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I • INTRODUCTION 

In this report, we consider asymptotic expansions of the modifj...ed Bessel 

functions K (x) and I (x) for v > 0 and x ~ O. These functions are solutions 
v v 

of the second-order differential equation 

(I. I) 
2 d2w dw 2 2 x -- + x ~ - (x +v ) w = 0. 

dx2 dx 

There exists a simple relation between the two functions, namely 

(I. 2) K (x) = 
v 

I (x) - I (x) -v v !TI ~-,.-........,~..,-~-
sin ( vTI) 

where the right-hand side of the equation is replaced by its limiting value 

if v is an integer or zero. Several asymptotic expansions for K (x) and I (x) v v 
are known. For instance, 

(I. 3) 

and 

(1.4) 

x 
I (x) ~ e {I 
v mx 

µ-1 
- -- + 8x 

(µ-I )(µ-9) 

2 ! (8x) 2 
(µ-l)(µ-9)(µ-25) 

3 + ••• } ' 
3!(8x) 

2 
v fixed, Ix! large and larg xl< !TI , µ = 4v , 

I 

K (x) ~(2TI)\2 e-x{I +µ
8
-1 + (µ-1)(µ;9) + (µ-l)(µ-9)(;-25) + •.• }, 

v x x 2!(8x) 3!(8x) 

v fixed, I xl large and I arg x I < iTI , µ = 2 4v • 

We are especially interested in asymptotic expansions for Bessel functions 

of large order. Our starting -point is an article of LUKE [I]. He started 

with the following asymptotic expansions 

(I. 5) Kv(vz) = (;~)! e -vri V (v,u) 

with 

(I. 6) 

00 k Uk(u) TI 3TI 
V(v,u) ~ l (-1) , Iv! + 00 ,E -2:;;; arg v :;;; 2 - E, E>O, 

k=O vk 

3TI TI 
uniformly in z, o - 2 :;;; arg z :;;; 2 - o, o > 0, 

and 

(I. 7) 
I VTJ 

(u/2Tiv) 2 e S(v,u), 
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with 

(I. 8) 

where 

( 1. 9) 

and 

(I.10) 

S(v,u) -+ 00 

' 
'lT ~ 

I arg v I ::;;2 - o, o > O, uniformly in z, 

I arg z I ::;; ~ - £, £ > 0, 

n U -1 + on ( uz ) ( 1 2 )-! -t..: u = +z , u+ I ' 

k k 2 
u l ar ku r 

r=O ' 

These expansions were deduced earlier by OLVER [4] by a differential equa

tion approach. The results, however, were already known by Debye. The terms 

Uk satisfy a difference-differential-integral equation, which is hard to 

deal with numerically. To avoid this problem, Luke rearranged the series 

S and V. He deduced a differential equation for V by taking the derivative 

with respect to n. Next he substituted a formal series 

(I.II) v 
00 

I ck(v)uk , c
0

(v) 
k=O 

in this equation. The differential equation was formally solved when the 

coefficients ck satisfied the recurrence relation 

(1.12) 
2 

8vkck = - (2k-I) ck-l +(2k-1)(2k-5)ck-J, c0 = 1, ck= O, k < 0. 

In this way he found a rather simple asymptotic expansion for Kv(vz): 

(1.13) K (vz) 
\) 

I oo k 
( rru)2e-vn l () I I -~oo,. I rr 0 c v u z ~ 1 arg z ::;;-2 -E:, E: > , 
2v k=O k ' 

uniformly for all v, lvl > v0 > O, v0 fixed but arbitrary, 

larg vl ::;; ~ -o, o > O, with u,n given in (1.9). 

Analogously, he found 

(l.14) s 



and 

(l.15) 
1 vn I (vz) ~ [u/(2nv)] 2 e v 

3 

00 

\' k k 
l (-1) ck(v)u, lzl-+oo, 

k=O 

3n 
c- - - < c. 2 - arg z:::; ~ - £, £ > O, uniformly for all v, Iv!> v

0 
>O, 

n 3n v
0 

fixed but arbitrary, o - 2 :::; arg v :::; -y- o, o > O. 

In the next chapters we will derive the asymptotic series (l.13) and 

(l.15), starting from integral representations for K (x) and I (x), respect-v v 
ively. But, as we said before, we restrict ourselves to v>O and z~O. More-

over, we will give estimates for error bounds. 

In chapter 2, analytical aspects of our method will be considered, 

whereas in chapter 3 numerical aspects in relation to error bounds for the 

remainders are worked out. Moreover, we will pay attention to the usefulness 

of the asymptotic series for approximating K (vz) and I (vz) in this chapter. v v 
In chapter 4, we look at some aspects connected with the coefficients c and 

n 
the related coefficients a 2n' which satisfy the recurrence relation 

(I. 16) a2n = {a2n_6 -(2n-1)(2n-3)a2n_2}/(8vn(2n-3)), 

a 0 = l, a 2n = 0, n < O. 

REMARK. It turns out that the asymptotic expansions (l.13) and (1.15) are 

not uniform in v. At least, we are not able to prove that they are, because 

the error bounds we use ((3.4) and (3.18)) contain parameters (a and T , 
n n 

respectively) that are not bounded in v, i.e. not bounded in v for all values 

of n. For instance, a
2

(v) ~ I. I8v, but a
3

(v) = l for all v. It's a pity that 

Luke derives his results in a formal way and that no error bounds for the 

remainders are given in his article. Therefore it is hard to say whether 

Luke's conclusions with respect to the uniformity in v of the asymptotic 

expansions are defensible. 
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2. ANALYTICAL DERIVATION OF ASYMPTOTIC SERIES FOR Kv(x) AND Iv(x) 

FOR LARGE VALUES OF v 

Our aim is to derive asymptotic expansions for K (x) and I (x) for v v 
large values of v. As we already said in chapter 1, we restrict ourselves 

to v > O, x 2 0. We will derive asymptotic series for K (x) and I (x), which 
\) \) 

are valid for x + 00 and v 2 v
0 

> O. To this end, we introduce the variable 

(2. 1) Ji + x2 /v2' = J1 +z2'. 

-1 
Observe that A is equal to u as defined in (1.9). 

We start from the well-known integral representations 

(2.2) 

and 

(2.3) 

00 

Kv(x) = J e-xchtch(vt)dt, 

0 

I (x) = ~I~. Jf excht-vtdt, 
\) 27f1 

c 
where C is a contour as drawn in figure 1. 

-1n 

Figure 1. Contour for (2.3) 

To obtain asymptotic expansions of these integrals, we apply the saddle

point method. It will turn out that the asymptotic expansions for A+ 00 

resulting from this method are equivalent to (l.13) and (l.15), respectively. 

Details of the derivation are given in §2.1 for K (x) and in §2.2 for I (x). 
\) \) 
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2.1 The function K (x) . v 

Write (2.2) as 

00 00 

K (x) I r e -xcht + vt dt +! J -xcht-vt 
2 J e dt. 

v 
0 0 

Changing t to -t in the second integral yields 

00 

(2.4) 
-oo 

Define 

(2.5) ~(t) = xcht - vt. 

Then ~'(t) = xsht - v and ~"(t) = xcht. It follows that the integrand is 

maximal at the point t = t 0 = arcsh (v/x) = arcsh (l/z). Therefore we write 

00 

-oo 

For reasons of symmetry we define 

(2.6) T = t - t 0 . 

