of other
relevant data, such as available reserves and their prices,
or ramping constraints. To that end, we believe that
using the additional data sources can only improve the
prediction performance, which will be part of our future

investigations. The other potential area of exploration
involves studying the impact of localized measurements
at market participants’ sites to improve the corresponding
local market predictions. After all, it is expected that
each market participant’s goal is to maximize its own
financial reward and environmental impact and, therefore,
improving market predictions is the key instrument for
achieving these objectives.
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