Further, let 

(2. 7) 

Then simple calculations yield the representation 

(2.8) 

With 

(2.9) 

K (x) v 

00 

-vn J 2 !e exp [-v(2A.sh (T/2) + sh T-T) ]dt. 

-oo 

y 2./V sh(-r /2) 

we can write (2.8) as 
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()() 

(2. 10) 
l -vn r I J..y2 

K (x) = - e J e-2 f(y)dy, 
" 21v-

-oo 
where 

f(y) r- dT -v(shT-T) dT 1 
= YV dy e ' dy = ~=::::;1;:. ..fv+h . 

It follows that 

(2.11) f(y) = exp [-v(shT-T)]. 

lt+y2 
/4v 

Observe that n defined in (2.7) is the same as that of (1.9). 

To apply Laplace's method on (2.10), we want to know the Taylor series off 

for small values of y' that is' ' for f yr< 2 IV. Straightforward calculation 

is quite cumbersome, due to the difficult relation between y and T. It is 

much more attractive to derive a differential equation for f and to search 

for a formal solution. In appendix A, we prove that f satisfies the differen

tial equation 

(2. 12) 

Substitute into (2.12) the formal series 

()() 

f(y) l anyn with a
0 

= f(O) = l. 
n=O 

Equating coefficients yields successively 

0 l · . d f" . 3 
a 1 = , a2 = - Bv'a3 is in e 1n1te, a4 = 

128
" 2 

o. 

1 
' as = - 5v a3, and, for n ~ 5, 

(2. 13) -an_5 + n(n-2) an-l +4v(n-2)(n+l)an+l = 0. 

For every choice of a
3

, we have a regular solution of (2. 12). In fact, 

a
3 

= f(3)(0)/3!, but it is obvious to choose a
3 

= 0. For we use the Taylor 

series to derive an asymptotic expansion for K (x) and terms like 
~+l v 

a2n+lY lead to integrals of the form 
()() 

2 

f 
-1 A.y 2n+l 

e 2 y dy o. 
-oo 



The consequence of the choice a3 = 0 is that all odd coefficients a2k+I 

vanish. Henceforth we consider the even part of f. For simplicity~ call 

this f again. So 

00 

(2. 14) \ 2n 
f(y) = l a2ny 

n=O 
/i 2 , ch(v(sh T-T)), 

l+y /4v 

where the coefficients a2n satisfy the recurrence relation 

(2.15) 8vn(2n-3) a
2

n + (2n-1)(2n-3)a2n_2 - a2n_6 0 

with initial conditions 

(2. 16) O, n < 0. 

7 

The asymptotic expansion for K (x) as A + 00 follows immediately by substituting 
\) 

(2.14) into (2.10): 

00 
co 

I 
2 

(2.17) K (x) I -vn l - 1 Ay 2n 
~ -- e a2n e 2 y dy 

\) 2-./V n=O 
-co 

co 
-vn l 

I 

e a r(n+l) (lA)-n-2 
2-IV n=O 

2n 2 z 

I 00 

( 
1T \2 e -vn l c A -n ' 

= 2Av} n=O n 
A + "", 

with c = a n 2n 
r(n+D 2n. 

r(!) 

From (2.15) we derive, by straightforward calculation, a recurrence relation 

for the coefficients c : 
n 

(2.18) 8vncn + (2n-1)
2
cn-I -(2n-1)(2n-5)cn_3 

with initial conditions 

(2.19) I , c 
n 

O, n < O. 

0 
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The first coefficients are c 0 = 1, c 1 = - Bv , c 2 = 9 

128v2 • 

The formulas ( 2. 1 7) and ( 2. 18) correspond to ( I . 13) and (I. 12f, res
pectively. So we derived the results of Luke in quite a simple way. 

2.2 The function I (x) 
\) 

We start from (2.3). Analogously to the former case we write, by using 
( 2 • 6) and ( 2 • 7) , 

(2.20) 

with 

I (x) = ~ vn J 
\) 21n. 

c 
exp[V(2:.\sh2(T/2) +shT-T)J dT = e2V~ J g(v,A.,T) dlr, 

1f1 

c 
2 g(v,A.,T) = exp[v(2A.sh (T/2) +shT-T)]. 

An analysis of the function ~ of (2.5) for complex values of t shows that 

~'(t) has zeros at the points 

t (-l)k arcsh(~) + krri 
x 

The only saddle-points we have to deal with are t_ 1 = - t 0 - rri, t 0 , and, 
t

1 = - t
0 + rri. Calculations show that the lines of steepest descent are 

Im T = - rr, Re T = 0 and Im T = rr, respectively. Further, the points T = ± rri 
are singular points of the function f of (2.11). Therefore we choose the con
tour L as drawn in figure 2. 

L 
1f 

Figure 2. Contour for (2.20). 



This contour L consists of 5 parts, Vl.Z. 

(i) L Im 1" = -1f, 0 < Re 1" < 00 

-1 
(ii) L 1" = -1f]_ + 0 icp 0 s cp s :!:. 

-1f e ' 2 
(iii) LO Re 1" = 0, -1f + 0 s Im 1" s 1f - 0 

(iv) L = 1fi oeicp 1f 
0 1" + 

' 
--<cp< 

1f 2 - -
(v) Ll "• Im 1" = 1f' 0 < Re 1" < 00 

' 

with 0 < o < 1f arbitrary. Let us look at these parts more specifically. 

(i) Substitute 1" = - 1fi + cr, then sh 1" = - sh cr, sh(T/2) = -ich(!cr), and 

0 

9 

(2.21) 
vn 

e 
21fi J exp[v(-2A.ch2(!cr) - sh cr - cr + 1fi)]dcr. 

00 

(ii) Let 1" = - 1fi + oeicp ,O s cps~, 0 < o s i be arbitrary. In appendix 

B, we prove that 

r g( v, A.,• )dT O(e-A.v), A. > 0. J 
L 

-ir 
(iii) Substitute 1" = it, then sh(•/2) = i sin( t/2), and 

1f-o 
vn r evn r exp[v(-2Asin2(t/2) +i(sin t-t)]dt. (2.22~ 

e g(v,A.,T)dT 21fi J 
= -- J 21f 

LO -7r+o 

(iv) Analogously to (ii), this yields 

-A.v g(v,A.,T)d• I = O(e ), A.> 0. 

(v) Let 1" = 1fi + cr, then 
00 

(2.23) evn J g (v,A.,T)d• = evn J exp[v(-2A.ch2 (!cr)-shcr -cr-1fi)]du. 
21fi 2Thi 

L
1 

o 
Taking together (2.21) and (2.23) we get from this analysis that 
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(2. 24) . 

1T-cS 
vn J I (x) = ~ {i \) 21Ti 

exp[v(-2A.sin2(t/2) +i(sin t-t)] dt 

-1T+o 

00 

- 2i sin(V1T) J exp[v(-2Ach
2
0a) -sh a- a)] da 

cS 

+ O(e-A.v)}, A. > O. 

In appendix C, we prove that 

f exp[v(-2Ach
2
0a) - sh a-a)] da 

cS 

Further, we choose 

(2.25) cS 1T/4. 

This yields 

-A.v 
O(e ), A. > O. 

(2.26) - evn J J } I)x) - z:rr l exp[v(-2A. sin2 (t/2) + i(sin t-t)]dt +O(e-A.v) 

Into the integral, we substitute 

(2.27) y = 2/V sin(t/2). 

Then we have 

and 

(2.28) 

with 

(2.29)' 

~~ = IV cos(t/2) = IV /.-y
2
/4v 

21-v cos c 1T/8) 

vn { 
I (x) = ~ 

\) 2 1T f 
-21V cos ( 1T/8) 

g(y) 
vi(sin t-t) dt vi(sin t-t) 

e dy = e 

, A. > O. 



Comparing (2.9), (2.11) to (2.27), (2.29) yields 

g(y) f(-iy)//V'. 

So finally we have 

(2.30) 

21Vcos(7r/8) 
e vn { r 

I)x) = -- j 
21f./V /1 

-lA 2 A } e 2 Y f(-iy)dy + O(e- v) , A > O. 

-2vv cos( 1r/8) 

Analogously to the former case we replace f by its even part, so 

00 

(2.31) f(-iy) \ n 2n 
l (-1) a 2ny • 

n=O 

The asymptotic expansion for I (x) as A + 00 is given by 
\I 

(2.32) I (x) ~ 
\I 

00 

vn 00 

e l (-l)n a2n f 
21f/V n=O 

-oo 

vn oo 
e \ n -n 

l (-1) c A. , 
h7fA\1

1 n=O n 

The formula (2.32) corresponds to (I. 15). 

2 -lAy 2n 
e 2 y dy 

REMARKS. (i) We emphasize that we derived the asymptotic expansions for 

v > 0 and x ~ O, whereas the expansions given in (I. 13) and (1.15) have a 

much larger domain of validity. 

(ii) In chapter 4 we discuss numerical aspects of the recurrence relation 

(2.18), especially whether it is stable or not. Luke doesn't pay attention 

to such questions. 

3. NUMERICAL ASPECTS 

1 1 

In this chapter, we first discuss error bounds for the remainders and 

thereafter we compare these error bounds with the real errors that are made 

by approximating the modified Bessel functions by the first terms of their 

respective asymptotic series. The function K (x) is considered in §3.1 and 
~ \I 

I (x) in §3.2. 
\I 
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3.1 The 'function Kv(x) 

We define 

(3. I. { 

R0 (y) = f(y) 

n-1 2s 
f(y) = l a2s y 

s=O 

2n + a
2 

y R ( y) , n > 0 , 
n n 

provided that a2n f O. So 
n-1 2s 

f(y) - l a2s y 
s=O Rn(y) = ------2n __ _ , R (0) = 1. 

n 
a2ny 

Next, we write 00 

n-1 r 2 
(3.2) 2/V e vn K (x) = l -P,.y 2s d 

a2s J 
e y y 

v s=O -oo 

Then (3.2) yields, with (2.10) and (3.1), 

00 

(3. 3) I 
t 2 

E (x,v) =a e- 2 1..y y2n:Rn(y)dy. 
n 2n 

-oo 

+ E (x,v). 
n 

In §3.J. J we prove that there always is an upper bound of the form 

lo Y2 
2 n IR (y)ls e , y E JR., (n~O), where cr doesn't depend on A. 

n n (3.4) 

Substituting (3.4) into (3.3) we get 

(3.5) I E ( x, v) I s I c I (\-~ ) ! ("A. -cr ) -n , A. > cr • 
n n A.-ern, n n 

From (3.5) and (3.2), we draw the conclusion 

(3. 6) o, 1, 2, ••.• 

When er does not depend on v, we have in (3.6) an expansion which is uniformly 
n 

valid with respect to v,v ~ v
0 

> O. In the next subsection it will turn out, 

however, that, for some values of n, er is heavily dependent on v. 
n 

tn §3. 1.1 we prove (3.4) and we consider some aspects of the calculation 



of the o' 'sin (3.6). In §3.1.2 we compare the error bound n 
1
r:- e-vnlE (x,v)j to the real error that is made by approximating _K----(x) by 2n> n v 

the first n terms of its asymptotic series. 

3.1.1 Upper bounds for jR (y) I 
n 

13 

In this subsection we will show that there exists an upper bound for 

jRn(y)I like (3.4). Further we consider some aspects of the numerical evalu

ation of a • We give some results in table 1 and(for a slightly modified n 
bound)in table 2. 

We start with (2.14) and (3. 1). On a compact interval it is trivial 
10 y2 

that there exists an upper bound of the form e 2 n . 

Moreover, 

lim 
y-roo 

tnjf(y) I 
I 2 
2Y 

I. 

The algebraic terms in R (y) can't disturb the convergence, so n 

(3. 7) lim 
y-roo 

1 • 

From these considerations we conclude that there is an upper bound for 

IR (y)j like (3.4). 
n 

For n = 0 we can derive analytically that 

(3. 8) 

PROOF. Let v > 0 be arbitrary. We prove (3.8) by cutting the real axis into 
pieces. We make use of the formulas 

(2.9) 

and 

(2. 14) 

Y = 2/V sh(T/2) 

1 f(y) = --==== r--2---i 
VI+y· /4v 

ch(v(sh T-T)). 
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(i) Let 

then ( IYI) 2 arcsh ·
2

,/ii' ~ 2 arcsh (!) < ~-

From [3] , p.88, formula (4.6.31) we know 

so 

This yields 

and 

Further 

so 

if 

arcsh z l 3 
z - - z -2.3 

i. 3 z5 + l. 3. 5 7 I I 
2.4.5 2.4.6.7 z + ••• ' z < l, 

arcsh lzl ~ lzl + lzl
3 

+ lzl 5 + ••• 
I z I 

--2 ' lzl< I. 
1-lzl 

16 lyl 
<---
- 15 ·Iv ' 

I s 1
3 

lsl2l+l 
= 3T l-lsl 2 

< 2 I 13 - 9 s ' 

Is I < ~. 

With the help of the above results we get 
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IRo(y) I jf(y)j 

::::; eh ( V sh T-VT) 

::::; eh (i VjTj
3) 

::::; eh <i \) \)~ IYl3<!~)3) 
::::; 2 16 3 I I 13 exp(-(-) -- y ) 

9 15 IV 
::::; I 2 16 3 

exp( 2. 9(15) 2 y ). 

(ii) Let 

then 

For 

and 

!f(y)j ::::; ch(v sh T) 

sh T 

V sh T 2R y /i+y
2
/4v

1 

= ! y2 J'_4~ + 1
1

::::; !lf7'y2 • 
y 

(iii) Combination of the results of (i)and (ii) leads to the conclusion that 

for all y E 1R 

0 

For arbitrary n it is not easy to find a value for o in an analytical 
n 

way, due to the fact that the coefficients a2n are quite intractable. There-

fore we compute values of o numerically. Define, for arbitrary n, 
n 
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(3. 9) 

Then 

h (y) n 

h (0) 
n 

a 
n 

= sup 
y 

2lnlR (y) I n 
y :f 0 2 

y 

lim h (y) 2 
a2n+2 

y-+-0 n a2n 

h (y) 
n 

is the best estimate we can get. It is this value of a that we compute. 
n 

From (3.7) is is clear that a ~ 1. It will turn out that the estimate n 
ffi 

loss 

for ao is much too coarse. 

The evaluation of a however 

of 
n 

significant digits plays 

n~l 2s 
f(y) - l a2sy 

s=O 

is not quite trivial. In the first place 

a role in the calculation of 

Therefore we replace (for small values of y) this expression by a number of 

subsequent terms of the Taylor series belonging to f. The neighbourhood of 

0 and the number of terms we take are determined by the restriction that 
-JO we demand a relative precision of 10 with respect to f. The environment 

of 0 and the number of terms are dependent on v and n of course. Secondly, 

overflow plays a role in the evaluation of ch(v sh T-vT) if T tends to in

finity. We solve this problem as follows. On the one har.d we take a term 
vshT r-e apart and on another we consider the interval 0 $ y $ 150vv only. This 

choice is motivated by the following argument. If T ~ 10, then 

h(T) $ 

ln(ch(v sh T)) 

2 
2v sh (T/2) 

Further, 0 $ T $ JO implies 

V sh T 

2 2vsh (T/2) 

o $ y $ 2/V sh s < 1so IV. 

= coth (T/2) $ I. 00 I. 

From (3.7) and (3.9) it is obvious that the value of a is highly 
n 

dependent on the value of 

(3. IO) 
\ 

a2n+2 
(RC) = --

n 



where h (O) 
n 

2(RC) . We distinguish three possib{lities. 
n 

(i) (RC) < 0. 
n 

I 7 

In this case we have h (O) < 0 and so h (y) < 0 in a neighbourhood of 
n n 

O. The maximum of h is attained outside this neighbourhood. 
n 

(ii) 0 < 2 (RC) < I. . n 

In this case h is maximal at a point outside the neighbourhood of 0 
n-

where h (y) < 1. 
n 

(iii) 2 (RC) > I. 
n 

Now the maximum of h (y) is found in the neighbourhood of 0 where 
n 

h (y) > I. 
n 

We have evaluated the value of o for the following values of v and 
n 

n: n O, I, ... , 10, v = I, 2, 5, 10, 25, 50, 100. It turns out that in the 

cases (i) and (ii) o 
n 

are given in table I. 

Table I. 

(= lim ~ h (y)). The results for case (iii) 
y~"" n 

n v (RC) on n 

2 2 1.08 2. 16 

5 2.92 5.84 

10 5.90 1 I . 81 

25 14.81 29.61 

50 29.61 59.25 

59.25 118.51 

5 25 0.84 1.68 

50 1.69 3.40 

100 3.40 6.81 

8 100 0.68 1.36 
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Let us consider the case n = 2 in particular. For the values of v 

mentioned in the table it is obvious that 

This is in agreement with what we predicted. We return to this subject in 

chapter 4. Observe that uniformity with respect to v cannot be proved for 

n = 2. 

The values of a in table I give rise to upper bounds for IR (y)I that 
n n 

are not realistic outside a small neighbourhood of 0. Therefore we modify 

the upper bound a litte in those cases in which 2(RC) > 1. We then search 
n 

for upper bounds of the form 

(3.11) 

The problem is to find a suitable combination of M and a , that is to find n n 
a value of M 

n 
so that on~ I. We evaluated a2 for several values of M2 and v. 

The results are given in table 2. 

Table 2. 

M2 v 02 

2 5 I. 2 7 

10 2.70 

25 6.85 

50 13.74 

3 5 1 

10 1.62 

25 4. 16 

50 8.35 

,roo 16.73 

5 100 9.44 

8 100 5.71 
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We ·conclude from the table that, especially for large values of v, the 

increase of M decreases the value of cr quite slowly to an acceptable value 
n n . ~ 

(I a 1.5). So this modification does not bring us the improvement we expec-

ted (at least not for large values of v). We restrict ourselves to (3.4) 

in the next subsection, but we have to take into consideration that the 

error bound for the remainder, which is only valid for A > cr , 1s 1n some 
n 

cases just valid for quite large values of A. This problem, however, is 

easy to avoid as we-will see in the next subsection. 

3.1.2 Approximations for K (x) v 

In this subsection we compare Kv(x) with an approximation by several 

terms of its asymptotic series. For convenience, we introduce the following 

definitions: 

(3. 12) knminl (x, v) 

and 

(3. 13) errorbn(x, v) 

n-1 

I 
s=O 

c 
s 

A -s 

In words: knminl(x,v) is an approximation for K (x) consisting of the first 
v 

n terms of its asymptotic expansion, and errorbn(x,v) is an error bound 

for the remainder when K (x) is approximated by knminl(x,v). v 
We look especially at the influence of increasing n on the real error 

K (x) - knminl(x,v), and at the ratio between the error bound errorbn(x,v) 
v 

and the real error. 

For the numerical evaluations we use the numal-procedure bess kaplusn 

from [5] as an exact representation of Kv(x). We consider all combinations 

of n = 2, 3, 5, 8 and v = 1, 5, 10, 25 for several values of A. The results 

are given 1n table 3 and 4. In table 3 we compare the cases n = 2 and n = 3 

for v = I, 5, 10, 25. For each v, five values of A are given for which we 

evaluate 

(i) the relative accuracy r.a. = (K (x) - knminl(x,v))/K (x), v v 
(ii) the'' ratio r = I errorbn(x, v) I (Kv (x) - knminl (x;v)) ! . 
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In table.4 we do the same for n = 5 and n = 8. For' some values of A, the 

ratio is unreliable. Firstly, this is due to loss of digits and secondly, 
~ 

to the requirement that A > o • For these values of A the ratio is not given 
n 

~n the tables. 

Table 3 

n = 2 n = 3 

A r.a. r r.a. r 

\) = l 10 8.16*10-4 I. 12 1. 11*10-4 1. 74 

50 2.92*10-5 1.02 l.04*10 
-6 1. 20 

100 7.17*10-6 1.01 1.32*10 -7 1. 058 

500 2.82*10-7 1. 001 l.08*10-9 1.011 

1000 7.05*10-8 1. 0005 1.35*10- 10 1.006 

\) = 5 10 6. 70* 10-5 3.67 3.91*10-5 l.50 

60 9.70*10-7 1.04 2.89*10-7 1.067 

5.84 100 3.22*10-7 1.015 -8 1.040 02 = 4.09*10 

600 8.00* 10-9 1. 0004 1.90*10- 10 1.006 

1000 2.85*10-9 l. 00002 4.11*10- 11 
l.0036 

\) = 10 

10 2.71*10-5 2.01*10 -
5 1.47 

02 = 11 • 81 50 4.47*10-7 1.235 1.65*10-7 1.077 

100 9. 10*10-8 l. 055 
-8 1. 038 2.07*10 

500 2.98*10-9 1.002 1.66*10- 10 1.0075 

1000 7.23*10- 10 l.0005 2.08*10- 11 l .0034 

\) = 25 

8 1.75*10-5 1.58* 10-5 1. 60 

29.61 40 2.00*10-7 10.2 -7 1. 09 02 = 1.30*10 

3.38*10-8 -8 
80 l.65 1.62*10 1.05 

400 8.33*10-IC 1.02 1. 30* 10-lO 1.01 

800 1.92*10-lC 1.01 l .63* 10- 11 1.004 



From table 3 it is clear that the approximation of K (x) by v 
knminl(x,v) is reliable in 3 digits as soon as A> 10 (with exception of 

~ 
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n = 2, v = 1: 2 digits). Further it is obvious that, when v and n are fixed, 

the approximation becomes better if A tends to infinity, exactly what we 

expected. It also appears that, when A and n are fixed, the approximation 

becomes better if v increases. The approximation for n = 3 is better than 

the one for n = 2, as we expected too. Further it is obvious from table 3 

that the ratio of errorbn(x,v) and the real error decreases to 1 quite 

quickly when A increases. Comparing the just mentioned ratio for n = 2 and 

n = 3 yields the following results. For small values of v, say less than 8 

(then a
2
(v) < 10),the differences between the ratios for n = 2 and n = 3 

are quite small(less than 0. I in general). If v ~ 10 then the ratio for 

n 3 is much smaller than that for n = 2, especially for small values of 

A ' assuming that the last can be evaluated at all (think of A > a !). n 
All together, we prefer an approximation of K (x) by three terms to one by 

v 
two terms for the following reasons: 

(i) the approximation is somewhat better, 

(ii) the approximation and the error bound are realistic for A ~ l (for 

a
3
(v) = I for all v > O), 

(iii) the error bound for the remainder for n = 3 is less than or equal to 

the one for n = 2. 

From table 4, it is obvious that the approximation of Kv(x) by 

knminl(x,v) is reliable in at least 7 digits for A> 5 a 10. For increasing 

A the accuracy becomes better very quickly. For instance, for v = 25 and 

n = 8 the relative accuracy of the approximation has the size of the machine 

precision (I0- 14 ) for A ~ 12. Naturally the approximation for n = 8 is bet-

ter than that for n = 5, as we expected. Both for n = 5 and n 8, the 

ratio is hard to determine. On the one hand this is due to the fast increase 

of the relative accuracy and on another to the fact that we deal with parts 

of asymptotic series that are not useful for small values of A(~l). In some 

cases the requirement that A > a also plays a role. 
n 
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Table 4. 

n = 5 n = 8 

A. r.a. r r.a. r 
-I 

-2.44*10° \) = I I 2.60*10 

5 
. -4 
I. 40* 10 4.67 -1.56*10-S 10.43 

10 5.41*10 -6 2. 16 -8.39*10 -8 
3.28 

20 1. 87*10 -7 I. 47 -3. 84* 10 - lO 1.82 

50 2. 04* 10 -9 1 • 1 7 -l.75*10- 13 

\) = 5 2 2.71-;1.IO -4 27.45 3. I 8* 10 -5 
395 

4. I 7.44*10 -6 
3.69 1.36*10 -7 I I. 66 

10 7.73*10 -8 
1.59 I. 15* 10-IO 2.53 

20 2.33*10 -9 1.25 4.70*10- 13 
1.58 

40 7.ll*lo- 11 
I. I 1 

2.24 -5 11.49 -6 130 \) = 10 3.62*10 1.62*10 

4. 12 1.31*10 -6 
2.63 1. 15* 10 -8 9.43 

6 1.63*10 -7 
1. 76 4.98*10- 10 4.21 

8 3.67*10 -8 
1.47 5. 14* I 0-l I 2.87 

10 1.15*10 -8 1.34 8. 71*10- 12 2.28 

2.24 -6 439 -8 
76.2 \) = 25 4.91*10 7. 26* 10 

4. 12 I. 50* I 0 -7 5.68 4.29*10-lO 6.63 

1.68 -9 
1. 71 1 .67*10- 12 

2.32 as = 8 3.55*10 

12 3.96*10- 10 1. 30 

20 2.58*10-l 1 
I. I 1 
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CONCLUSIONS 

~ 

It's very well possible to approximate Kv(x) by several terms of its 

~symptotic series, even for small values of A. The error bound for the 

remainder, given in (3. 13), is a reasonable estimate for the absolute 

value of the real error. In case of small values of A, you must see to it 

that a = I. If a > I for a certain value of n, you must increase n by I ' n n 
and then a becomes· I. It will be shown in chapter 4 that this is a good n 
solution for this problem in general. Finally, the asymptotic expansion 

(3.6) is not uniform with respect to v,v ~ v0 > O, because the parameters 

a depend on v. 
n 

3.2 The function I (x) 
v 

We deal with the function I (x) in very much the same way as with v 
K ( x) • Define 

v 
f(-iy) 

(3. 14) 

provided that a2n f O. So 
n-1 

f(-iy) - l (-l)s 
s=O 

(3. IS) s (y) 
n 

Further, we write 

, S (0) =I, 
n 

2 Iv cos ( 1T 18) 

n ~ 0. 

(3. 16) ,- -vn 
21TYV e I (x) 

v 
r 
J 

- 1 Ay2 2n e 2 y dy +F (x,v). 
n 

Then 

(3.17) F (x,v) = 
n 

-2.fV cos ( 7T/8) 

2.fV cos (7r/8) 
f I 2 

(-l)n a2n J e -2AY y2n Sn (y) dy. 

-2 .fV cos(7r/8) 

Analogously to (3.4) we look for an upper bound for Js (y)J of the form 
n 
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(3. 18) Is Cy) I ::; e 
n 

I 2 
2<nY 

on D [-2/V cos (;)], ·n;?: O. 

Substitution of (3.18) into (3.17) yields 

(3.19) 

From (3. 16) and (3.19) it is obvious now that 

(3.20) 
vn {n-1 l e s -s -n 

Iv(x) = l (-1) cs A. + O(A. )J , 
v'z1TA.V s=O 

In subsection 3.2.1 we evaluate the values of -r. Moreover another 
n 

upper bound for js (y)j is discussed. In 
I n 

subsection 3.2.2 we compare the 

error bound (21Tv 2)-levnlF (x,v)! to the real error that is 
n 

mating Iv(x) by the first terms of its asymptotic series. 

3.2. 1 Upper bounds for jsn(y)j 

made by approxi-

An error bound of the form (3.4) always exists because D is a finite 

interval. We evaluated T for the same values of v and n as we used in the 
n 

former case for o • It appears that T is almost always less than l, some-
n n 

times much smaller than 1. There are three exceptions, namely 

-r2 (5) = 1.77, T2(10) = 3.36 and -r 2(25) = 8.27. 

In neither of the cases we examined it yields -2(RC) > I. 
n 

In this case we have to deal with a finite interval D. Therefore we 

can find a simpler upper bound for Is (y)j, namely 
n 

(3.21) n ;?: O. 

Numerical computations show that D >> 1 in many cases. Such values of D 
n n 

give rise to error bounds for the remainder that are much larger than the 

absolute value of the next term of the asymptotic series. (For the same 

reasott we don't want estimates like (3.11) with M > 2.) A favourable ex-
n 

ception to the general rule is the case n = 3 where D lies between 1 and 
n 



1.5 for moderate values of v. 

3.2.2 Approximations for I (x) v 

25 

In this subsection we compare the error bound for the remainder and 

the real error for approximations of I (x) by the first terms of its asymp-. v 
totic series. We introduce the following notations 

(3.22) inminl (x, v) = 

and 

(3.23) ferrorbn(x,v) 

VT] n-1 
e l (-l)s c A.-s 

hTIA.V s=O s 

A > T • 
n 

In words: inminl(x,v) is an approximation for I (x) with the first n terms v 
of the asymptotic series of I (x), and ferrorbn(x,v) is an error bound for v 
the remainder when I (x) is approximated by inminl(x,v). v 

For the numerical evaluations we use the numal-procedure bess iaplusn, 

cf. [5], to compare inminl(x,v) with. We consider the same values of n and 

v as in the former case. The results are given in table 5 and 6. In table 

5 we compare the cases n = 2 and n = 3 for v = I, 5, 10, 25. In table 6 

we do the same for n = 5 and n = 8. In the tables we use the abbreviations 

(i) r.a. 

(ii) r. = 

(I (x) - inminl (x, v)) I I (x) (the relative accuracy) 
v v 

ferrorbn(x,v)/(I (x) - inminl(x,v))l (the ratio). v 
With respect to the ratio r the same remark can be made as in subsection 

3.1.2. 
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Table 5 

n = 2 n = 3 

A. r.a. r r.a. r 

\) = I IO 5.20*I0-4 I. 72 -I .68* I0-4 
I. I3 

50 2.69*I0-5 I. IO -I.I3*Io-6 
l.02 

IOO 
. -6 
6.88*IO l.05 -I. 38* 10 

-7 
l.O I 

500 2. 80* 10 
-7 

I. 009 -I .09* I0-9 I .003 

1000 7.02*IO 
-8 

I .004 -I. 35* 10-IO I. OOI 

\) = 5 IO -l.42*I0-5 3. I 8 -4.20*10-5 
l.39 

60 5.89*IO 
-7 

l.43 -I.9I*IO 
-7 

l.05 
-7 

l.225 -4. I2*Io-8 
T2 = I. 77 IOO 2.40*IO l.03 

-9 -I .90*IO-l0 600 7.62*IO 1.03 I .007 

1000 2.77*IO 
-9 

l.02 -4. I I* I 0 - I l 1.002 

v = IO IO -l.39*I0-5 
I. 38 -2.08*10-5 

l.41 

50 I. I4*l0 
-7 

2.93 -l.67*10-7 
l.07 

T2 = 3.36 100 4.95*I0-8 I. 55 -2.08* 10-8 
1.03 

-9 -l.66*IO-IO 500 2.65*IO 1.08 I .006 

1000 6. 82* 10-IO l.04 -2.08*10-I l 1.003 
-- - - ---

-5 -5 
v = 25 8 -I .43*IO -l.60*IO I. 58 

40 -6.00*Io-8 2.09 - I. 30* I 0 
-7 

l.09 

80 
-9 

I7.7 
-8 

l.04 T2 = 8.27 I. 30* I 0 - I. 63* I 0 

400 5. 73*10- 10 l.29 - I • 30* I 0 - I O I. 009 

800 I. 60* 10- lO I. I 25 -I .63*10-I I I. 004 
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Table 6 

n = 5 n = 8 

A. r.a r r.a. r 

1 
·- -1 

6.36*10° v = 1 I. 58* 10 

5 -3. 71*10 
-4 l. 68 -6.07*10 -5 2.61 

10 -8. 34* 10 
-6 

1. 36 -7 
-1. 86* 10. 1.45 

20 -2.31*10 
-7 

l. 18 -5.50*10-lO 1.25 

50 -2.22*10 -9 1.07 -4.12*10- 13 

2 I -5 161 3.08*10-5 351 v = 5 4.55*10 

4. l -3.18*10 -6 8.53 l.52*10-7 10.28 

10 -5.80*10 -8 2. 11 1.22*10-IO 2.37 

20 -2.03*10 -9 I. 43 4.92*10- 13 

40 -6.63*10- 11 
I. 19 2. 09* 10- 14 

2.24 
-5 26. l 5.31*10-7 395 v = IO 1.58*10 

4. 12 -1.86*10 -8 184 7.63*10-9 14. 15 

6 -3. 92.* 10 
-8 

7.29 3.85*10- 10 5.43 

8 -1.39*10 
-8 

3.88 4.26*10- 11 
3.45 

10 -5.47*10 -9 2.81 7.50*10- 12 2.66 

v = 25 2.24 3.61*10 
-6 

7.34 -1.74*10 -8 317 

4. 12 6.56*10 -8 3.35 6. 93* 10- 11 41 

8 3.05*10-IC 11. 4 8.04*10- 13 

12 -4 • 85 * l 0 - l I 7.48 

20 -9.40*10-l~ 2.50 
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From table 5 it is clear that the approximation of I (x) by inminl(x,v) v 
is reliable in at least 5 digits as A > 10. Of course the approxigtation is 

better for larger values of A. In general, inminl(x,v) with n = 3 is a 

b.etter approximation than inminJ(x,v) with n = 2. Nevertheless there are 

exceptions. We'll try to give an explanation for this phenomenon now. For 

n = 3 I (x) - inminl(x,v) < 0 for all values of A, but for n = 2 v 
Iv(x) - inminl(x,v) < 0 for small values of A and the real error is positive 

for larger values of A. (Aside, the larger the value of v, the larger the 

values of A for which the real error is still negative.) The values of A 

for which the approximation for n = 3 is worse than the approximation for 

n = 2 always lie in the neighbourhood of that value of A for which 

I (x) - inminl(x,v) changes sign. This just described behaviour of the real v 
error for n = 2 is also responsible for the irregular convergence of the 

ratio to 1 for A + 00 • For n = 3 the convergence is quite quick. The influence 

of values of T2 f 1 on the behaviour of the ratio is neglectable, because 

those values are small (except for T 2 (25) = 8.27). 

From table 6 it is obvious that for v ~ 5 the approximations of Iv(x) 

are good in at least 5 digits for A > 2, and in at least 8 digits for A > 10. 

For both approximations the sign of I (x) -inminl(x,v) changes. The relative v 
accuracy tends to the machine precision quite quickly, so it is difficult 

to show the convergence of the ratio to 1 for A + 00 

CONCLUSIONS 

The function inminl(x,v) is a good approximation for I (x) for quite 
v 

moderate values of n, even for small values of A. The error bound for the 

remainder given by (3.23) is a reasonable estimate for the real error, but 

in some cases it is hard to show this. This is mainly due to the irregular 

behaviour of the real error which is probably a consequence of the appear

ance of the terms (-J)s in the asymptotic series. Finally, it is hard to say 

whether the parameters Tn of (3.18) are uniformly bounded with respect to v, 
due to the irregular behaviour of these parameters as a function of v. So 

it re!Da'ins an open question whether the asymptotic expansion (3.20) is uni

form with respect to v, v ~ v0 > 0 or not. 
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4. THE COEFFICIENTS a2 AND c 
n n 

In this chapter we consider the coefficients a2n and en in more detail. 

For convenience, we recall the recurrence relations which generate the rows, 

(see (2.15), (2. 16), (2.18) and (2.19)).The coefficients a
2
n satisfy the 

recurrence relation 

( 4. I) 8vn (2n-3)a2n + (2n-1)(2n-3)a2n_2 - a2n_6 

with initial conditions 

(4.2) 0 n < O. 

For the coefficients c we have 
n 

(4.3) 

11ith initial conditions 

(4.4) O, n < 0. 

0 

0 

From these relations no simple formula can be deduced for the coefficients 

a
2 

and c , respectively. Therefore we resort to numerical calculation. 
n n 

We'll determine the coefficients by forward recursion. This is allowed only 

when the solution we are searching for (that is, the solution which satisfies 

(4.2) ((4.4)) is dominant with respect to other solutions of (4.1) ((4.3)). 

In §4. I we will show that this is indeed the case. In §4.2 we consider the 

inner structure of the coefficients a2n in more detail. We will show that 

if (RC)n > 0 then (RC)n+I < 0. It will appear, however, that there still are 

some open questions with respect to the coefficients a2n. 

4.1 Computing of the coefficients a2n and c • 
n 

From (4. I) and (4.3) is is clear that the coefficients a2 
and c 

n n 
satisfy a third-order difference equation. Such a difference equation has 
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three independent solutions. We will show now that the solution that satisfies 

(4.2) ((4.4)) is a dominant solution. 

Our starting-point is the coefficient a2n. This is the 2n-t~oefficient 

from the Taylor series of the function 

f(y) ch(v sh T-VT), 

where 

y 2/Vsh (T/2). 

We may write, using Cauchy's formula, 

f(z) 
2n+l dz, 

z 

where C is a circle with centre 0 and radius r < 2 IV. 
r 

Now, let £ > O. Choose r = R so that 2/;J -£ < R < 2 v'V. Then 

So 

(4.5) a2n 

and 

(4.6) c n 

In principle it 

la2nl 

0 

a2n 

may 

f(z) dz I 
2n+l 

z 

(( _1_)2n) 0 ( (-1 )n) 
2/V 4v 

r(n+~) 2n 0 (r(n+D) 

r<D (2v)n 

be possible that 

<< M l n 
<4) ' 

r if(Reie)I 

j R2n+l 
0 

n -+ oo, 

n -+ oo. 

-1 l n 
but further analysis shows that a2n ~Mn 2

( 4\1) • 

Rd8 

It will appear below that the dominant solution of (4.3) also shows 

the behaviour (4.6), so it is allowed to apply forward recursion to cal-
'" 

culate the coefficients en (and, of course, a2n) 



We write (4.3) as 

(4. 7) 
2x-I 

y(x) + 2x-S y(x-1) -y(x-3) 
(2x-I)(2x-5) 

8vx o, 

where c(n) is replaced by y(x). 

According to [3] we find asymptotic series for the solutions of (4.7) by 

substituting the formal series 

00 

(4.8) y(x) x xr{l+ \ -k} Po l ykx • 
k=I 

It is clear that (4.7) has the form 

(2v + O(x-2)) y(x) +(I+~+ O(x-2)) c(x-1) -c(x-3) O. 
x x 

According to [3] we find Po from the characteristic equation 

(4.9) O, 

so Po=± I. We examine the roots separately. 

(i) p
1 

= + I. In this case we find, by equalizing coefficients, that 

r = - I - v. 

Then we have the asymptotic solution 

(ii) P2 
- I. Now r = - I + v and this yields 

00 

x -I+v \ -k 
y 2 (x) = (-1) x {I + l <\ x }. 

k=l 

The equation (4.9) gives rise to two independent solutions of (4.7). 

A third solution we find as follows. Substitute 

y(x) z(x) r(x+!) 

i~to equation (4.7). This yields 

31 
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(4. l 0) 2v x~~ z(x) + z(x-1) -
1 

z(x-3) = 0. 
(x-!) (x-3/2) 

~ 
Substituting a formal series of the form (4.8) yields the characteristic 

equation 

l 
with solutions p = ~ 2\! and P = 0 (2times). We examine the root P = -

2
\! • 

It will turn out that this root gives the third independent solution of 

(4.7). 

(iii) p 3 
2\! • Now r - ! and 

z(x) l x - 1 
= (- 2) x 2 { l + 

so 

00 

\' -k 
l E:k x } ' 

k=l 

00 

y
3

(x) = (- 2~)xx-! r(x+!){I + l E:kx-k}. 
k=l 

From (i), (ii) and (iii) it follows that the three independent solutions 

of (4.7), or, equally, (4.3) have the following asymptotic behaviour 

(i) c 1 (x) 
-I-v 

x x -7 00 

-1 +v (ii) c2(x) x x -7 00 

(iii) c
3

(x) ( l )x -! r(x+D x -7 oo, - - x 
2v 

It is obvious that (iii) is the dominant solution, and it is just the 

solution we need. 

Concluding, we can say that we may apply forward recursion for the 

calculation of the coefficients a2n and c • 
n 

4.2 The inner structure of the coefficients a 2n. 

The coefficients a2n that satisfy (4. l) with initial conditions (4.2) 

are polynomials in powers of _!_ of the n-th degree. This can be proved by 
\) 

complete induction. We write, for all n ~ O, 

(n) (n) 

(4.11) (n) P1 pn 
a2n Po + ---- + ... + 

\) n 
\) 



From (4.2.) it follows 

(4. 12) 

j •o 
a2 = 

a = 4 

1 , so 
(O) 

Po 

(I) l p ( 1) = 
8v ' 

so P1 -8, 0 

3 (2) - 3 (2) 
2 ' so Pz - 128 ' P1 = 

l28v 

0 

(2) 
O, Po 
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o. 

Substitution of (4. 11) into (4. l) gives the following recurrence relations 

for coefficients p~j) for n ~ 3 
]_ 

(4. 13) 8n(2n-3) 
(n) 

Pt 
(n-3) 

Pt-I - (2n-l )(2n-3) 

(4. 14) 8n(2n-3) 
(n) 

= -(2n-l)(2n-3) (n-1) 
pn-1 pn-2 

(4. 15) 8n(2n-3) (n) 
pn = -(2n-1)(2n-3) (n-1) 

pn-1 

From (4.14) we may conclude, with (4. 11), that 

(4. 16) 

Complete 

and, in 

(4. 17) 

(n) 
pn-1 

induction 

(n) 
Po 
p {n) 

l 

general, 

(n) 
p. 

]_ 

0 ' for all n ~ 0. 

yields 

0 n ~ 

0 n ~ 4 

0 for n ~ 3i + l. 

(n-1) 
Pt-I t l , .•• , n-2, 

Now, let's consider the first term p~n) f 0 in the polynomial representation 
]_ 

of a
2
n. There are three possibilities. 

(i) n = 3l. Then 

(n) 
Pt 

a6t = -t
v 

(n) 
pn 

+.,.e+---
n v 
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In this case the coefficient Pln) is dependent on a
0 

= p60) = l only, because 

the third term in (4.13) is equal to zero. This can be proved by complete 
(n) ~ 

induction, using (4. 17). Therefore the sign of pl is always positive. 

(ii) n = 3l + l. Then 

(n) 
Now, Po I 
(I) -l.+ 

pI , and 

(n) 
Pt+l 

a2n = a6l+2 = l+ I 
\) 

(n) 
pn 

+ ••• +---
n 

\) 

(n-I) (n-3) (0) 
is dependent on p l and p l , thus on p0 respectively 

(n) 
the sign of Pf+l is negative. 

(iii) n = 3l + 2. Then 

Pf+2 
l+2 

\) 

(n) 
pn 

+ ... +---

N (n) . 
ow Pf+2 is 

(n) 
sign of pl+2 

dependent on pi~~I)and Pl~~3 ) , thus on p~I) and p~2 ) , and the 

is positive. 

Suppose that the first non-zero coefficient in the polynomial represen

tation of a2n is dominant to the other terms in that representation (for 

all n ~ O). Then we can predict the behaviour of o from the signs of these 
n 

non-zero terms. For in that case (RC)n = a 2n+2/a2n is mainly determined by 

these terms. We can conclude immediately for what values of n (RC) is 
n 

positive, namely for n = 3l + 2. Then (RC) = O(v). This agrees with what 
n 

we found in chapter 3 for n = 2 (l=O). In principle it yields that (RC) > 0 
n 

for n = 2, 5, 8, II, 14, ••.. Unfortunately when n increases, the other 

terms in the polynomial representation of a2n begin to play a more important 

role, and then the foregoing reasoning is not valid anymore. However, for 

larger values of v, this effect is less important. We can illustrate this 

by the following examples: 

(i) \) = 3 (RC) > 0 for n = 2, 5, 11 • 
n 

(ii) \) = 9 (RC) > 0 for n 2, 5, 8, 12, 
n 

(iii) \) = 100 (RC) > 0 for n 2, 5, 8, 11 ' 14, 17' 20, 23, 26. 29. 33, 
n 

From ( 4. 1) it is clear that for large values of n the last term may 

be neglected. So 

(4. 18) lim 
n-+ CIO 
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From (4.18) it is clear that (RC) < 0 on the long· term and thus a 
n n 

for large values of n. Unfortunately, (4. 18) is not uniform in v. 
~ 

Numerical experiments concerning the value of (RC) suggest some con
n 

jectures that we can't prove. These conjectures are: For a fixed integer 

value of v there are v values of n for which (RC) > 0 and the largest one 
n 

is n = 2 (if v = 1), and, in general, n = 5v - 4 (v~2). max· max 

Appendix A 

In this appendix we derive the differential equation (2.12) for the 

function f (see (2.11)). 

Then 

(Al) 

Now 

(A2) 

We know that 

f(y) 

f'(y) 

21\l sh(T /2). 

2 
e-v(sh •-•) + IV' dT d [ -v (sh IV~ 

dy - e 
dy2 dT 

d2T 
= dy2 

dT 
dy 

* f(y) 
- v(ch •-I) dT f(y) 

dy 

and eh T - I = 2 sh2(•/2), so 

I 

f'(y) = - f(y)[ 4Y 2 + 
v+h 

I 2 
2Y J . 

lv+h2 

T-T)J dT 
dy 

We can write (A2), with 

(A3) 

as 

(A4) 

A 

A f' 

I 2 v + 4Y , 

Now take the derivative of (A4). This yields 

I I II I I ' "'A I 2 f' -r.rA I 2f _A' "'A A f + A f = -4f - 4yf -yf YA - 2 y YA - 4 y A YA 

I I y A f,' +2hf + _41 y2 AA' [Af'+2hf] + - 4f - 4 yf' + 
zY !Y 
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I 3 

- ! f - ! yf' + (Af'+bf)(~ + ! ~) y A 
sY A f'+ 1 yf ~ 

- - ( 4 ) + 
A I 2 

zY 

I 4 f + 4 y • 

This yields 

A f II f I (A' I 2A I A' I ) + + 4Y - y - 2 + 4Y + 
2 I A' f(-1 +ly-+ly --+ 

4 4 y 4 2A 

2 
! ! 2X- + h 4) 

so 

(AS) y(4v+y2 ) f" + (y2 - 8v) f'- (y
4 

+I) y f = O. 

(AS) corresponds to (2.12). D 

Appendix B 

In this appendix we prove ~hat 

(BI) I exp[v(2A. sh2 (-r/2) +sh T-T)] d'r I = 
-A.\) 0 (e ), A. > O, 

L 
-1T 

where L is given by 
-1T 

( B2) z -1T i + o e i<f> , 0 :S <!> :S I . 

With (B2) we get 

Sh T 

Then 

(B3) I exp [v (2A.sh
2

(T/2) + sh T-T)] dt 

L 
-1T 

1T/2 

r 2 .<!> J exp[v(-2A.ch (oe
1 

)] 

0 

* exp[-v(sh(oei<f>) - oei<f>)J 



Now it is easy to see that 

(B4) 

Further 

(BS) 
icp 

le-sh(oe ) I 

-ocos cp 
e 

1 ( ocos<P + io sin cp -ocoscp-io sin cp) I e -2 e - e I 

= le-! eocoscp(cos(osincp) +i sin(o sin cp) I 

je!e-ocoscp(cos(o sincp) - i sin(o sincp)) I 

![e-0 coscpcos(o sincp)-eocos cpcos(o sin<'P)] 
e 

-sh(o cos<J>)cos(o sincp) 
e 

and •,1, 2 s icp 
2 icjJ I I 2oe1

'1' + !e- ue 
(B6) lech (oe )I= je2 + 4e I 

1 1 2o(cos cp+ isin cp )+ 1 -2o(coscjJ+i sincp) 

1
-+-e -e 

e2 4 4 

1 2ocoscp . 1 -2ocoscp . 
2 + !e cos (2o s1ncp) + 4e cos(2os1ncp) 

e 

![l+ch(2ocoscp) -cos(2o sincp)J 
e 

Substitution of (B4), (BS) and (B6) into (B3) yields 

(B7) 

L 
-jf 

ir/2 

37 

::; 
0 

J e-Av[l+ch(2ocoscjJ)cos(2osincp)]e-vsh(ocoscjJ)cos(osincp)evocoscpdcp 

0 
ir/2 

I 
-AV evo d"' _ ifo -v(A-o) ::;c; e .1. 'l'- 2 e 

0 



38 

1T 
provided· that 0 < o $ 1T/4. (If 0 < o $ 4 then ch(2ocos~) cos (2osin~) 2:: Q.) 

Appendix C 

In this appendix we show that 

00 

(Cl) Int 
r 2 -AV J exp[v(-2kh (o/2) - sh o-o)] do = O(e ) , A. > 0, o > 0. 

0 

Substitute 

w = 2/V' ch(o/2) 

into (Cl). This yields 

(C2) Int = 

Now 

00 

r 
J 

2/Vch(o/2) 

2 -lAw e 2 -vsho-vo do d 
e - w dw 

dw _ 11 
(C3) do - vv sh(o/2) 

and 

(C4) sh o 2 sh E.. eh E..= 2 /ch2(E..) - I ch(o/2) = ..!!!... /w
2 

- : ;;::: o 
2 2 2 rv 4v 

Substituting (C3) and (C4) into (C2) we get 

00 

I -1Aw2 _1(w2 )_1 
Int $ e 2 v 2 -z;::; -1 2 dw 

2/Vch(o/2) 

co 

J 
I 2 

$ _I I . e -:zAW dw 

IV' Vch2(o/2)-l 21\Jch(o/2) 

00 

I 

$ IJ sh(o/2) J 
21\lch(o/2) 

-A.1Vch(o/2)w 
e dw 

D 

=_I 

IJ sh(o/2) 

I -2AVch(o/2) -AV ----- e = O(e ) ,A.>O,o>O. 0 
AIV eh( o/2) 
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